实验四 线性系统的频域分析法
第5章-线性系统的频域分析法
0.1 0.2
0.5
1
2
5
10
20
50
() -96.3 -102.5 -116.6 -140.7 -164.7 -195.3 -219.3 -240.6 -257.5
5-4 频率域稳定判据
一、奈氏判据的数学基础 1、幅角原理
设F(s)为复变函数,F(s)
在s平面上任一点 K*(s z1)(s z2) (s zm)
G( j) j L() 20lg () 90
L(dB) 40 20
0 0.01 0.1
1
20
20dB / dec
10
-40
( ) 90
0 0.01 0.1
1
90
10
4、一阶惯性环节
G(
j)
1
Tj
1
1
e arctgT
1 T 22
L() 20 lg 1 T 22
() arg tgT
5-1 引言
频率特性是研究自动控制系统的一种工程方法,它 反映正弦信号作用下系统性能。应用频率特性可以 间接地分析系统的动态性能与稳态性能。频率特性 法的突出优点是组成系统的元件及被控对象的数学 模型若不能直接从理论上推出和计算时,可以通过 实验直接求得频率特性来分析系统的品质。其次, 应用频率特性法分析系统可以得出定性和定量的结 论,并且有明显的物理意义。在应用频率特性法分 析系统时,可以利用曲线,图表及经验公式,因此, 用频率特性法分析系统是很方便的。
1
T
() 45
L(dB) 0
20
40
60 ( )
0
1 T
精确特性
45
90
渐进特性
20dB/ dec
线性系统的频域分析法试题答案
线性系统的频域分析法【课后自测】5-1 频率特性有哪几种分类方法?解:幅频特性,相频特性,实频特性和虚频特性。
5-2 采用半对数坐标纸有哪些优点?解:可以简化频率特性的绘制过程,利用对数运算可以将幅值的乘除运算化为加减运算,并可以用简单的方法绘制近似的对数幅频特性曲线。
5-3 从伯德图上看,一个比例加微分的环节与一个比例加积分的环节串联,两者是否有可能相抵消。
若系统中有一个惯性环节使系统性能变差,那再添加一个怎样的环节(串联)可以完全消除这种影响,它的条件是什么?解:一个比例加微分的环节与一个比例加积分的环节串联,两者是有可能相抵消;。
若系统中有一个惯性环节使系统性能变差,那再添加一个一阶微分环节(串联)可以完全消除这种影响,两个环节的时间常数相同即可。
5-5 为什么要求在ωc 附近L (ω)的斜率为-20dB/dec ?解:目的是保证系统稳定性,若为-40 dB/dec ,则所占频率区间不能过宽,否则系统平稳性将难以满足;若该频率更负,闭环系统将难以稳定,因而通常取-20dB/dec 。
5-6 已知放大器的传递函数为()1K G s Ts =+ 并测得ω=1 rad/s、幅频A =φ=-π/4。
试问放大系数K 及时间常数T 各为多少?解:频率特性为:G (jω)=KjωT +1幅频和相频分别为:{|G (j1)|=√1+T2=12√2⁄φ(1)=−arctanT =−π4⁄ 得到:K =12,T =15-7 当频率ω1=2 rad/s 、ω2=20 rad/s 时, 试确定下列传递函数的幅值和相角: 1210(1)1(2)(0.11)G s G s s ==+解:(1)G 1(jω)=10jω=-j 10ω|G 1(jω)|=10ωφ1(ω)=−90°ω1=2 rad/s 时,|G 1(jω)|=102=5 ,φ1(ω)=−90° ω1=20 rad/s 时,|G 1(jω)|=1020=0.5 ,φ1(ω)=−90° (2)G 2(jω)=1jω(0.1jω+1)=1jω-0.1ω2|G 2(jω)|=ω√1+0.01ω2φ2(ω)=arctan 10ωω1=2 rad/s 时,|G 2(jω)|=12√1+0.01×22=0.49φ2(ω)=arctan 102=78.7°ω1=20 rad/s 时,|G 2(jω)|=120√1+0.01×202=0.02φ2(ω)=arctan 1020=26.6°5-8 设单位反馈系统的传递函数为10()1G s s =+ 当把下列信号作用在系统输入端时,求系统的稳态输出。
线性系统的频域分析法
转折频率:
n 1 T
+20dB/dec
2 2
L( ) 20 lg 1 T
20 0 -20
1 T
• 低频段:T 1时,
G ( j ) j T 1 1 2T 2 e j arctanT
0
幅相曲线:
Im
∞
ω=0
1 Re
A( ) 1 T 幅频特性:
2
2
( ) arctanT 相频特性:
伯德图:
1)对数幅频图
A( ) 1 2T 2
L(ω)/dB
L( ) 20 lg
20dB/dec
ω
( )
90 0 0.1 1 10
2)对数相频图
( ) G( j ) 90
ω
微分环节的对数坐标图
(4)惯性环节
1 传递函数: G ( s ) Ts 1
频率特性: G ( j )
1 1 j T j T 1 1 2 T 2 1 e j arctanT 1 2T 2 1 幅频特性: A( ) 1 2T 2
1 G( s ) Ts 1
解: 将s=jω代入,求得频率特性为:
1 G( j ) G( s ) s j jT 1 1 T j 2 2 2 2 1 T 1 T
1 1 2T 2
11
e j arctanT
2 2T 22 1 1 T ( ) G( j ) arctan T 相频特性: T 虚频特性: Q( ) Im[ G ( j )] 1 2T 2
R(s) C(s)
G(s)
结论: 稳定的系统,在正弦信号作用下其稳态 输出也是同频率的正弦信号,但振幅和相 位不同。
自动控制原理课件:线性系统的频域分析
包围坐标原点 − 周。
m
F (s)
K1 ( s z j )
j 1
n
i 1
( s pi )
24
• 02
基本概念
m
1 G ( s) H ( s) F ( s)
K1 ( s z j )
j 1
在 平面上的映射曲线 F 1 G ( j ) H ( j )将按逆时针方向
围绕坐标原点旋转 = − 周。
如果在s平面上,s沿着奈奎斯特回线顺时针方向移动一周时,
在 平面上的映射曲线围绕坐标原点按逆时针方向旋转 =
周,则系统为稳定的。
26
根据
( 1, j 0)
L( ) 20 lg K 20 lg 1 12 2 20 lg 1 22 2
( ) arctg 1 arctg 2
τ2
20dB / dec 1
2
L3 ( )
L2 ( )
40dB / dec
( )
0
L( )
90
A( ) 1, ( )
L ( ) 20 lg A( ) 0
L( )
jQ( )
L( ) 0
0
( )
1
0
1
P( )
1
0
30
60
16
5.3
系统开环频率特性图
设开环系统由n个典型环节串联组成
G(s ) G 1(s )G 2(s ) G n(s )
这意味着 的映射曲线 F 围绕原点运动的情况,相当于
自动控制原理-胡寿松-第五章-线性系统的频域分析法
第四象限
第三象限
Mr
注意: (特殊点与趋势) 1. A(0) 1, (0) 0; A() 0, () 180 2. 与虚轴的交点 (转折点,是阻尼比的减函数) 2 (0 ) 3.有谐振时, 2 r , M r 为 的减函数 。当 2 0.707 时,谐振峰值 M r 1 。 2
7.延迟环节和延迟系统
1.典型环节
2.最小相位环节的频率特性
(考试、考研重点,nyquist图与bode图必须会画,概率图)
考试的标准画法
L(dB)
20
10
20 lg k
0
10
1
10
100
1000
o
( )
10
0
1
10
100
1000
10
比例环节的nyquist图与bode图
本节目录 1.典型环节 2.最小相位环节的频率特性(Nyquist图与bode图) 3.非最小相位环节的频率特性(Nyquist图与bode图) 4.系统的开环幅相曲线(Nyquist图) 5.系统的开环对数频率特性曲线(bode图)
重点掌握最小相位情况的各个知识点,非最小相位情况的考试不考,考研可能考。 6.传递函数的频域实验确定
考试的标准画法
o
注意考察几个特殊点: A(0), (0);
积分环节的nyquist图与bode 图
A(), ()
与横轴的交点。 注意横竖坐标交点处的的横坐标值(如果交点处没标横坐标值,则斜线不到头)
比较交点不标记的情况
0
0
纯微分环节的Bode图
半对数坐标系中的直线方程(重要,bode图解计算时经常用到)
线性系统的频域分析法
第五章线性系统的频域分析法5-1 什么是系统的频率响应?什么是幅频特性?什么是相频特性?什么是频率特性?答对于稳定的线性系统,当输入信号为正弦信号时,系统的稳态输出仍为同频率的正弦信号,只是幅值和相位发生了改变,如图5-1所示,称这种过程为系统的频率响应。
图5-1 问5-1图称为系统的幅频特性,它是频率的函数;称为系统的相频特性,它是频率的函数:称为系统的频率特性。
稳定系统的频率特性可通过实验的方法确定。
5-2 频率特性与传递函数的关系是什么?试证明之。
证若系统的传递函数为,则相应系统的频率特性为,即将传递函数中的s用代替。
证明如下。
假设系统传递函数为:输入时,经拉氏反变换,有:稳态后,则有:其中:将与写成指数形式:则:与输入比较得:幅频特性相频特性所以是频率特性函数。
5-3 频率特性的几何表示有几种方法?简述每种表示方法的基本含义。
答频率特性的几何表示一般有3种方法。
⑴幅相频率特性曲线(奈奎斯特曲线或极坐标图)。
它以频率为参变量,以复平面上的矢量来表示的一种方法。
由于与对称于实轴,所以一般仅画出的频率特性即可。
⑵对数频率特性曲线(伯德图)。
此方法以幅频特性和相频特性两条曲线来表示系统的频率特性。
横坐标为,但常用对数分度。
对数幅频特性的纵坐标为,单位为dB。
对数相频特性的纵坐标为,单位为“。
”(度)。
和都是线性分度。
横坐标按分度可以扩大频率的表示范围,幅频特性采用可给作图带来很大方便。
⑶对数幅相频率特性曲线(尼柯尔斯曲线)。
这种方法以为参变量,为横坐标,为纵坐标。
5-4 什么是典型环节?答将系统的开环传递函数基于根的形式进行因式分解,可划分为以下几种类型,称为典型环节。
①比例环节k(k>0) ;②积分环节;③微分环节s;④惯性环节;⑤一阶微分环节;⑥延迟环节;⑦振荡环节;⑧二阶微分环节 ;⑨不稳定环节。
典型环节频率特性曲线的绘制是系统开环频率特性绘制的基础,为了使作图简单并考虑到工程分析设计的需要,典型环节对数幅频特性曲线常用渐近线法近似求取。
实验四 线性系统的频域分析
实验四线性系统的频域分析
线性系统的频域分析是一种利用线性系统的响应特性来提高系统性能的有效手段,它
在系统设计中起着重要的作用。
其主要思想是将系统的响应特性根据其与频率之间的关系
进行分割,从而更好地理解该响应的物理规律。
本文的目的是介绍线性系统的频域分析方法。
线性系统的频域分析分为时域分析和频域分析两种技术。
时域分析是检测一个系统在
其他变量没有变化时,系统输出信号形状及其随时间变化趋势的一种分析方法。
时域分析中,将系统的输入和输出逐样本放入示波器进行分析及测试。
频域分析是通过将系统的输
入和输出信号进行频谱分析,将它们映射到频率轴上进行分析的一种方法。
在频域分析中,我们可以通过频谱分析仪、傅里叶变换、系统增益、阶跃响应等技术来检测系统响应的特性,得出系统的频率响应函数,从而研究系统是否属于线性系统。
线性系统的频域分析一般步骤如下:
1、定义时域函数并将其傅里叶变换,从而得到其频域函数;
2、计算系统的增益及其全频响应曲线,以便了解频率和增益之间的关系;
3、根据阶跃响应的拟合结果,利用积分和微分的技巧,确定系统的阶跃函数;
4、选择优化算法,进行系统参数优化调整,使系统达到所需要的设计目标。
以上就是线性系统的频域分析方法介绍,从分析输入输出信号,到频域拟合分析,再
到进行参数优化调整,这一系列的步骤可以帮助我们更好的理解系统的物理机理,实现系
统的最佳设计性能。
第4章 线性系统的频域分析
第4章线频域分析法频域分析方法是根据系统的频率特性来分析系统的性能,也常称为频率特性法或频率法。
频域分析法有以下特点,首先是频率特性有明确的物理意义。
系统的频率响应可以用数学模型算出,也可以通过实际的频率特性实验测出。
这一点在工程实践上价值很大,特别是对结构复杂或机理不明确的对象,频率分析法提供了一个处理这类问题的有效方法。
频率法计算简单,只用很小的计算量和很简单的运算方法,再辅以作图,便可以完成分析与综合的工作。
当前已有一套完整便捷的基于频率法的计算机辅助设计软件,可以代替人工完成绝大部分的设计工作。
频率法也有其缺点和局限性。
频率法只适合用于线性定常系统。
从原理上讲频率法不能用于非线性系统或时变系统。
虽然在研究非线性系统时也借用了频率法的一些思想,但只能在特定的条件下解决一些很有局限性的问题。
本章研究频率特性的基本概念、图示方法、控制系统的稳定性判据、系统性能的频域分析方法。
4.1 频率特性系统的频率特性描述了线性系统在正弦信号输入下其稳态输出和输入的关系。
为了说明频率特性的概念,下面分析线性系统在正弦输入信号的作用下,其输出信号和输入信号间的关系。
设线性定常系统输入信号为()r t ,输出信号为()c t ,如图4-1所示。
图中G(s)为系统的传递函数。
即 1011111()()()mm m m n n n nb s b s b s b C s G s R s s a s a s a ----++⋅⋅⋅++==++⋅⋅⋅++ (n m ≥) (4-1)若在系统输入端作用一个时间的谐波函数,即0()s i n ()r t r t ωϕ=⋅+ ,式中,0r 是振幅;ω是频率;ϕ是相角。
为简便起见,假设0ϕ=,则0()sin r t r t ω=⋅ 图4-1 一般线性定常系统由于0022()()()r r R s s s j s j ωωωωω==++- (4-2)系统输出()C s 为10110111()()()()()m m m m n n n n b s b s b s b r C s G s R s s a s a s a s j s j ωωω----++⋅⋅⋅++==⋅++⋅⋅⋅+++-1()ni i i C B Ds s s j s j ωω==++-+-∑(4-3)式中,i s 为系统特征根,即极点(设为互异);C i ,B ,D 均为相应极点处留数。
频域分析法
1
1
U0 (s) Ts 1Ui (s) Ts 1
Ui s2 2
对上式取拉氏反变换,得输出时域解为
u0
(t
)
1
UiT T 2
2
t
eT
Ui sin(t arctanT) 1 T 22
2021年4月15日3时14分
当t→∞时,第一项趋于0,这时电路的稳态输出为
u0 (t)
Ui
1 T 22
sin(t
arctan
T2
T1 2 1 T2 2 1
A
K
T1 2 1 T2 2 12arctan T1
arctan T2
2021年4月15日3时14分
4.2 频率特性的几种图示方法
序号 1
名称 幅相频率特性曲线
图形常用名 奈奎斯特图
坐标系 极坐标
2 对数幅值频率特性曲线 对数相角频率特性曲线
伯德图
4.1 频率特性 1、频率特性的定义
对于稳定的线性定常系统,其传递函数为G(s),若输 入量为一正弦信号,则其输出响应的稳态分量也是同 频率的正弦信号,但幅值、相位与输入信号的不同。 保持输入信号的幅值不变,逐次改变输入信号的频率, 则可测得一系列稳态输出的幅值和相位。 (输出信 号稳态时的幅值与相位按照系统传递函数的不同随着 输入正弦信号频率的变化而有规律的变化)。
j p
例:试求
Gs
K
s T1s 1 T2s 1
的幅频特性和相频特性。
G
j
K
j T1 j 1T2 j 1
G j K 1 1 1
j T1 j 1 T2 j 1
K
1
ej
2
1
e jarctanT1
第5章线性系统的频域分析法重点与难点一、基本概念1.频率特性的
·145·第5章 线性系统的频域分析法重点与难点一、基本概念 1. 频率特性的定义设某稳定的线性定常系统,在正弦信号作用下,系统输出的稳态分量为同频率的正弦函数,其振幅与输入正弦信号的振幅之比)(ωA 称为幅频特性,其相位与输入正弦信号的相位之差)(ωϕ称为相频特性。
系统频率特性与传递函数之间有着以下重要关系:ωωj s s G j G ==|)()(2. 频率特性的几何表示用曲线来表示系统的频率特性,常使用以下几种方法:(1)幅相频率特性曲线:又称奈奎斯特(Nyquist )曲线或极坐标图。
它是以ω为参变量,以复平面上的矢量表示)(ωj G 的一种方法。
(2)对数频率特性曲线:又称伯德(Bode )图。
这种方法用两条曲线分别表示幅频特性和相频特性。
横坐标为ω,按常用对数lg ω分度。
对数相频特性的纵坐标表示)(ωϕ,单位为“°”(度)。
而对数幅频特性的纵坐标为)(lg 20)(ωωA L =,单位为dB 。
(3)对数幅相频率特性曲线:又称尼柯尔斯曲线。
该方法以ω为参变量,)(ωϕ为横坐标,)(ωL 为纵坐标。
3. 典型环节的频率特性及最小相位系统 (1)惯性环节:惯性环节的传递函数为11)(+=Ts s G 其频率特性 11)()(+===j T s G j G j s ωωω·146·对数幅频特性 2211lg20)(ωωT L +=(5.1)其渐近线为⎩⎨⎧≥-<=1 )lg(2010)(ωωωωT T T L a (5.2) 在ωT =1处,渐近线与实际幅频特性曲线相差最大,为3dB 。
对数相频特性)(arctg )(ωωϕT -= (5.3)其渐近线为⎪⎩⎪⎨⎧≥︒-<≤+<=10 90101.0 )lg(1.0 0)(ωωωωωϕT T T b a T a (5.4)当ωT =0.1时,有b a b a -=+=1.0lg 0 (5.5)当ωT =10时,有b a b a +=+=︒-10lg 90 (5.6)由式(5.5)、式(5.6)得︒=︒-=45 45b a因此:⎪⎩⎪⎨⎧≥︒-<≤︒-<=10 90101.0 )10lg(451.0 0)(ωωωωωϕT T T T a (5.7)(2)振荡环节:振荡环节的传递函数为10 121)(22<<++=ξξTs S T s G·147·其频率特性)1(21|)()(22ωωξωωT j Ts s G j G j s -+=== 对数幅频特性2222224)1(lg 20)(ωξωωT T L +--= (5.8)其渐近线为⎩⎨⎧≥-<=1)lg(4010)(ωωωωT T T L a (5.9) 当707.0<ξ时,在221ξω-=T 处渐近线与实际幅频特性曲线相差最大,为2121lg20ξξ-。
自动控制原理实验四 线性系统的频域分析
实验四 线性系统的频域分析一、实验目的1.掌握用MATLAB 语句绘制各种频域曲线。
2.掌握控制系统的频域分析方法。
二、基础知识及MATLAB 函数频域分析法是应用频域特性研究控制系统的一种经典方法。
它是通过研究系统对正的Nyquist 曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。
p =-0.7666 + 1.9227i-0.7666 - 1.9227i-0.4668若上例要求绘制)10,10(32-∈ω间的Nyquist 图,则对应的MATLAB 语句为:num=[2 6];den=[1 2 5 2];w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距离的点nyquist(num,den,w)2)Bode图的绘制与分析系统的Bode图又称为系统频率特性的对数坐标图。
Bode图有两张图,分别绘制开环频率特性的幅值和相位与角频率ω的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。
mag,phase是指系统频率响应的幅值和相角,幅值的单位为dB,它的算式为magdB=20lg10(mag)指定幅值范围和相角范围的MATLABnum=[0 0 15 30];den=[1 16 100 0];w=logspace(-2,3,100);[mag,phase,w]=bode(num,den,w); %指定Bode图的幅值范围和相角范围图4-2(a) 幅值和相角范围自动确定的Bode图图4-2(b) 指定幅值和相角范围的Bode图subplot(2,1,1); %将图形窗口分为2*1个子图,在第1个子图处绘制图形semilogx(w,20*log10(mag)); %使用半对数刻度绘图,X轴为log10刻度,Y轴为线性刻度grid onxlabel(‘w/s^-1’); ylabel(‘L(w)/dB’);title(‘Bode Diagram of G(s)=30(1+0.5s)/[s(s^2+16s+100)]’);subplot(2,1,2);%将图形窗口分为2*1个子图,在第2个子图处绘制图形semilogx(w,phase);grid onxlabel(‘w/s^-1’); ylabel(‘ (0)’);注意:半Bode图的绘制可用semilogx函数实现,其调用格式为semilogx(w,L),其wcp = 1.1936如果已知系统的频域响应数据,还可以由下面的格式调用函数:[Gm,Pm,Wcg,Wcp]=margin(mag,phase,w)其中(mag,phase,w)分别为频域响应的幅值、相位与频率向量。
信号与系统§6.1线性系统复频域分析法
电阻R的运算阻抗可以表示为R UR(s)
IR (s)
R iR (t)
R IR(s)
vR t
VR(s)
2. 电感元t
n
i0
ai
siR(s)
i1 k 0
si1k
r
(k
)
(0
)
m
bjs jE(s)
j0
(6-4)
即
n i0
ai si
R(s)
n i0
ai
i1 k0
si
1k
r
(k
)
(0
)
m
bjs
j0
设系统的初始状态为r(0 ),r(0 ) ,…,r(n1) (0 ) 。根据
拉氏变换的时域微分特性,响应信号r(t) 及其各阶导
数的拉式变换为
i 1
L r(i) (t) si R(s) si1k r(k) (0 ) k 0
(i 0,1,L , n)
(6-2)
如果激励信号 e(t) 为有始信号,且L e(t) E(s), 将 e(t)
设为 t 0 时的接入,则在 t 0 时 e(t) 及其各阶导
数都为0,即 e( j) (0 ) 0( j 0,1, 2,L , m) ,于是激励信号
e(t) 及其各阶倒数的拉式变换为
L e( j) (t) s j E(s) ( j 0,1,L , m) (6-3) 对式(6-1)的两边取拉式变换,并利用式(6-2)、 (6-3),得
线性系统的频率响应实验报告
线性系统的频率响应实验报告1. 实验目的本实验旨在通过测量线性系统的频率响应来分析系统的特性,并进一步理解系统的频率响应对输入信号的影响。
2. 实验原理线性系统的频率响应描述了系统对不同频率输入信号的响应情况。
在频域中,系统的频率响应可以用复数形式表示,包括幅频特性和相频特性。
实验中我们采用了输入信号为正弦信号,通过测量输入信号和输出信号的幅值和相位差,可以得到线性系统的频率响应。
具体的测量方法如下: 1. 选择一定范围内的频率,设置正弦信号发生器的频率输出。
2. 将正弦信号输入线性系统,同时测量输入信号和输出信号的幅值。
3. 通过测量输入信号和输出信号的相位差,计算得出系统的相位频率特性。
3. 实验步骤3.1 实验准备1.连接正弦信号发生器的输出端和线性系统的输入端。
2.连接线性系统的输出端和示波器的输入端。
3.打开正弦信号发生器、线性系统和示波器,确保它们正常工作。
3.2 测量幅频特性1.设置正弦信号发生器的频率范围,并选择一定的频率间隔。
2.将正弦信号发生器的输出幅值调至合适的范围。
3.逐渐调整正弦信号的频率,同时测量输入信号和输出信号的幅值。
4.记录下每个频率点上的输入信号和输出信号的幅值。
3.3 计算幅频特性1.将测得的输入信号和输出信号的幅值数据进行归一化处理。
2.绘制幅频特性曲线,横轴为频率,纵轴为幅值。
3.4 测量相频特性1.设置正弦信号发生器的频率为一个特定值。
2.测量输入信号和输出信号的相位差。
3.记录下每个频率点上的输入信号和输出信号的相位差。
3.5 计算相频特性1.将测得的输入信号和输出信号的相位差转换为弧度制。
2.绘制相频特性曲线,横轴为频率,纵轴为相位差。
4. 实验结果与分析由测得的数据绘制的幅频特性曲线如下图所示:幅频特性曲线幅频特性曲线从图中可以看出,系统在低频时幅值较大,随着频率的增加逐渐减小,最终趋于0。
这说明系统对低频输入信号具有较好的增益放大作用,而对高频输入信号则产生一定的衰减。
线性系统的频率响应分析
实验名称:线性系统的频率响应分析系专业班姓名学号授课老师预定时间实验时间实验台号一、目的要求1.掌握波特图的绘制方法及由波特图来确定系统开环传函。
2.掌握实验方法测量系统的波特图。
二、原理简述1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率( ω由0 变至∞) 而变化的特性。
频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。
因此,根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。
2.线性系统的频率特性系统的正弦稳态响应具有和正弦输入信号的幅值比和相位差随角频率(ω由0 变到∞) 变化的特性。
而幅值比和相位差恰好是函数的模和幅角。
所以只要把系统的传递函数,令,即可得到。
我们把称为系统的频率特性或频率传递函数。
当由0 到∞变化时,随频率ω的变化特性成为幅频特性,随频率的变化特性称为相频特性。
幅频特性和相频特性结合在一起时称为频率特性。
3.频率特性的表达式(1) 对数频率特性:又称波特图,它包括对数幅频和对数相频两条曲线,是频率响应法中广泛使用的一组曲线。
这两组曲线连同它们的坐标组成了对数坐标图。
对数频率特性图的优点:①它把各串联环节幅值的乘除化为加减运算,简化了开环频率特性的计算与作图。
②利用渐近直线来绘制近似的对数幅频特性曲线,而且对数相频特性曲线具有奇对称于转折频率点的性质,这些可使作图大为简化。
③通过对数的表达式,可以在一张图上既能绘制出频率特性的中、高频率特性,又能清晰地画出其低频特性。
(2) 极坐标图(或称为奈奎斯特图)(3) 对数幅相图(或称为尼柯尔斯图)本次实验中,采用对数频率特性图来进行频域响应的分析研究。
实验中提供了两种实验测试方法:直接测量和间接测量。
直接频率特性的测量用来直接测量对象的输出频率特性,适用于时域响应曲线收敛的对象(如:惯性环节)。
线性系统的频域分析法
5.1 频率特性
lg
1 0
2
0.301
3
0.477
4
0.602
5
0.699
6
0.778
7
0.845
8
0.903
9
0.954
10
1
※※
( )
40
20 0dB -20 -40
2、对数频率特性曲线 [ 伯德(Bode)图 ]
L ( ) 20 lg A( ) 20 lg G ( j ) ( dB )
L ( ) 20 lg (T ) 1 20 lg T
2
当 T 即 T 1 时
L(ω)dB 40 20 0dB -20 - 40
1
T
1 T
当
1 T
时 时
20 lg T 0
20 lg T 20
dB
dB
10 T
频 率 特 性 : G ( j ) 1 j T 1
( ) tg T
1
A ( )
1 T 1
2 2
ω 1/10T φ (ω )(度) -5.7 L(ω )(dB)
从到值 取 代入计算,得
对数幅频特性曲线 Bode图如右
1/5T -11.3
1/2T -26.6
2.频域法的基本思想:利用系统的开环频率特 性来分析闭环响应。对系统进行定性分析和定量 计算。
3.频率特性的性质 考察一个系统的好坏,通常用阶跃输入下系统的阶跃响应 来分析系统的动态性能和稳态性能。
有时也用正弦波输入时系统的响应来分析,但这种响应并 不是单看某一个频率正弦波输入时的瞬态响应,而是考察频率 由低到高无数个正弦波输入下所对应的每个输出的稳态响应。 因此,这种响应也叫频率响应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四线性系统的频域分析法
【实验目的】
1.熟悉Matlab软件及其界面,熟悉利用Matlab编程。
3.熟悉控制系统的典型环节的Nyquist曲线,熟悉控制系统的典型环节的bode图,并求出其稳定裕度。
【实验仪器】Matlab6.5 Matlab7.0 计算机
【实验原理】
利用MATLAB绘制系统的频率特性图,是指绘制Nyquist图、Bode图,所用到的函数主要是nyquist、bode和margin等。
1.Nyquist图的绘制及稳定性判断
nyquist函数可以计算连续线性定常系统频率响应,命令nyquist(num,den)将画出下列传递函数的Nyquist 图。
num=[50];
den=[1,3,-10];
nyquist(num,den);
axis([-6 2 -2 0]);
title('Nyquist 图')
由上图可知 Nyquist 曲线逆时针包围(-1,j0)点半圈,而开环系统在右半平面有一个极点,故系统不稳定。
2、Bode 图的绘制及稳定裕度的计算
MATLAB 提供绘制系统 Bode 图函数 bode( ),bode( num,den)绘制以多项式函数表示的系统 Bode 图。
( 1 ) 已 知 典 型 二 阶 环 节 的 传 递 函 数 为
222
2)(n n n s s s G ωξωω++=
其 中ωn=0.7 , 分 别 绘 制ξ=0.1,0.4,1,1.6,2 时的 Bode 图及nyquist 图。
MATLAB 程序代码如下:
w=[0,logspace(-2,2,200)];
wn=0.7;
tou=[0.1,0.4,1,1.6,2];
for j=1:5;
sys=tf([wn*wn],[1,2*tou(j)*wn,wn*wn]);
bode(sys,w);
hold on ;end;
执行该程序后,系统的Bode 图如图所示:
下列程序绘制出nyquist图
w=[0,logspace(-2,2,200)];wn=0.7;tou=[0.1,0.4,1,1.6,2]; for j=1:5;
sys=tf([wn*wn],[1,2*tou(j)*wn,wn*wn]);
nyquist(sys);
hold on ;end;
(2)已知某高阶系统的传递函数为
绘制系统的Bode 图,并计算系统的相角裕度和幅值裕度。
MATLAB 程序代码如下:
num=5*[0.0167,1];
den=conv(conv([1,0],[0.03,1]),conv([0.0025,1],[0.001,1]));
sys=tf(num,den);
w=logspace(0,4,50);
bode(sys,w);
margin(sys)
[Gm,Pm,Wg,Wc]=margin(sys)
执行该程序后,系统的Bode 图如图所示:
运行结果如下:Gm = 455.2548;Pm = 85.2751;Wg = 602.4232;Wc = 4.9620 由运由运行结果可知,系统的幅值裕度,相角裕度,相角穿
越频率,截止频率。