大学物理学_第3版_赵近芳_习题1

合集下载

大学物理学课后习题答案-赵近芳-全

大学物理学课后习题答案-赵近芳-全

习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

大学物理学(第三版)赵近芳第三章答案

大学物理学(第三版)赵近芳第三章答案

习题三3-1 惯性系S ′相对惯性系S 以速度u 运动.当它们的坐标原点O 与O '重合时,t =t '=0,发出一光波,此后两惯性系的观测者观测该光波的波阵面形状如何?用直角坐标系写出各自观测的波阵面的方程.解: 由于时间和空间都是均匀的,根据光速不变原理,光讯号为球面波.波阵面方程为:2222)(ct z y x =++ 2222)(t c z y x '='+'+'题3-1图3-2 设图3-4中车厢上观测者测得前后门距离为2l .试用洛仑兹变换计算地面上的观测者测到同一光信号到达前、后门的时间差.解: 设光讯号到达前门为事件1,在车厢)(S '系时空坐标为),(),(11cll t x ='',在车站)(S 系: )1()()(21211c uc l l c u c l x cu t t +=+='+'=γγγ 光信号到达后门为事件2,则在车厢)(S '系坐标为),(),(22cll t x -='',在车站)(S 系: )1()(2222c u c l x cu t t -='+'=γγ 于是 2122clut t γ-=-或者 l x x x t t t t 2,,02121='-'='∆-=∆='∆ )2()(22l c ux c u t t γγ='∆+'∆=∆ 3-3 惯性系S ′相对另一惯性系S 沿x 轴作匀速直线运动,取两坐标原点重合时刻作为计时起点.在S 系中测得两事件的时空坐标分别为1x =6×104m,1t =2×10-4s ,以及2x =12×104m,2t =1×10-4s .已知在S ′系中测得该两事件同时发生.试问:(1)S ′系相对S 系的速度是多少? (2) S '系中测得的两事件的空间间隔是多少? 解: 设)(S '相对S 的速度为v ,(1) )(1211x c vt t -='γ )(2222x cvt t -='γ 由题意 012='-'t t 则 )(12212x x c vt t -=- 故 812122105.12⨯-=-=--=cx x t t cv 1s m -⋅(2)由洛仑兹变换 )(),(222111vt x x vt x x -='-='γγ 代入数值, m 102.5412⨯='-'x x 3-4 长度0l =1 m 的米尺静止于S ′系中,与x ′轴的夹角'θ= 30°,S ′系相对S 系沿x 轴运动,在S 系中观测者测得米尺与x 轴夹角为=θ45︒. 试求:(1)S ′系和S 系的相对运动速度.(2)S 系中测得的米尺长度.解: (1)米尺相对S '静止,它在y x '',轴上的投影分别为:m 866.0cos 0='='θL L x ,m 5.0sin 0='='θL L y米尺相对S 沿x 方向运动,设速度为v ,对S 系中的观察者测得米尺在x 方向收缩,而y 方向的长度不变,即y y x x L L cv L L '=-'=,122故 221tan c vL L L L L L xy xy xy -''='==θ把ο45=θ及y x L L '',代入则得 866.05.0122=-cv故 c v 816.0=(2)在S 系中测得米尺长度为m 707.045sin =︒=y L L3-5 一门宽为a ,今有一固有长度0l (0l >a )的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动.若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u 至少为多少?解: 门外观测者测得杆长为运动长度,20)(1cu l l -=,当a ≤1时,可认为能被拉进门,则 20)(1cu l a -≤解得杆的运动速率至少为:2)(1l a c u -=题3-6图3-6两个惯性系中的观察者O 和O '以0.6c(c 表示真空中光速)的相对速度相互接近,如果O 测得两者的初始距离是20m ,则O '测得两者经过多少时间相遇? 解: O 测得相遇时间为t ∆cv L t 6.0200==∆ O ' 测得的是固有时t '∆∴ vL tt 201βγ-=∆='∆ s 1089.88-⨯=,6.0==c vβ , 8.01=γ , 或者,O '测得长度收缩,vL t L L L L ='∆=-=-=,8.06.01102020β s 1089.81036.0208.06.08.0880-⨯=⨯⨯⨯=='c L t ∆ 3-7 观测者甲乙分别静止于两个惯性参考系S 和S '中,甲测得在同一地点发生的两事件的时间间隔为 4s ,而乙测得这两个事件的时间间隔为 5s .求: (1) S '相对于S 的运动速度.(2)乙测得这两个事件发生的地点间的距离.解: 甲测得0,s 4==x t ∆∆,乙测得s 5=t ∆,坐标差为12x x x '-'='∆′ (1)∴ t cv t x c vt t ∆-∆=∆+∆='∆22)(11)(λγ54122='∆∆=-t t cv解出 c c t t c v 53)54(1)(122=-='∆∆-= 8108.1⨯= 1s m -⋅(2) ()0,45,=∆=∆'∆=∆-∆='∆x t t t v x x γγ ∴ m 1093453458⨯-=-=⨯⨯-=-='c c t v x ∆γ∆ 负号表示012<'-'x x . 3-8 一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少?解: 2220153,1513βββ-=-=-=='则l l ∴ c c v 542591=-= 3-9 论证以下结论:在某个惯性系中有两个事件同时发生在不同地点,在有相对运动的其他惯性系中,这两个事件一定不同时.证: 设在S 系B A 、事件在b a ,处同时发生,则B A a b t t t x x x -=∆-=∆,,在S '系中测得)(2x cvt t t t A B ∆-∆='-'='∆γ 0,0≠∆=∆x t ,∴ 0≠'∆t 即不同时发生. 3-10 试证明:(1)如果两个事件在某惯性系中是同一地点发生的,则对一切惯性系来说这两个事件的时间间隔,只有在此惯性系中最短.(2)如果两个事件在某惯性系中是同时发生的,则对一切惯性关系来说这两个事件的空间间隔,只有在此惯性系中最短.解: (1)如果在S '系中,两事件B A 、在同一地点发生,则0='∆x ,在S 系中,t t t '∆≥'∆=∆γ,仅当0=v 时,等式成立,∴t '∆最短.(2)若在S '系中同时发生,即0='∆t ,则在S 系中,x x x '∆≥'∆=∆γ,仅当0=v 时等式成立,∴S '系中x '∆最短.3-11 根据天文观测和推算,宇宙正在膨胀,太空中的天体都远离我们而去.假定地球上观察到一颗脉冲星(发出周期无线电波的星)的脉冲周期为 0.50s ,且这颗星正沿观察方向以速度0.8c 离我们而去.问这颗星的固有周期为多少?解: 以脉冲星为S '系,0='∆x ,固有周期0τ='∆t .地球为S 系,则有运动时t t '∆=∆γ1,这里1t ∆不是地球上某点观测到的周期,而是以地球为参考系的两异地钟读数之差.还要考虑因飞行远离信号的传递时间,ct v 1∆ ∴ t c vt c t v t t ∆+'∆=∆+∆=∆γγ11′ )1(cvt +'=∆γ6.01)8.0(112=-=cc γ 则 γλτ)8.01(5.0)1(0cc cv tt +++∆='∆=s 1666.08.13.06.01)8.01(5.0==+= 3-12 6000m 的高空大气层中产生了一个π介子以速度v =0.998c 飞向地球.假定该π介子在其自身静止系中的寿命等于其平均寿命 2×10-6s .试分别从下面两个角度,即地球上的观测者和π介子静止系中观测者来判断π介子能否到达地球.解: π介子在其自身静止系中的寿命s 10260-⨯=t ∆是固有(本征)时间,对地球观测者,由于时间膨胀效应,其寿命延长了.衰变前经历的时间为s 1016.315220-⨯=-=cv t t ∆∆这段时间飞行距离为m 9470==t v d ∆ 因m 6000>d ,故该π介子能到达地球.或在π介子静止系中,π介子是静止的.地球则以速度v 接近介子,在0t ∆时间内,地球接近的距离为m 5990=='t v d ∆m 60000=d 经洛仑兹收缩后的值为:m 37912200=-='cv d dd d '>',故π介子能到达地球. 3-13 设物体相对S ′系沿x '轴正向以0.8c 运动,如果S ′系相对S 系沿x 轴正向的速度也是0.8c ,问物体相对S 系的速度是多少?解: 根据速度合成定理,c u 8.0=,c v x 8.0=' ∴ c c c c c c cv u u v v x x x 98.08.08.018.08.0122=⨯++='++'=3-14 飞船A 以0.8c 的速度相对地球向正东飞行,飞船B 以0.6c 的速度相对地球向正西方向飞行.当两飞船即将相遇时A 飞船在自己的天窗处相隔2s 发射两颗信号弹.在B 飞船的观测者测得两颗信号弹相隔的时间间隔为多少?解: 取B 为S 系,地球为S '系,自西向东为x (x ')轴正向,则A 对S '系的速度c v x 8.0=',S '系对S 系的速度为c u 6.0=,则A 对S 系(B 船)的速度为c c c cv u u v v xx x 946.048.016.08.012=++='++'=发射弹是从A 的同一点发出,其时间间隔为固有时s 2='t ∆,题3-14图∴B 中测得的时间间隔为:s 17.6946.0121222=-=-'=cv t t x ∆∆3-15 (1)火箭A 和B 分别以0.8c 和0.6c 的速度相对地球向+x 和-x 方向飞行.试求由火箭B 测得A 的速度.(2)若火箭A 相对地球以0.8c 的速度向+y 方向运动,火箭B 的速度不变,求A 相对B 的速度.解: (1)如图a ,取地球为S 系,B 为S '系,则S '相对S 的速度c u 6.0=,火箭A 相对S 的速度c v x 8.0=,则A 相对S '(B )的速度为:c c c c c c v c u u v v x x x946.0)8.0)(6.0(1)6.0(8.0122=----=--=' 或者取A 为S '系,则c u 8.0=,B 相对S 系的速度c v x 6.0-=,于是B 相对A 的速度为:c c c c cc v c u u v v x x x 946.0)6.0)(8.0(18.06.0122-=----=--=' (2)如图b ,取地球为S 系,火箭B 为S '系,S '系相对S 系沿x -方向运动,速度c u 6.0-=,A 对S 系的速度为,0=x v ,c v y 8.0=,由洛仑兹变换式A 相对B 的速度为:c c v cu u v v xx x 6.001)6.0(012=---=--=' c c v cuv cu v xyy 64.0)8.0(6.01112222=-=--=' ∴A 相对B 的速度大小为c v v v y x 88.022='+'='速度与x '轴的夹角θ'为07.1tan =''='xy v v θο8.46='θ题3-15图3-16 静止在S 系中的观测者测得一光子沿与x 轴成︒60角的方向飞行.另一观测者静止于S ′系,S ′系的x '轴与x 轴一致,并以0.6c 的速度沿x 方向运动.试问S ′系中的观测者观测到的光子运动方向如何?解: S 系中光子运动速度的分量为c c v x 500.060cos ο==c c v y 866.060sin ο==由速度变换公式,光子在S '系中的速度分量为c c c c cc v c u u v v x x x 143.05.06.016.05.0122-=⨯--=--=' c c cc c v c u v cu v x yy 990.05.06.01866.06.011122222=⨯-⨯-=--=' 光子运动方向与x '轴的夹角θ'满足692.0tan -=''='xy v v θθ'在第二象限为ο2.98='θ在S '系中,光子的运动速度为c v v v y x ='+'='22 正是光速不变.3-17 (1)如果将电子由静止加速到速率为0.1c ,须对它作多少功?(2)如果将电子由速率为0.8c 加速到0.9c ,又须对它作多少功?解: (1)对电子作的功,等于电子动能的增量,得)111()1(222020202--=-=-==c v c m c m c m mc E E k k γ∆)11.011()103(101.922831--⨯⨯⨯=-161012.4-⨯=J=eV 1057.23⨯(2) )()(2021202212c m c m c m c m E E E k k k---=-='∆ )1111(221222202122cv cvc m c m c m ---=-=))8.0119.011(103101.92216231---⨯⨯⨯=-J 1014.514-⨯=eV 1021.35⨯=3-18 μ子静止质量是电子静止质量的 207倍,静止时的平均寿命0τ=2×10-6s ,若它在实验室参考系中的平均寿命τ= 7×10-6s ,试问其质量是电子静止质量的多少倍?解: 设μ子静止质量为0m ,相对实验室参考系的速度为c v β=,相应质量为m ,电子静止质量为e m 0,因2711,1022==--=ττββττ即由质速关系,在实验室参考系中质量为:202012071ββ-=-=e m m m故72527207120720=⨯=-=βe m m 3-19 一物体的速度使其质量增加了10%,试问此物体在运动方向上缩短了百分之几? 解: 设静止质量为0m ,运动质量为m , 由题设10.00=-m m m 201β-=m m由此二式得10.01112=--β∴ 10.1112=-β 在运动方向上的长度和静长分别为l 和0l ,则相对收缩量为:%1.9091.010.111112000==-=--=-=β∆l l l l l3-20 一电子在电场中从静止开始加速,试问它应通过多大的电势差才能使其质量增加0.4%?此时电子速度是多少?已知电子的静止质量为9.1×10-31kg . 解: 由质能关系1004.0200=∆=∆c m E m m∴ 100/)103(101.94.01004.0283120⨯⨯⨯⨯==∆-c m E J 1028.316-⨯==eV 106.11028.31916--⨯⨯= eV 100.23⨯= 所需电势差为3100.2⨯伏特 由质速公式有:004.111004.01111100002=+=∆+=∆+==-m m mm m m m β ∴ 32221095.7)004.11(1)(-⨯=-==c v β故电子速度为 -17s m 107.2⋅⨯==c v β3-21 一正负电子对撞机可以把电子加速到动能K E =2.8×109eV .这种电子速率比光速差多少? 这样的一个电子动量是多大?(与电子静止质量相应的能量为0E =0.511×106eV)解: 2022201c m cv c m E k --=所以 20202022/111cm E c m c m E c v k k +=+=- 由上式,2962622020)108.210511.0/()1051.0(1)(1⨯+⨯⨯-=+-=c E c m c m c v k8109979245.2⨯=-1s m ⋅810997924580.2⨯=-v c -1s m ⋅8109979245.28=⨯- -1s m ⋅由动量能量关系420222c m c p E +=可得cc m E E ccm c m E ccm E p k k k 20242022042022)(+=-+=-=11882138269182s m kg 1049.1103/]106.1)10511.0108.22108.2[(---⋅⋅⨯=⨯⨯⨯⨯⨯⨯⨯+⨯=3-22 氢原子的同位素氘(21H)和氚(31H)在高温条件下发生聚变反应,产生氦(42He)原子核和一个中子(10n),并释放出大量能量,其反应方程为21H + 31H→42He + 10n 已知氘核的静止质量为2.0135原子质量单位(1原子质量单位=1.600×10-27kg),氚核和氦核及中子的质量分别为3.0155,4.0015,1.00865原子质量单位.求上述聚变反应释放出来的能量.解: 反应前总质量为0290.50155.30135.2=+amu反应后总质量为0102.50087.10015.4=+amu质量亏损 0188.00102.50290.5=-=∆m amukg 1012.329-⨯=由质能关系得()282921031012.3⨯⨯⨯==-mc E ∆∆ J 1081.221-⨯=71075.1⨯=eV3-23 一静止质量为0m 的粒子,裂变成两个粒子,速度分别为0.6c 和0.8c .求裂变过程的静质量亏损和释放出的动能.解: 孤立系统在裂变过程中释放出动能,引起静能减少,相应的静止质量减少,即静质量亏损. 设裂变产生两个粒子的静质量分别为10m 和20m ,其相应的速度c v 6.01=,c v 8.02=由于孤立系统中所发生的任何过程都同时遵守动量守恒定律和能(质)量守恒定律,所以有0112222201221102211=-+-=+v c v m v cv m v m v m 022220221102111m c v m c vm m m =-+-=+注意1m 和2m 必沿相反方向运动,动量守恒的矢量方程可以简化为一维标量方程,再以6.01=v c,8.02=v c 代入,将上二方程化为:20106886m m =,020106.08.0m m m =+ 上二式联立求解可得:010459.0m m =, 020257.0m m =故静质量亏损020100284.0)(m m m m m =+-=∆由静质量亏损引起静能减少,即转化为动能,故放出的动能为202284.0c m mc E k =∆=∆3-24 有A ,B 两个静止质量都是0m 的粒子,分别以1v =v ,2v =-v 的速度相向运动,在发生完全非弹性碰撞后合并为一个粒子.求碰撞后粒子的速度和静止质量.解: 在实验室参考系中,设碰撞前两粒子的质量分别1m 和2m ,碰撞后粒子的质量为M 、速度为V ,于是,根据动量守恒和质量守恒定律可得:MV v m v m =+2211 ①M m m =+21 ②由于 0)(1)()(120202211=---+-=+c v v m c v vm v m v m代入①式得 0=V221)(120c v m m m M -+=,即为碰撞后静止质量.3-25 试估计地球、太阳的史瓦西半径.解: 史瓦西半径 22cGM r s = 地球: kg 10624⨯≈M则: m 109.8)103(106107.623282411--⨯=⨯⨯⨯⨯⨯=s r 太阳: kg 10230⨯≈M则: 3283011103)103(102107.62⨯=⨯⨯⨯⨯⨯=-s r m 3-26 典型中子星的质量与太阳质量M ⊙=2×1030kg 同数量级,半径约为10km .若进一步坍缩为黑洞,其史瓦西半径为多少?一个质子那么大小的微黑洞(10-15cm),质量是什么数量级?解: (1)史瓦西半径与太阳的相同,3103⨯=s r m(2) 1510-=s r cm 1710-=m由 22c GM r s = 得 91128172107.6107.62)103(102⨯=⨯⨯⨯⨯==--G c r M s kg 3-27 简述广义相对论的基本原理和实验验证.解: 广义相对论的基本原理是等效原理和广义相对性原理.等效原理又分为弱等效原理和强等效原理.弱等效原理是:在局部时空中,不可能通过力学实验区分引力和惯性力,引力和惯性力等效.强等效原理是:在局部时空中,任何物理实验 都不能区分引力和惯性力,引力和惯性力等效.广义相对性原理是:所有参考系都是平权的,物理定律的表述相同.广义相对论的实验验证有:光线的引力偏转,引力红移,水星近日点进动,雷达回波延迟等.。

大学物理学第三版修订版下册第章标准答案(赵近芳)

大学物理学第三版修订版下册第章标准答案(赵近芳)

大学物理学第三版修订版下册第章答案(赵近芳)————————————————————————————————作者:————————————————————————————————日期:习题1111.1选择题(1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流()(A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。

[答案:B](2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。

[答案:A](3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式221LI W m=()( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。

[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。

[答案:C]11.2 填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。

[答案:磁力](2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。

[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。

[答案:端点,221l B ω;中点,0]11.3一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B ϖ垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题11.4图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i ϖ, 题11.4图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j ϖ,则αΦcos 2π22B R m=∵ B ϖ与i ϖ夹角和B ϖ与j ϖ夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV方向与cbadc 相反,即顺时针方向.题11.5图11.5 如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v ϖ方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则 (1) ]ln [lnπ2d π2d π2000dad b a b Ilr l rIr l rIab bad dm +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7 如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解: )cos(2π02ϕωΦ+=⋅=t r B S B m ϖϖ ∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε ∴ RBfr R I m22π==ε11.8 如题11.8图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题11.8图解: AB 、CD 运动速度v ϖ方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεϖϖϖBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰μεϖϖϖ∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεεV方向沿顺时针.11.9 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场Bϖ中,B ϖ的方向与回路的法线成60°角(如题11.9图所示),B ϖ的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向. 解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m ϖϖΦ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题11.9图11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B ϖ的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题11.11图11.11 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题11.12图11.12 如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v ϖ平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 ba b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμεϖϖϖ ∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题11.13图11.13 磁感应强度为B ϖ的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=-- ∴ tBR R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →11.14 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅=ϖϖΦ∴ tBR R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15 如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解: 由⎰⎰⋅-=⋅l S t B l E ϖϖϖϖd d d d 旋知,此时旋E ϖ以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E ϖ与ab 垂直∴ ⎰=⋅ll 0d ϖ旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc ϖϖ旋ε∴ 0<-c d U U 即d c U U >题11.16图11.16 一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==11.17两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H11题11.18图11.18 一矩形截面的螺绕环如题11.18图所示,共有N 匝.试求:(1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题11.18图示(1)通过横截面的磁通为⎰==b a ab NIh r h r NIln π2d π200μμΦ 磁链 ab IhN N ln π220μΦψ== ∴ ab hN I L ln π220μψ== (2)∵ 221LI W m = ∴ a b h I N W m ln π4220μ=11.19 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能.解:在R r <时 20π2R I B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l )则 ⎰⎰===RR m I R rr I r r w W 00204320π16π4d d 2μμπ。

大学物理(赵近芳)练习册答案

大学物理(赵近芳)练习册答案

练习1 质点运动学(一)参考答案1. B ;2. D;3. 8m, 10m.4. 3, 3 6;5. 解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m6. 答:矢径r是从坐标原点至质点所在位置的有向线段.而位移矢量是从某一个初始时刻质点所在位置到后一个时刻质点所在位置的有向线段.它们的一般关系为0r r r-=∆0r 为初始时刻的矢径, r 为末时刻的矢径,△r为位移矢量.若把坐标原点选在质点的初始位置,则0r =0,任意时刻质点对于此位置的位移为△r =r,即r既是矢径也是位移矢量.1. D ;2. -g /2 , ()g 3/322v3. 4t 3-3t 2 (rad/s), 12t 2-6t (m/s 2)4. 17.3 m/s, 20 m/s .5. 解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰=x 2= t 3 /3+x 0 (SI)6. 解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω24t =ω, 24Rt R ==ωvt=1s 时, v = 4Rt 2 = 8 m/s2s /168/m Rt dt d a t ===v 22s /32/m R a n ==v()8.352/122=+=nt a a a m/s 21.D2.C3.4. l/cos 2θ5.如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m= m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。

(1)求物体A 与水平桌面的摩擦系数;(2)若按图b 放置时,求系统的加速度及绳的张力。

大学物理第三版问题详解__赵近芳

大学物理第三版问题详解__赵近芳

习题解答 习题一1-1|r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同?t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:〔1〕r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;〔2〕t d d r 是速度的模,即td d r==v t s d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =〔式中r ˆ叫做单位矢〕,如此tˆr ˆt r t d d d d d d rr r +=式中trd d 就是速度径向上的分量, ∴trt d d d d 与r 不同如题1-1图所示. 题1-1图(3)t d d v 表示加速度的模,即tva d d=,t v d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢〕,所以tv t v t v d d d d d d ττ += 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t r d d ,与a =22d d tr 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 与a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差异何在?解:后一种方确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t x t r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d trt r 与误作速度与加速度的模。

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为 ( )(A)dtdr(B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +答案:(D)。

(2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a −=,则一秒钟后质点的速度 ( )(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

答案:(D)。

(3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 ( )(A)tR t R ππ2,2 (B) t Rπ2,0 (C) 0,0 (D) 0,2tRπ 答案:(B)。

(4) 质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中, ( ) ① a t = d /d v , ② v =t r d /d , ③ v =t S d /d , ④ τa t =d /d v.(A) 只有①、④是对的. (B) 只有②、④是对的.(C) 只有②是对的.(D) 只有③是对的. 答案:(D)。

(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有: ( ) (A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠=答案:(D)。

1.2填空题(1) 一质点,以1−⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

答案: 10m ; 5πm 。

(2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。

大学物理学答案(北京邮电大学第3版)赵近芳等编著#(精选.)

大学物理学答案(北京邮电大学第3版)赵近芳等编著#(精选.)

大学物理学(北邮第三版) 习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r += 式中t rd d 就是速度径向上的分量,∴t r td d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为 ( )(A)dtdr(B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +答案:(D)。

(2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a −=,则一秒钟后质点的速度 ( )(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

答案:(D)。

(3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 ( )(A)tR t R ππ2,2 (B) t Rπ2,0 (C) 0,0 (D) 0,2tRπ 答案:(B)。

(4) 质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中, ( ) ① a t = d /d v , ② v =t r d /d , ③ v =t S d /d , ④ τa t =d /d v.(A) 只有①、④是对的. (B) 只有②、④是对的.(C) 只有②是对的.(D) 只有③是对的. 答案:(D)。

(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有: ( ) (A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠=答案:(D)。

1.2填空题(1) 一质点,以1−⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

答案: 10m ; 5πm 。

(2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

()
(3) 对功的概念有以下几种说法:
①保守力作正功时,系统内相应的势能增加。
习题 1
1.1 选择题
(1)
一运动质点在某瞬时位于矢径
r (x,
y)
的端点处,其速度大小为
(A) dr dt
(B) dr
dt
(C) d | r |
dt
(D) ( dx)2 + ( dy )2 dt dt
答案:(D)。
()
(2) 一质点作直线运动,某时刻的瞬时速度 v = 2m / s ,瞬时加速度 a = −2m / s2 ,则一
答案:(B)。
(D) 2R ,0 t
(4) 质点作曲线运动, r 表示位置矢量,v 表示速度, a 表示加速度,S 表示路程, a
表示切向加速度,下列表达式中,
① dv / d t = a ,
② dr / dt = v ,
③ dS / d t = v ,
④ dv / dt = a .
()
速度 v0 为 5m·s-1,则当 t 为 3s 时,质点的速度 v=

答案: 23m·s-1 .
(3) 一质点从静止出发沿半径 R=1 m 的圆周运动,其角加速度随时间 t 的变化规律是 α=12t2-
6t (SI),则质点的角速度 =__________________;切向加速度 a =_________________. 答案:4t3-3t2 (rad/s), 12t2-6t (m/s2)
*1.14 一船以速率 v1 =30km·h-1沿直线向东行驶,另一小艇在其前方以速率 v2 =40km·h-1
沿直线向北行驶,问在船上看小艇的速度为多少?在艇上看船的速度又为多少?

热学大学物理赵近芳第三版.

热学大学物理赵近芳第三版.

习 题 77.1选择题(1) 容器中贮有一定量的理想气体,气体分子的质量为m ,当温度为T 时,根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值是:(A)2x υ=.(B) 2x υ= [ ](C) 23x kT m υ= . (D) 2x kT mυ=. [答案:D 。

2222x y z υυυυ=++, 222213x y z υυυυ===,23kT mυ=。

](2) 一瓶氦气和一瓶氮气的密度相同,分子平均平动动能相同,而且都处于平衡状态,则它们 [ ] (A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 温度相同,但氦气的压强大于氮气的压强. (D) 温度相同,但氦气的压强小于氮气的压强.[答案:C 。

由32w kT =,w w =氦氮,得T 氦=T 氮 ; 由molpM RTρ=,ρρ=氦氮,T 氦=T 氮 ,而M M <mol 氦mol 氮,故p p >氦氮。

](3) 在标准状态下,氧气和氦气体积比为V 1 /V 2=1/2,都视为刚性分子理想气体,则其内能之比E 1 / E 2为: [ ] (A) 3 / 10. (B) 1 / 2. (C) 5 / 6. (D) 5 / 3.[答案:C 。

由2mol M i E RT M =2ipV =,得111112222256E i pV i V E i pV i V ==⋅=。

](4) 一定质量的理想气体的内能E 随体积V 的变化关系为一直线,其延长线过E ~V 图的原点,题7.1图所示,则此直线表示的过程为: [ ] (A) 等温过程. (B) 等压过程. (C) 等体过程. (D) 绝热过程.[答案:B 。

由图得E =kV , 而2i E pV =,i 不变,2ik p =为一常数。

](5) 在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T 的关系为 [ ] (A) Z 与T 无关. (B).Z 与T 成正比 . (C) Z 与T 成反比. (D) Z 与T 成正比.[答案:C。

赵近芳-大学物理学答案--全

赵近芳-大学物理学答案--全

大学物理学(北邮第三版)赵近芳等编著 习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r += 式中t rd d 就是速度径向上的分量, ∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t t r d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

v21 =
v12
+
v
2 2
= 50 km h −1
方向北偏西
= arctan v1 = arctan 3 = 36.87
v2
4
(2)小艇看大船,则有
v12
=
v1

v2
,依题意作出速度矢量图如题
1.14
图(b),同上法,得
v12 = 50 km h −1
方向南偏东 36.87o .
(1) 匀速直线运动;(2) 匀速曲线运动;(3) 变速直线运动;(4) 变速曲线运动。 解:(1) 质点作匀速直线运动时,其切向加速度、法向加速度及加速度均为零; (2) 质点作匀速曲线运动时,其切向加速度为零,法向加速度和加速度均不为零; (3) 质点作变速直线运动时,其法向加速度为零,切向加速度和加速度均不为零; (4) 质点作变速曲线运动时,其切向加速度、法向加速度及加速度均不为零。
的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为
v = dx = 4t + 8 dt
a
=
d2x dt 2
=
4
t=3s 时的速度和加速度分别为 v=20m/s,a=4m/s2。因加速度为正所以是加速的。
1.4 在以下几种运动中,质点的切向加速度、法向加速度以及加速度哪些为零?哪些不为 零?
*1.14 一船以速率 v1 =30km·h-1沿直线向东行驶,另一小艇在其前方以速率 v2 =40km·h-1
沿直线向北行驶,问在船上看小艇的速度为多少?在艇上看船的速度又为多少?
解:(1)大船看小艇,则有
v21
=
v2

v1
,依题意作速度矢量图如题

大学物理学课后习题答案-赵近芳-全

大学物理学课后习题答案-赵近芳-全

习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

大学物理学(第三版)第三章课后答案(主编)赵近芳

大学物理学(第三版)第三章课后答案(主编)赵近芳

习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A)02ωmRJ J + (B) 02)(ωR m J J + (C) 02ωmRJ (D) 0ω [答案: (A)](2) 如题3.1(2)图所示,一光滑的表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为(A)13rad/s (B)17rad/s(C)10rad/s (D)18rad/s(a) (b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A )动能不变,动量改变。

(B )动量不变,动能改变。

(C )角动量不变,动量不变。

(D )角动量改变,动量改变。

(E )角动量不变,动能、动量都改变。

[答案: (E)]3.2填空题(1) 半径为30cm 的飞轮,从静止开始以0.5rad ·s -2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度a τ= ,法向加速度a n= 。

[答案:0.15; 1.256](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的守恒,原因是。

木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的守恒。

题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o 轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。

《大学物理简明教程》答案-赵近芳-1至12章

《大学物理简明教程》答案-赵近芳-1至12章

大学物理简明教程习题解答习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆtr t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r td d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d=,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

大学物理(赵近芳)练习册

大学物理(赵近芳)练习册

⼤学物理(赵近芳)练习册练习1 质点运动学(⼀)班级学号成绩 .1. ⼀质点在平⾯上运动,已知质点位置⽮量的表⽰式为 j bt i at r 22+=(其中a 、b 为常量),则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)⼀般曲线运动.[]2.⼀质点在平⾯上作⼀般曲线运动,其瞬时速度为v ,瞬时速率为,某⼀时间的平均速度为v ,平均速率为v ,它们之间的关系必定有:(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠= [ ]3.⼀质点沿直线运动,其运动学⽅程为x = 6 t -t 2 (SI),则在t 由0⾄4s 的时间间隔,质点的位移⼤⼩为___________,在t 由0到4s 的时间间隔质点⾛过的路程为_______________.4.⼀质点作直线运动,其坐标x 与时间t 的关系曲线如图所⽰.则该质点在第秒瞬时速度为零;在第秒⾄第秒间速度与加速度同⽅向.5. 有⼀质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒的平均速度;(2) 第2秒末的瞬时速度;(3) 第2秒的路程.6. 什么是⽮径?⽮径和对初始位置的位移⽮量之间有何关系?怎样选取坐标原点才能够使两者⼀致?练习2 质点运动学(⼆)班级学号成绩 .1. 质点作曲线运动,r 表⽰位置⽮量,v 表⽰速度,a 表⽰加速度,S 表⽰路程,a t 表⽰切向加速度,下列表达式中,(1) a t = d d /v , (2) v =t r d d /,(3) v =t d d /S , (4) t a t =d d /v .(A) 只有(1)、(4)是对的.(B) 只有(2)、(4)是对的.(C) 只有(2)是对的.(D) 只有(3)是对的.[]2. ⼀物体作如图所⽰的斜抛运动,测得在轨道A 点处速度υ的⼤⼩为,其⽅向与⽔平⽅向夹⾓成30°.则物体在A 点的切向加速度a t =__________________,轨道的曲率半径 =__________________.3.⼀质点从静⽌出发沿半径R =1 m 的圆周运动,其⾓加速度随时间t 的变化规律是=12t 2-6t (SI),则质点的⾓速 =__________________;切向加速度 a t =_________________.4.当⼀列⽕车以10 m/s 的速率向东⾏驶时,若相对于地⾯竖直下落的⾬滴在列车的窗⼦上形成的⾬迹偏离竖直⽅向30°,则⾬滴相对于地⾯的速率是________________;相对于列车的速率是________________.5. ⼀质点沿x 轴运动,其加速度为a = 4t (SI),已知t =0时,质点位于x 0=10 m 处,初速度0=0.试求其位置和时间的关系式.6. 如图所⽰,质点P 在⽔平⾯沿⼀半径为R =2 m 的圆轨道转动.转动的⾓速度与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s时,质点P 的速度与加速度的⼤⼩.练习3 质点动⼒学(⼀)班级学号成绩 .1.质量分别为m1和m2的两滑块A和B通过⼀轻弹簧⽔平连结后置于⽔平桌⾯上,滑块与桌⾯间的摩擦系数均为,系统在⽔平拉⼒F作⽤下匀速运动,如图所⽰.如突然撤消拉⼒,则刚撤消后瞬间,⼆者的加速度a A和a B分别为(A) a A=0 , a B=0. (B) a A>0 , a B<0.(C) a A<0 , a B>0. (D) a A<0 , a B=0.[]2. 体重、⾝⾼相同的甲⼄两⼈,分别⽤双⼿握住跨过⽆摩擦轻滑轮的绳⼦各⼀端.他们从同⼀⾼度由初速为零向上爬,经过⼀定时间,甲相对绳⼦的速率是⼄相对绳⼦速率的两倍,则到达顶点的情况是(A)甲先到达.(B)⼄先到达.(C)同时到达.(D)谁先到达不能确定.[]3. 分别画出下⾯⼆种情况下,物体A的受⼒图.(1) 物体A放在⽊板B上,被⼀起抛出作斜上抛运动,A始终位于B的上⾯,不计空⽓阻⼒;(2) 物体A的形状是⼀楔形棱柱体,横截⾯为直⾓三⾓形,放在桌⾯C上.把物体B轻轻地放在A的斜⾯上,设A、B间和A与桌⾯C间的摩擦系数皆不为零,A、B系统静⽌.4.质量为m的⼩球,⽤轻绳AB、BC连接,如图,其中AB⽔平.剪断绳AB前后的瞬间,绳BC中的⼒⽐T : T′=____________.5.如图所⽰,A,B,C三物体,质量分别为M=0.8kg, m=m0=0.1kg,当他们如图a放置时,物体正好做匀速运动。

大学物理学(上册、下册)课后习题答案 赵近芳 全

大学物理学(上册、下册)课后习题答案 赵近芳 全

m s2
dt
这说明该点只有 y 方向的加速度,且为恒量。
1-4 在离水面高 h 米的岸上,有人用绳子拉船靠岸,船在离岸 S 处,如题 1-4 图所示.当人
以 v0 (m· s 1 )的速率收绳时,试求船运动的速度和加速度的大小.
图 1-4
解: 设人到船之间绳的长度为 l ,此时绳与水面成 角,由图可知

dx dt

R (1 cost)
v y

dy dt

R sin t)
a x a y

R 2 R 2
sin t dvx dt
cost dvy dt
1-10 以初速度 v0 =20 m s1 抛出一小球,抛出方向与水平面成幔 60°的夹角,
求:(1)球轨道最高点的曲率半径 R1 ;(2)落地处的曲率半径 R2 .
解:当滑至斜面底时, y h ,则 vA 2gh , A 物运动过程中又受到 B 的牵连运动影响,
因此,
A 对地的速度为vA地

u

v
' A


(u 2gh cos )i ( 2gh sin ) j
题 1-12 图
1-13 一船以速率 v1 =30km·h-1 沿直线向东行驶,另一小艇在其前方以速率 v2 =40km·h-1 沿解直:线(向1)北大行船驶看,小问艇在,船则上有看v2小1 艇v的2 速v度1 ,为依何题?在意艇作上速看度船矢的量速图度如又题为1-何13? 图(a)
an
即 R 2 R
亦即 (9t 2 )2 18t
t3 2
2 3t 3 2 3 2 2.67 rad
则解得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 3t 3 2 3
1-8 质点沿半径为 R 的圆周按 s = v 0 t
1 2 bt 的规律运动,式中 s 为质点离圆周上某点的弧 2
长, v 0 ,b 都是常量, 求: (1) t 时刻质点的加速度; (2) t 为何值时, 加速度在数值上等于 b . 解: (1)
v1 v x v0 cos 60 o a n1 g 10 m s 2
又∵
a n1
v12
1

v12 (20 cos 60) 2 1 a n1 10 10 m
(2)在落地点,
v 2 v0 20 m s 1 ,

a n2 g cos 60 o
(v0 bt ) 4 ab b R2
2

b2 b2
v0 时, a b b
(v0 bt ) 4 , (v0 bt ) 4 0 2 R
∴当 t
1-9 半径为 R 的轮子,以匀速 v 0 沿水平线向前滚动:(1)证明轮缘上任意点 B 的运动方程为
x = R (t sin t ) , y = R (1 cos t ) ,式中 v0 / R 是轮子滚动的角速度,当 B 与
习题解答 习题一
1-1 | r |与 r 有无不同?
dr dr dv dv 和 有无不同? 和 有无不同?其不同在哪里? dt dt dt dt
试举例说明.
解:(1)
r 是位移的模, r 是位矢的模的增量,即 r r2 r1 , r r2 r1 ;
(2)
dr dr ds v 是速度的模,即 . dt dt dt
v绳
v船
dl ds v0 , v船 dt dt

v ds l dl l v0 0 dt s dt s cos

v船
lv 0 (h 2 s 2 )1 / 2 v0 s s
将 v船 再对 t 求导,即得船的加速度
dl ds l v0 s lv船 a dt 2 dt v0 v0 dt s s2 l2 2 ( s )v 0 2 h 2 v0 s 3 s2 s dv船 s
由题知 t 0 , x 0 5 ,∴ c 2 5 故 所以 t 10 s 时
1 x 2t 2 t 3 5 2
v10 4 10
3 10 2 190 m s 1 2 1 x10 2 10 2 10 3 5 705 m 2
1-7
a R 1 18 2 36 m s 2 a n R 2 1 (9 2 2 ) 2 1296 m s 2
(2)当加速度方向与半径成 45 角时,有
ο
tan 45
即 亦即 则解得 于是角位移为
a 1 an
R 2 R (9t 2 ) 2 18t t3 2 9 2 2.67 9 rad
度的贡献。 1-3 一质点在 xOy 平面上运动,运动方程为
x =3 t +5, y =
式中 t 以 s计, x , y 以m计.(1)以时间 t 为变量,写出质点位置矢量的表示式;(2)求出 t =1 s 时刻和 t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算 t =0 s时刻到 t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算 t =4 s 时质点的速度;(5)计算 t = 0s 到 t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算 t =4s 时质点 的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成 直角坐标系中的矢量式). 解: (1)
v v 4 v0 4 a 1j m s 2 t 4 4 dv (6) a 1 j m s 2 dt 这说明该点只有 y 方向的加速度,且为恒量。
1-4 在离水面高h米的岸上,有人用绳子拉船靠岸,船在离岸S处,如题1-4图所示.当人以
v a
ds v0 bt dt
dv b dt v 2 (v0 bt ) 2 an R R
则 加速度与半径的夹角为
(v0 bt ) 4 a a a b R2
2 2 n 2
arctan
(2)由题意应有
a Rb a n (v0 bt ) 2
故它们的模即为
dx dy v v v dt dt
2 x 2 y 2 2 x 2 y
2
2
d2x d2 y a a a dt 2 2 dt
2
而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作
v0 (m· s 1 )的速率收绳时,试求船运动的速度和加速度的大小.
图1-4 解: 设人到船之间绳的长度为 l ,此时绳与水面成 角,由图可知
l 2 h2 s2
将上式对时间 t 求导,得
2l
dl ds 2s dt dt
题 1-4 图
根据速度的定义,并注意到 l , s 是随 t 减少的, ∴
d adx (2 6 x 2 )dx
1 2 v 2x 2x3 c 2
由题知, x 0 时, v 0 10 ,∴ c 50 ∴ 1-6
v 2 x 3 x 25 m s 1
已知一质点作直线运动,其加速度为 a =4+3 t m s ,开始运动时, x =5 m,
∵有 v v ( 表轨道节线方向单位矢) ,所以

dv dv d v dt dt dt dv 就是加速度的切向分量. dt ˆ d ˆ dr ( 的运算较复杂,超出教材规定,故不予讨论) 与 dt dt
式中 1-2 设质点的运动方程为 x = x ( t ), y = y ( t ),在计算质点的速度和加速度时,有人先求 出r=
(3)∵
r0 5 j 4 j , r4 17i 16 j
r r4 r0 12i 20 j v 3i 5 j m s 1 t 40 4

(4) 则 (5)∵
dr v 3i (t 3) j m s 1 dt v 4 3i 7 j m s 1 v0 3i 3 j , v 4 3i 7 j
2
v
=0,求该质点在 t =10s 时的速度和位置. 解:∵ 分离变量,得 积分,得 由题知, t 0 , v 0 0 ,∴ c1 0
a
dv 4 3t dt
dv (4 3t )dt 3 v 4t t 2 c1 2
故 又因为 分离变量, 积分得
3 v 4t t 2 2 dx 3 v 4t t 2 dt 2 3 dx (4t t 2 )dt 2 1 x 2t 2 t 3 c 2 2

2
2 v2 (20) 2 80 m a n2 10 cos 60
1-11 飞轮半径为0.4 m,自静止启动,其角加速度为
β= 0.2 rad· s 2 ,求 t =2s时边缘
上各点的速度、法向加速度、切向加速度和合加速度. 解:当 t 2 s 时, t 0.2 2 0.4 rad s 则 v R 0.4 0.4 0.16 m s
一质点沿半径为1 m 的圆周运动, 运动方程为
=2+3 t 3 , 式中以弧度计,t 以秒计,
求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时, 其角位移是多少?
解: (1) t 2 s 时,

d d 9t 2 , 18t dt dt
1-5 质点沿 x 轴运动,其加速度和位置的关系为 a =2+6 x ,a 的单位为 m s
2 2
, x 的单位
为 m. 质点在 x =0处,速度为10 m s ,试求质点在任何坐标处的速度值. 解: ∵
1
a
dv dv dx dv v dt dx dt dx
分离变量: 两边积分得
水平线接触的瞬间开始计时.此时 B 所在的位置为原点,轮子前进方向为 x 轴正方向;(2) 求 B 点速度和加速度的分量表示式. 解:依题意作出下图,由图可知
题 1-9 图 (1)
x v 0 t 2 R sin v 0 t R sin

2
cos

2
R (t R sin t )
1 2 t +3 t -4. 2
(2)将 t 1 , t 2 代入上式即有
1 r (3t 5)i ( t 2 3t 4) j m 2 r1 8i 0.5 j m
r2 11 j 4 j m r r2 r1 3 j 4.5 j m
你认为两种方法哪一种
正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有 r xi yj ,



dr dx dy v i j dt dt dt d2r d2 x d2 y a 2 2 i 2 j dt dt dt
v
dr dt
a
d2r dt 2
dr d 2 r dr 其二,可能是将 与 2 误作速度与加速度的模。在 1-1 题中已说明 不是速度的模, dt dt dt
而只是速度在径向上的分量,同样,
d2r 也不是加速度的模,它只是加速度在径向分量中 dt 2
2 d2r d 的一部分 a径 2 r 或者概括性地说, 前一种方法只考虑了位矢 r 在径向 (即 。 dt dt 量值)方面随时间的变化率,而没有考虑位矢 r 及速度 v 的方向随间的变化率对速度、加速
相关文档
最新文档