2019年高中数学第一章集合与函数概念1

合集下载

(word版)高中数学必修1第一章集合与函数概念知识点,文档

(word版)高中数学必修1第一章集合与函数概念知识点,文档

第一章集合与函数概念一:集合的含义与表示1、集合的含:集合一些确定的、不同的西的全体,人能意到些西,并且能判断一个定的西是否属于个整体。

把研究象称元素,把一些元素成的体叫集合,称集。

2、集合的中元素的三个特性:1〕元素确实定性:集合确定,一元素是否属于个集合是确定的:属于或不属于。

2〕元素的互异性:一个定集合中的元素是唯一的,不可重复的。

3〕元素的无序性:集合中元素的位置是可以改的,并且改位置不影响集合3、集合的表示:{⋯}1〕用大写字母表示集合:A={我校的球},B={1,2,3,4,5}2〕集合的表示方法:列法与描述法。

a、列法:将集合中的元素一一列出来 {a,b,c ⋯⋯}b、描述法:①区法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x R|x-3>2},{x|x-3>2}②言描述法:例:{不是直角三角形的三角形 }Venn:画出一条封的曲,曲里面表示集合。

4、集合的分:1〕有限集:含有有限个元素的集合2〕无限集:含有无限个元素的集合3〕空集:不含任何元素的集合5、元素与集合的关系:1〕元素在集合里,元素属于集合,即:aA2〕元素不在集合里,元素不属于集合,即:a¢A注意:常用数集及其法:非整数集〔即自然数集〕作:N正整数集N* 或N+整数集Z有理数集Q数集R6、集合的根本关系〔1〕.“包含〞关系〔1〕—子集定:如果集合A的任何一个元素都是集合B的元素,我两个集合有包含关系,称集合A是集合B 的子集。

作:A B〔或BA〕注意:A B有两种可能〔1〕A是B的一局部;〔2〕A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,作AB或BA 〔2〕.“包含〞关系〔2〕—真子集如果集合A B,但存在元素xB且x¢A,集合A是集合B的真子集如果AB,且A B那就集合A是集合B的真子集,作〔3〕.“相等〞关系: A=B “元素相同两集合相等〞A B(或B A)作A真含与B如果AB 同B A那么A=B〔4〕. 不含任何元素的集合叫做空集,Φ定: 空集是任何集合的子集,空集是任何非空集合的真子集。

高中数学第一章集合与函数概念1.1.2集合间的包含关系课件新人教a必修1

高中数学第一章集合与函数概念1.1.2集合间的包含关系课件新人教a必修1

{a}
∅,{a}
2
{a,b}
∅,{a},{b},{a,b}
4
∅,{a},{b},{c},{a,b},
{a,b,c}
8
{a,c},{b,c},{a,b,c}
猜想:含n个元素的集合的子集共有2n个,真子集有2n-1
个,非空真子集有2n-2个.
探究1 熟练写出给定集合的子集是学生必须掌握的基本功.
思考题1 已知集合M满足{1,2}⊆M⊆{1,2,3,4,
(5)空集是任何非空集合的真子集,因此∅ {0}正确; (6)空集是任何集合的子集,因此∅⊆∅正确.
探究2 要注意区分“∈与⊆”,“⊆与 ”.“∈”表示 元素与集合之间的从属关系,而“⊆”表示集合之间的包含关 系,“⊆”与“ ”均表示集合间的包含关系,但后者是前者 “≠”情形时的包含情况.
思考题2 设a= 2 + 3 ,M={x|x≤ 10 },给出下列关
2k-1,k∈N*},则M,N之间的关系为( )
A.M N
B.M N
C.M⊆N 【答案】 A
D.M=N
题型二 集合相等 例4 已知A={x|x=3k+1,k∈Z},B={x|x=3n-2,n∈ Z},则A与B的关系为__________.
【解析】 (1)任取x1∈A,则x1=3k1+1=3(k1+1)-2,k1 +1∈Z.∴x1∈B,故A⊆B.
方法二:(特征性质法) 集合 A:x=2k+2 1(k∈Z),分子为奇数. 集合 B:x=k2(k∈Z),分子为整数, ∴A B.
【答案】 A B
探究 3 几种等价表示方法(n∈Z). ①“2n-1”等价于“2n+1”. ②“2n-1”等价于“4n±1”. ③“4n+3”等价于“4n-1”等.

2019_2020学年高中数学第一章集合与函数概念1.2.1函数的概念第一课时函数的概念课件新人教A版必修1

2019_2020学年高中数学第一章集合与函数概念1.2.1函数的概念第一课时函数的概念课件新人教A版必修1
解:所给的四个图象中,只有图象A的定义域和值域均为{x|0≤x≤3}. 故选A.
题型三 求简单函数的定义域
[例 3] (12 分)求下列函数的定义域. (1)y= x 1 · 1 x ;
规范解答:(1)要使函数有意义,须
x 1 1 x

0, 0,
即 x=1,因此函数的定义域为{1}.………………4 分
即时训练 3-1:求下列函数的定义域. (1) y=3- 1 x;
2 (2)y=2 x - 1 7x ;
解:(1)函数 y=3- 1 x 的定义域为 R. 2
(2)由
x 0, 1 7x

0,

0≤x≤
1 7
,
所以函数 y=2 x - 1 7x 的定义域为{x︱0≤x≤ 1 }. 7
解:因为函数 y=f(x)的定义域为{x|-2≤x≤3},即 x∈{x|-2≤x≤3},函数 y=f(2x-3)中 2x-3 的范围与函数 y=f(x)中 x 的范围相同,所以-2≤2x-3≤
3,解得 1 ≤x≤3,所以函数 y=f(2x-3)的定义域为{x︱ 1 ≤x≤3}.
2
2
方法技巧
两类抽象函数的定义域的求法 (1)已知f(x)的定义域,求f(g(x))的定义域:若f(x)的定义域为[a,b], 则f(g(x))中a≤g(x)≤b,从中解得x的取值集合即为f(g(x))的定义域. (2)已知f(g(x))的定义域,求f(x)的定义域:若f(g(x))的定义域为 [a,b],即a≤x≤b,求得g(x)的取值范围,g(x)的值域即为f(x)的定 义域.
(3)y= 2x 3 - 1 + 1 . 2x x
2x 3 0,
解:(3)要使函数有意义,需 2 x>0, x 0,

2019年最新人教版高中数学知识点总结(精炼版)

2019年最新人教版高中数学知识点总结(精炼版)

2019年新人教版高中数学知识点总结高中数学 必修1知识点 第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)AB A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ AB B ⊇BA补集UA {|,}x x U x A ∈∉且1()U A A =∅ 2()U A A U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O()()()UU U A B A B =()()()U U U A B A B =〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的性质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x.1.< x..2.时,都有f(x...1.)<f(x.....2.).,那么就说f(x)在这个区间上是增函数....x1x2y=f(X)xyf(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x.1.< x..2.时,都有f(x...1.)>f(x.....2.).,那么就说f(x)在这个区间上是减函数....y=f(X)yxo x x2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x=,令()u g x=,若()y f u=为增,()u g x=为增,则[()]y f g x=为增;若()y f u=为减,()u g x=为减,则[()]y f g x=为增;若()y f u=为增,()u g x=为减,则[()]y f g x=为减;若()y f u=为减,()u g x=为增,则[()]y f g x=为减.(2)打“√”函数()(0)af x x ax=+>的图象与性质()f x分别在(,]a-∞、[,)a+∞上为增函数,分别在[,0)a、(3)最大(小)值定义①一般地,设函数()y f x=的定义域为I,如果存在实数M满足:(1()f x M≤;(2)存在x I∈,使得()f x M=.那么,我们称M是函数()f x作max()f x M=.②一般地,设函数()y f x=的定义域为I,如果存在实数m满足:(1)对于任意的x I∈,都有()f x m≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用n 是偶数时,正数a 的正的n n 次方根用符号0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n a =;当n 为偶数时, (0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aM M N N-=③数乘:log log ()n aa n M M n R =∈ ④log a N a N =⑤loglog (0,)bn a anM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的变化情况log0(1)log0(1)log0(01)aaax xx xx x>>==<<<log0(1)log0(1)log0(01)aaax xx xx x<>==><< a变化对图象的影响在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.(6)反函数的概念设函数()y f x=的定义域为A,值域为C,从式子()y f x=中解出x,得式子()x yϕ=.如果对于y在C中的任何一个值,通过式子()x yϕ=,x在A中都有唯一确定的值和它对应,那么式子()x yϕ=表示x是y的函数,函数()x yϕ=叫做函数()y f x=的反函数,记作1()x f y-=,习惯上改写成1()y f x-=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x=中反解出1()x f y-=;③将1()x f y-=改写成1()y f x-=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x=与反函数1()y f x-=的图象关于直线y x=对称.②函数()y f x=的定义域、值域分别是其反函数1()y f x-=的值域、定义域.③若(,)P a b在原函数()y f x=的图象上,则'(,)P b a在反函数1()y f x-=的图象上.④一般地,函数()y f x=要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y xα=叫做幂函数,其中x为自变量,α是常数.图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关;是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质 ①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--.②当0a>时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2bx a =-时,2min 4()4ac b f x a-=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a-+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=.(4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.(Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2bq a ->,则()m f q =①若02a ,则)q ()f p )M = ②若q ≤ ③若2b q a ->,则()M f q =xxxx0x x(q)0x①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

高中数学 第一章 集合与函数概念 1.2 函数及其表示学

高中数学 第一章 集合与函数概念 1.2 函数及其表示学

1.2 函数及其表示1.2.1 函数的概念预习课本P15~18,思考并完成以下问题(1)在集合的观点下函数是如何定义?函数有哪三要素?(2)如何用区间表示数集?(3)相等函数是指什么样的函数?[新知初探]1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y 值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.[点睛] 对函数概念的3点说明(1)当A,B为非空数集时,符号“f:A→B”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f”它表示对应关系,在不同的函数中f的具体含义不一样.2.区间概念(a,b为实数,且a<b)定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]3.其它区间的表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a} 符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)[点睛] 关于无穷大的2点说明(1)“∞”是一个符号,而不是一个数.(2)以“-∞”或“+∞”为端点时,区间这一端必须是小括号.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)区间表示数集,数集一定能用区间表示.( )(2)数集{x|x≥2}可用区间表示为[2,+∞].( )(3)函数的定义域和对应关系确定后,函数的值域也就确定了.( )(4)函数值域中每一个数在定义域中一定只有一个数与之对应.( )(5)函数的定义域和值域一定是无限集合.( )答案:(1)×(2)×(3)√(4)×(5)×2.函数y=1x+1的定义域是( )A.[-1,+∞)B.[-1,0) C.(-1,+∞) D.(-1,0) 答案:C3.已知f(x)=x2+1,则f ( f (-1))=( ) A.2 B.3 C.4 D.5 答案:D4.用区间表示下列集合:(1){x|10≤x≤100}用区间表示为________.(2){x|x>1}用区间表示为________.答案:(1)[10,100] (2)(1,+∞)[例1] (1)设M={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形:其中,能表示从集合M 到集合N 的函数关系的个数是( ) A .0 B .1 C .2D .3(2)下列各题的对应关系是否给出了实数集R 上的一个函数?为什么? ① f :把x 对应到3x +1; ② g :把x 对应到|x |+1; ③ h :把x 对应到1x; ④ r :把x 对应到x .(1)[解析] ①中,因为在集合M 中当1<x ≤2时,在N 中无元素与之对应,所以①不是;②中,对于集合M 中的任意一个数x ,在N 中都有唯一的数与之对应,所以②是;③中,x =2对应元素y =3∉N ,所以③不是;④中,当x =1时,在N 中有两个元素与之对应,所以④不是.因此只有②是,故选B.[答案] B(2)[解] ①是实数集R 上的一个函数.它的对应关系f 是:把x 乘3再加1,对于任一x ∈R,3x +1都有唯一确定的值与之对应,如x =-1,则3x +1=-2与之对应.同理,②也是实数集R 上的一个函数.③不是实数集R 上的函数.因为当x =0时,1x的值不存在.④不是实数集R 上的函数.因为当x <0时,x 的值不存在.1.判断对应关系是否为函数的2个条件 (1)A ,B 必须是非空数集.(2)A 中任意一元素在B 中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系. 2.根据图形判断对应是否为函数的方法 (1)任取一条垂直于x 轴的直线l . (2)在定义域内平行移动直线l .(3)若l 与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.函数的判断[活学活用]1.下列对应或关系式中是A 到B 的函数的是( ) A .A =R ,B =R ,x 2+y 2=1B .A ={1,2,3,4},B ={0,1},对应关系如图:C .A =R ,B =R ,f :x →y =1x -2D .A =Z ,B =Z ,f :x →y =2x -1解析:选B A 错误,x 2+y 2=1可化为y =±1-x 2,显然对任意x ∈A ,y 值不唯一.B 正确,符合函数的定义.C 错误,2∈A ,在B 中找不到与之相对应的数.D 错误,-1∈A ,在B 中找不到与之相对应的数.[例2] 下列各组函数中是相等函数的是( )A .y =x +1与y =x 2-1x -1B .y =x 2+1与s =t 2+1 C .y =2x 与y =2x (x ≥0) D .y =(x +1)2与y =x 2[解析] 对于选项A ,前者定义域为R ,后者定义域为{x |x ≠1},不是相等函数;对于选项B ,虽然变量不同,但定义域和对应关系均相同,是相等函数;对于选项C ,虽然对应关系相同,但定义域不同,不是相等函数;对于选项D ,虽然定义域相同,但对应关系不同,不是相等函数.[答案] B判断函数相等的方法判断函数是否相等,关键是树立定义域优先的原则. (1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同. [活学活用]2.下列各组式子是否表示同一函数?为什么?相等函数(1)f (x )=|x |,φ(t )=t 2; (2)y =x 2,y =(x )2;(3)y =1+x ·1-x ,y =1-x 2; (4)y =3-x2,y =x -3.解:(1)f (x )与φ(t )的定义域相同,又φ(t )=t 2=|t |,即f (x )与φ(t )的对应关系也相同,∴f (x )与φ(t )是同一函数.(2)y =x 2的定义域为R ,y =(x )2的定义域为{x |x ≥0},两者定义域不同,故y =x 2与y =(x )2不是同一函数.(3)y =1+x ·1-x 的定义域为{x |-1≤x ≤1},y =1-x 2的定义域为{x |-1≤x ≤1},即两者定义域相同.又∵y =1+x ·1-x =1-x 2,∴两函数的对应关系也相同.故y =1+x ·1-x 与y =1-x 2是同一函数.(4)∵y =3-x 2=|x -3|与y =x -3的定义域相同,但对应关系不同,∴y =3-x2与y =x -3不是同一函数.[例3] 求下列函数的定义域:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[解] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0.解得x ≤1,且x ≠-1,即函数定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}.求函数定义域的常用方法(1)若f (x )是分式,则应考虑使分母不为零. (2)若f (x )是偶次根式,则被开方数大于或等于零.(3)若f (x )是指数幂,则函数的定义域是使幂运算有意义的实数集合. (4)若f (x )是由几个式子构成的,则函数的定义域是几个部分定义域的交集. (5)若f (x )是实际问题的解析式,则应符合实际问题,使实际问题有意义. 求函数的定义域[活学活用]3.求下列函数的定义域: (1)y =2+3x -2; (2)y =3-x ·x -1; (3)y =(x -1)0+2x +1. 解:(1)当且仅当x -2≠0,即x ≠2时,函数y =2+3x -2有意义,所以这个函数的定义域为{x |x ≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧3-x ≥0,x -1≥0.解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(3)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0.解得x >-1,且x ≠1,所以这个函数的定义域为{x |x >-1,且x ≠1}.[例4] (1)已知f (x )=11+x(x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R),则f (2)=________,f (g (2))=________.(2)求下列函数的值域: ①y =x +1;②y =x 2-2x +3,x ∈[0,3); ③y =3x -1x +1;④y =2x -x -1.(1)[解析] ∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,求函数值和值域∴g (2)=22+2=6,∴f ( g (2))=f (6)=11+6=17.[答案] 13 17(2)[解] ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y ≠3, ∴y =3x -1x +1的值域为{y |y ∈R 且y ≠3}.④(换元法)设t =x -1,则t ≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t ≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.1.函数求值的方法(1)已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. (2)求f (g (a ))的值应遵循由里往外的原则. 2.求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法.[活学活用]4.求下列函数的值域:(1)y =2x +1+1;(2)y =1-x21+x2.解:(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x 2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x2≤2,则y ∈(-1,1].所以所求函数的值域为(-1,1].层级一 学业水平达标1.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1}解析:选D 由题意可知⎩⎪⎨⎪⎧1-x ≥0,x ≥0,解得0≤x ≤1.2.若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:选B A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},C 中图象不表示函数关系,D 中值域不是N ={y |0≤y ≤2}.3.下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=x 2x和g (x )=x x2解析:选D A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.4.设f (x )=x 2-1x 2+1,则f 2f ⎝ ⎛⎭⎪⎫12=( )A .1B .-1 C.35D .-35解析:选Bf 2 f ⎝ ⎛⎭⎪⎫1 2 =22-122+1⎝ ⎛⎭⎪⎫122-1⎝ ⎛⎭⎪⎫122+1=35-3454=35×⎝ ⎛⎭⎪⎫-53=-1. 5.下列函数中,值域为(0,+∞)的是( ) A .y =x B .y =1xC .y =1xD .y =x 2+1解析:选B y =x 的值域为[0,+∞),y =1x的值域为(-∞,0)∪(0,+∞),y =x2+1的值域为[1,+∞).6.若[a,3a -1]为一确定区间,则a 的取值范围是________. 解析:由题意知3a -1>a ,则a >12.答案:⎝ ⎛⎭⎪⎫12,+∞ 7.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________. 解析:∵x =1,2,3,4,5, ∴f (x )=2x -3=-1,1,3,5,7. ∴f (x )的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7}8.设f (x )=11-x,则f ( f ( x ))=________.解析:f ( f (x ))=11-11-x =11-x -11-x =x -1x . 答案:x -1x(x ≠0,且x ≠1) 9.已知f (x )=x 2-4x +5. (1)求f (2)的值.(2)若f (a )=10,求a 的值. 解:(1)由f (x )=x 2-4x +5, 所以f (2)=22-4×2+5=1. (2)由f (a )=10,得a 2-4a +5=10, 即a 2-4a -5=0,解得a =5或a =-1. 10.求函数y =x +26-2x -1的定义域,并用区间表示.解:要使函数解析式有意义,需满足:⎩⎪⎨⎪⎧x +2≥0,6-2x ≥0,6-2x ≠1,即⎩⎪⎨⎪⎧x ≥-2,x ≤3,x ≠52,所以-2≤x ≤3且x ≠52.所以函数的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2≤x ≤3且x ≠52. 用区间表示为⎣⎢⎡⎭⎪⎫-2,52 ∪⎝ ⎛⎦⎥⎤52,3.层级二 应试能力达标1.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6D .x =y解析:选A 对于A ,由x =y 2+1得y 2=x -1.当x =5时,y =±2,故y 不是x 的函数;对于B ,y =2x 2+1是二次函数;对于C ,x -2y =6⇒y =12x -3是一次函数;对于D ,由x =y 得y =x 2(x ≥0)是二次函数.故选A.2.若集合A ={x |y =x -1},B ={y |y =x 2+2},则A ∩B =( ) A .[1,+∞) B .(1,+∞) C .[2,+∞)D .(0,+∞)解析:选C 集合A 表示函数y =x -1的定义域,则A ={x |x ≥1},集合B 表示函数y =x 2+2的值域,则B ={y |y ≥2},故A ∩B ={x |x ≥2}.3.若函数f (x )=ax 2-1,a 为一个正数,且f ( f (-1))=-1,那么a 的值是( ) A .1 B .0 C .-1D .2解析:选A ∵f (x )=ax 2-1,∴f (-1)=a -1,f (f (-1))=f (a -1)=a ·(a -1)2-1=-1.∴a (a -1)2=0. 又∵a 为正数,∴a =1.4.已知函数y =f (x )与函数y =x +3+1-x 是相等的函数,则函数y =f (x )的定义域是( )A .[-3,1]B .(-3,1)C .(-3,+∞)D .(-∞,1]解析:选A 由于y =f (x )与y =x +3+1-x 是相等函数,故二者定义域相同,所以y =f (x )的定义域为{x |-3≤x ≤1}.故写成区间形式为[-3,1].5.函数y =1x -2的定义域是A ,函数y =2x +6 的值域是B ,则A ∩B =________(用区间表示).解析:要使函数式y =1x -2有意义,只需x ≠2,即A ={x |x ≠2};函数y =2x +6 ≥0,即B ={y |y ≥0},则A ∩B ={x |0≤x <2,或x >2}.答案:[0,2)∪(2,+∞)6.函数y =6-x|x |-4的定义域用区间表示为________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧6-x ≥0,|x |-4≠0,即⎩⎪⎨⎪⎧x ≤6,x ≠±4,∴定义域为(-∞,-4)∪(-4,4)∪(4,6]. 答案:(-∞,-4)∪(-4,4)∪(4,6] 7.试求下列函数的定义域与值域:(1)f (x )=(x -1)2+1,x ∈{-1,0,1,2,3}; (2)f (x )=(x -1)2+1; (3)f (x )=5x +4x -1;(4)f (x )=x -x +1.解:(1)函数的定义域为{-1,0,1,2,3},则f (-1)=[(-1)-1]2+1=5,同理可得f (0)=2,f (1)=1,f (2)=2,f (3)=5,所以函数的值域为{1,2,5}.(2)函数的定义域为R ,因为(x -1)2+1≥1,所以函数的值域为{y |y ≥1}. (3)函数的定义域是{x |x ≠1},y =5x +4x -1=5+9x -1,所以函数的值域为{y |y ≠5}.(4)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域是{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是f (t )=t 2-1-t =⎝ ⎛⎭⎪⎫t -122-54.又t ≥0,故f (t )≥-54.所以函数的值域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y ≥-54.8.已知函数f (x )=x 21+x2. (1)求f (2)+f ⎝ ⎛⎭⎪⎫12,f (3)+f ⎝ ⎛⎭⎪⎫13的值; (2)求证:f (x )+f ⎝ ⎛⎭⎪⎫1x 是定值;(3)求f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 016)+f ⎝ ⎛⎭⎪⎫12 016的值.解:(1)∵f (x )=x 21+x2,∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1, f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明:f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝ ⎛⎭⎪⎫1x=1, ∴f (2)+f ⎝ ⎛⎭⎪⎫12=1,f (3)+f ⎝ ⎛⎭⎪⎫13=1,f (4)+f ⎝ ⎛⎭⎪⎫14=1,…,f (2 016)+f ⎝ ⎛⎭⎪⎫12 016=1.∴f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 016)+f ⎝ ⎛⎭⎪⎫12 016=2 015.1.2.2 函数的表示法 第一课时 函数的表示法预习课本P19~21,思考并完成以下问题(1)表示两个变量之间函数关系的方法有几种?分别是什么?(2)函数的各种表示法各有什么特点?[新知初探][点睛] 列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)任何一个函数都可以同上述三种方法表示.( ) (2)函数f (x )=2x +1不能用列表法表示.( )(3)函数的图象一定是定义区间上一条连续不断的曲线.( ) 答案:(1)× (2)√ (3)×2.已知函数f (x )由下表给出,则f (3)等于( )x 1≤x <2 2 2<x ≤4 f (x )1 23A.1C.3 D.不存在答案:C3.函数y=f(x)的图象如图,则f(x)的定义域是( )A.RB.(-∞,1)∪(1,+∞)C.(-∞,0)∪(0,+∞)D.(-1,0)答案:C4.已知反比例函数f (x)满足f(3)=-6,f (x)的解析式为________.答案:y=-18x[例1] 某商场新进了10台彩电,每台售价3 000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来[解] (1)列表法:x/台1234 5y/元 3 000 6 0009 00012 00015 000x/台678910y/元18 00021 00024 00027 00030 000(2)图象法:(3)解析法:y=3 000x,x∈{1,2,3,…,10}.理解函数的表示法3个关注点(1)列表法、图象法、解析法均是函数的表示法,无论用哪种方式表示函数,都必须满函数的表示法足函数的概念.(2)判断所给图象、表格、解析式是否表示函数的关键在于是否满足函数的定义. (3)函数的三种表示法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.[活学活用]1.已知函数f (x ),g (x )分别由下表给出.x 1 2 3 f (x )211则f ( g (1))的值为________; 当g ( f (x ))=2时,x =________.解析:由于函数关系是用表格形式给出的,知g (1)=3,∴f ( g (1))=f (3)=1.由于g (2)=2,∴f (x )=2,∴x =1.答案:1 1[例2] 作出下列函数的图象并求出其值域. (1)y =2x +1,x ∈[0,2]; (2)y =2x,x ∈[2,+∞);(3)y =x 2+2x ,x ∈[-2,2].[解] (1)当x ∈[0,2]时,图象是直线y =2x +1的一部分,观察图象可知,其值域为[1,5].(2)当x ∈[2,+∞)时,图象是反比例函数y =2x的一部分,观察图象可知其值域为(0,1].(3)当-2≤x ≤2时,图象是抛物线y =x 2+2x 的一部分.x 1 2 3 g (x )321函数图象的作法及应用由图可得函数的值域是[-1,8].作函数y=f(x)图象的方法(1)若y=f(x)是已学过的基本初等函数,则描出图象上的几个关键点,直接画出图象即可,有些可能需要根据定义域进行取舍.(2)若y=f(x)不是所学过的基本初等函数之一,则要按:①列表;②描点;③连线三个基本步骤作出y=f(x)的图象.[活学活用]2.作出下列函数的图象:(1)y=1-x(x∈Z);(2)y=x2-4x+3,x∈[1,3].解:(1)因为x∈Z,所以图象为直线y=1-x上的孤立点,其图象如图①所示.(2)y=x2-4x+3=(x-2)2-1,当x=1,3时,y=0;当x=2时,y=-1,其图象如图②所示.[例3] 求下列函数的解析式:(1)已知函数f (x+1)=x+2x,求f (x);(2)已知函数f (x)是二次函数,且f (0)=1,f (x+1)-f (x)=2x,求f (x).[解] (1)[法一换元法]设t=x+1,则x=(t-1)2(t≥1).∴f (t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1,∴f (x)=x2-1(x≥1).函数解析式的求法[法二 配凑法]∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), ∴f (x )=x 2-1(x ≥1).(2)设f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.又∵f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 整理,得2ax +(a +b )=2x .由恒等式的性质,知上式中对应项的系数相等,∴⎩⎪⎨⎪⎧2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,∴f (x )=x 2-x +1.求函数解析式的4种常用求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[活学活用]3.已知f (x +1)=x 2-3x +2,求f (x ).解:法一(配凑法):∵f (x +1)=x 2-3x +2=(x +1)2-5x +1=(x +1)2-5(x +1)+6, ∴f (x )=x 2-5x +6.法二(换元法):令t =x +1,则x =t -1, ∴f (t )=(t -1)2-3(t -1)+2=t 2-5t +6, 即f (x )=x 2-5x +6.4.已知函数f (x )是一次函数,若f ( f (x ))=4x +8,求f (x )的解析式. 解:设f (x )=ax +b (a ≠0),则f ( f (x ))=f ( ax +b )=a (ax +b )+b =a 2x +ab +b .又f ( f (x ))=4x +8, ∴a 2x +ab +b =4x +8,即⎩⎪⎨⎪⎧a 2=4,ab +b =8,解得⎩⎪⎨⎪⎧a =2,b=83或⎩⎪⎨⎪⎧a =-2,b =-8.∴f (x )=2x +83或f (x )=-2x -8.5.已知f (x )+2f (-x )=x 2+2x ,求f (x ). 解:∵f (x )+2 f (-x )=x 2+2x , ① ∴将x 换成-x ,得f (-x )+2 f (x )=x 2-2x . ② ∴由①②得3 f (x )=x 2-6x ,∴f (x )=13x 2-2x .层级一 学业水平达标1.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f (g (2))的值为( )A .3B .2C .1D .0解析:选B 由函数g (x )的图象知,g (2)=1,则f (g (2))=f (1)=2.2.如果f ⎝ ⎛⎭⎪⎫1x =x 1-x,则当x ≠0,1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1解析:选B 令1x =t ,则x =1t ,代入f ⎝ ⎛⎭⎪⎫1x =x 1-x,则有f (t )=1t 1-1t=1t -1,故选B.3.若f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -3解析:选B 设f (x )=ax +b ,由题设有⎩⎪⎨⎪⎧22a +b -3a +b =5,20·a +b --a +b =1.解得⎩⎪⎨⎪⎧a =3,b =-2.所以选B.4.设f (x )=2x +3,g (x )=f (x -2),则g (x )=( ) A .2x +1 B .2x -1 C .2x -3D .2x +7解析:选B ∵f (x )=2x +3,∴f (x -2)=2(x -2)+3=2x -1,即g (x )=2x -1,故选B.5.若f (1-2x )=1-x 2x 2(x ≠0),那么f ⎝ ⎛⎭⎪⎫12等于( )A .1B .3C .15D .30解析:选C 令1-2x =t , 则x =1-t2(t ≠1),∴f (t )=4t -12-1(t ≠1), 即f (x )=4x -12-1(x ≠1),∴f ⎝ ⎛⎭⎪⎫12=16-1=15. 6.已知函数f (x )由下表给出,则f ( f (3))=________.x 1 2 3 4 f (x )3241=1. 答案:17.已知函数f (x )=x -m x,且此函数图象过点(5,4),则实数m 的值为________. 解析:将点(5,4)代入f (x )=x -m x,得m =5. 答案:58.已知f (x )是一次函数,满足3f (x +1)=6x +4,则f (x )=________. 解析:设f (x )=ax +b (a ≠0),则f (x +1)=a (x +1)+b =ax +a +b , 依题设,3ax +3a +3b =6x +4,∴⎩⎪⎨⎪⎧3a =6,3a +3b =4,∴⎩⎪⎨⎪⎧a =2,b =-23,则f (x )=2x -23.答案:2x -239.(1)已知函数f (x )=x 2,求f (x -1); (2)已知函数f (x -1)=x 2,求f (x ). 解:(1)f ( x -1)=(x -1)2=x 2-2x +1.(2)法一(配凑法):因为f (x -1)=x 2=(x -1)2+2(x -1)+1,所以f (x )=x 2+2x +1.法二(换元法):令t =x -1,则x =t +1,可得f (t )=(t +1)2=t 2+2t +1,即f (x )=x 2+2x +1.10.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.解:设f (x )=ax +b (a ≠0),则3 f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.层级二 应试能力达标1.已知函数f (x +1)=x 2-x +3,那么f (x -1)的表达式是( ) A .f (x -1)=x 2+5x -9 B .f (x -1)=x 2-x -3 C .f (x -1)=x 2-5x +9D .f (x -1)=x 2-x +1解析:选C f (x +1)=(x +1)2-3(x +1)+5, 所以f (x )=x 2-3x +5,f (x -1)=(x -1)2-3(x -1)+5=x 2-5x +9,故选C.2.若一次函数的图象经过点A (1,6)和B (2,8),则该函数的图象还可能经过的点的坐标为( )A.⎝ ⎛⎭⎪⎫12,5 B.⎝ ⎛⎭⎪⎫14,4 C .(-1,3)D .(-2,1)解析:选A 设一次函数的解析式为y =kx +b (k ≠0),由该函数的图象经过点A (1,6)和B (2,8),得⎩⎪⎨⎪⎧k +b =6,2k +b =8,解得⎩⎪⎨⎪⎧k =2,b =4,,所以此函数的解析式为y =2x +4,只有A选项的坐标符合此函数的解析式.故选A.3.设f (x )=2x +a ,g (x )=14(x 2+3),且g (f (x ))=x 2-x +1,则a 的值为( )A .1B .-1C .1或-1D .1或-2解析:选B 因为g (x )=14(x 2+3),所以g (f (x ))=14[(2x +a )2+3]=14(4x 2+4ax +a2+3)=x 2-x +1,求得a =-1.故选B.4.函数y =f (x )(f (x )≠0)的图象与x =1的交点个数是( ) A .1 B .2 C .0或1D .1或2解析:选C 结合函数的定义可知,如果f :A →B 成立,则任意x ∈A ,则有唯一确定的B 与之对应,由于x =1不一定是定义域中的数,故x =1可能与函数y =f (x )没有交点,故函数f (x )的图象与直线x =1至多有一个交点.5.已知x ≠0,函数f (x )满足f ⎝⎛⎭⎪⎫x -1x =x 2+1x2,则f (x )=________.解析:f ⎝⎛⎭⎪⎫x -1x =x 2+1x2=⎝ ⎛⎭⎪⎫x -1x 2+2,所以f (x )=x 2+2.答案:x 2+26.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________.解析:因为f (2x +1)=32(2x +1)+12,所以f (a )=32a +12.又f (a )=4,所以32a +12=4,a =73.答案:737.已知函数f (x )=xax +b(a ,b 为常数,且a ≠0)满足f (2)=1,且f (x )=x 有唯一解,求函数y =f (x )的解析式和f (f (-3))的值.解:因为f (2)=1,所以22a +b=1,即2a +b =2,①又因为f (x )=x 有唯一解,即x ax +b=x 有唯一解,所以ax 2+(b -1)x =0有两个相等的实数根,所以Δ=(b -1)2=0,即b =1.代入①得a =12.所以f (x )=x 12x +1=2xx +2.所以f (f (-3))=f ⎝⎛⎭⎪⎫-6-1=f (6)=2×66+2=32.8.某企业生产某种产品时的能耗y 与产品件数x 之间的关系式为:y =ax +bx.且当x =2时,y =100;当x =7时,y =35.且此产品生产件数不超过20件.(1)写出函数y 关于x 的解析式; (2)用列表法表示此函数,并画出图象.解:(1)将⎩⎪⎨⎪⎧x =2,y =100,与⎩⎪⎨⎪⎧x =7,y =35,代入y =ax +bx中,得⎩⎪⎨⎪⎧2a +b2=100,7a +b7=35⇒⎩⎪⎨⎪⎧4a +b =200,49a +b =245⇒⎩⎪⎨⎪⎧a =1,b =196.所以所求函数解析式为y =x +196x(x ∈N,0<x ≤20).(2)当x ∈{1,2,3,4,5,…,20}时,列表:x 1 2 3 4 5 6 7 8 9 10 y 197 100 68.353 44.2 38.7 35 32.5 30.8 29.6x 11 12 13 14 15 16 17 18 19 20 y28.828.328.12828.128.2528.528.929.329.8依据上表,画出函数y 的图象如图所示,是由20个点构成的点列.第二课时 分段函数与映射预习课本P21~23,思考并完成以下问题(1)什么是分段函数?分段函数是一个还是几个函数?(2)怎样求分段函数的值?如何画分段函数的图象?(3)映射的定义是什么?映射和函数的关系怎样?[新知初探]1.分段函数(1)分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.[点睛] (1)分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.(2)分段函数的“段”可以是等长的,也可以是不等长的.如y =⎩⎪⎨⎪⎧1,-2≤x ≤0,x ,0<x ≤3,其“段”是不等长的.2.映射的概念设A ,B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.[点睛] 映射由三要素组成,集合A,B以及A到B的对应关系,集合A,B可以是非空的数集,也可以是点集或其他集合.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)映射中的两个非空集合并不一定是数集.( )(2)分段函数由几个函数构成.( )(3)函数f(x)=⎩⎪⎨⎪⎧x+1,x≤1,-x+3,x>1是分段函数.( )(4)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.( )答案:(1)√(2)×(3)√(4)×2.已知f(x)=⎩⎪⎨⎪⎧-x,x≤0,x2,x>0.则f(-2)=( )A.2 B.4C.-2 D.2或4答案:A3.已知集合A={a,b},集合B={0,1},下列对应不是A到B的映射的是( )答案:C4.函数f(x)=⎩⎪⎨⎪⎧2,1≤x<2,3,x≥2的定义域为________.答案:[1,+∞)[例1] 下列对应是不是从A到B的映射?(1)A=B=N*,f:x→|x-3|;(2)A=N,B=Q,f:x→1x;(3)A={x|1≤x≤2},B={y|2≤y≤5},f:x→y=2x.[解] (1)当x=3∈A时,|x-3|=0∉B,即A中的元素3在B中没有元素与之对应,所以(1)不是映射.映射的概念(2)当x =0∈A 时,1x无意义,即A 中的元素0在B 中没有元素与之对应,所以(2)不是映射.(3)当1≤x ≤2时,2≤2x ≤4,而且对于A 中每一个x 值,按照对应关系y =2x ,在B 中都有唯一的元素与之对应,所以(3)是映射.判断一个对应是不是映射的2个关键(1)对于A 中的任意一个元素,在B 中是否有元素与之对应. (2)B 中的对应元素是不是唯一的.[点睛] “一对一”或“多对一”的对应才可能是映射. [活学活用]1.已知A ={1,2,3,…,9},B =R ,从集合A 到集合B 的映射f :x →x2x +1.(1)与A 中元素1相对应的B 中的元素是什么? (2)与B 中元素49相对应的A 中的元素是什么?解:(1)A 中元素1,即x =1,代入对应关系得x 2x +1=12×1+1=13,即与A 中元素1相对应的B 中的元素是13.(2)B 中元素49,即x 2x +1=49,解得x =4,因此与B 中元素49相对应的A 中的元素是4.[例2] 已知函数f (x )=⎩⎪⎨⎪⎧|x -1|-2,|x |≤1,11+x2,|x |>1.(1)求f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12的值;(2)若f (x )=13,求x 的值.[解] (1)因为f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-2=-32, 所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-32=11+⎝ ⎛⎭⎪⎫-322=413.(2)f (x )=13,若|x |≤1,则|x -1|-2=13,分段函数求值得x =103或x =-43.因为|x|≤1,所以x 的值不存在;若|x |>1,则11+x 2=13,得x =±2,符合|x |>1.所以若f (x )=13,x 的值为± 2.1.求分段函数的函数值的方法(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.2.求某条件下自变量的值的方法先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检验.[活学活用]2.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f x +2,x ≤0,则f (-5)的值等于________.解析:f (-5)=f (-5+2)=f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=2×1=2.答案:23.函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≤2,45x ,x >2.若f (x 0)=8,则x 0=________.解析:当x 0≤2时,f (x 0)=x 20+2=8,即x 20=6, ∴x 0=-6或x 0=6(舍去); 当x 0>2时,f (x 0)=45x 0,∴x 0=10.综上可知,x 0=-6或x 0=10. 答案:-6或10题点一:分段函数的图象的判定 1.函数f (x )=|x -1|的图象是( )分段函数的图象及应用解析:选B 法一:函数的解析式可化为y =⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1.画出此分段函数的图象,故选B.法二:由f (-1)=2,知图象过点(-1,2),排除A 、C 、D ,故选B. 题点二:分段函数图象的作法2.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1,x >1或x <-1,画出f (x )的图象.解:利用描点法,作出f (x )的图象,如图所示.题点三:由函数的图象确定其解析式3.已知函数f (x )的图象如右图所示,则f (x )的解析式是________. 解析:由图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎪⎨⎪⎧-a +b =0,b =1.∴⎩⎪⎨⎪⎧a =1,b =1.当0≤x ≤1时,设f (x )=kx ,将(1,-1)代入,则k =-1.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-x ,0≤x ≤1题点四:分段函数的图象及应用 4.若定义运算a ⊙b =⎩⎪⎨⎪⎧b ,a ≥b ,a ,a <b .则函数f (x )=x ⊙(2-x )的值域为________.解析:由题意得f (x )=⎩⎪⎨⎪⎧2-x ,x ≥1,x ,x <1,画出函数f (x )的图象得值域是(-∞,1].答案:(-∞,1]分段函数图象的画法(1)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.(2)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.层级一 学业水平达标1.下列对应关系f 中,能构成从集合A 到集合B 的映射的是( ) A .A ={x |x >0},B =R ,f :x →|y |=x 2B .A ={-2,0,2},B ={4},f :x →y =x 2C .A =R ,B ={y |y >0},f :x →y =1x2D .A ={0,2},B ={0,1},f :x →y =x2解析:选D 对于A ,集合A 中元素1在集合B 中有两个元素与之对应;对于B ,集合A 中元素0在集合B 中无元素与之对应;对于C ,集合A 中元素0在集合B 中无元素与之对应.故A 、B 、C 均不能构成映射.2.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f (f (-7))的值为( )A .100B .10C .-10D .-100解析:选A ∵f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,∴f (-7)=10.f (f (-7))=f (10)=10×10=100.3.下列图形是函数y =x |x |的图象的是( )解析:选D 函数y =x |x |=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,故选D.4.已知集合M ={x |0≤x ≤4},N ={0|0≤y ≤2},按对应关系f 不能构成从M 到N 的映射的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =23xD .f :x →y =x解析:选C 因为当x =4时,y =23×4=83∉N ,所以C 中的对应关系f 不能构成从M 到N的映射.5.函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3]解析:选B 先求各段上的图象,再求各段值域的并集,即为该函数的值域.6.已知f (x )=⎩⎪⎨⎪⎧x 2-1,x ≥1,1x,x <1,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13=________.解析:依题意,得f ⎝ ⎛⎭⎪⎫13=113=3,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13=f (3)=32-1=8.答案:87.函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,若f (x )=3,则x 的值是________.解析:当x ≤-1时,x +2=3,得x =1舍去, 当-1<x <2时,x 2=3得x =3或x =-3(舍去). 答案: 38.在映射f :A →B 中,A =B ={(x ,y )|x ,y ∈R},且f :(x ,y )→(x -y ,x +y ),则与A 中的元素(-1,2)对应的B 中的元素为________.解析:由题意知,与A 中元素(-1,2)对应的B 中元素为(-1-2,-1+2),即(-3,1). 答案:(-3,1)9.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f (f (2))的值; (2)若f (x 0)=8,求x 0的值. 解:(1)∵0≤x ≤2时,f (x )=x 2-4, ∴f (2)=22-4=0,f (f (2))=f (0)=02-4=-4.(2)当0≤x 0≤2时,由x 20-4=8, 得x 0=±23(舍去);当x 0>2时,由2x 0=8,得x 0=4. ∴x 0=4.10.已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示函数f (x ); (2)画出函数f (x )的图象; (3)写出函数f (x )的值域. 解:(1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x .所以f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.(2)函数f (x )的图象如图所示.(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).层级二 应试能力达标1.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0],x 2+1,x ∈0,1],则函数f (x )的图象是( )解析:选A 当x =-1时,y =0,即图象过点(-1,0),D 错;当x =0时,y =1,即图象过点(0,1),C 错;当x =1时,y =2,即图象过点(1,2),B 错.故选A.2.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0,-2x ,x >0,使函数值为5的x 的值是( ) A .-2 B .2或-52C .2或-2D .2或-2或-52解析:选A 当x ≤0时,令x 2+1=5,解得x =-2;当x >0时,令-2x =5,得x =-52,不合题意,舍去.3.已知映射f :A →B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素在A 中都能找到元素与之对应,且对任意的a ∈A ,在B 中和它对应的元素是|a |,则集合B 中元素的个数是( )A .4B .5C .6D .7解析:选A 注意到对应法则是f :a →|a |,因此3和-3对应集合B 中的元素3;2和-2对应集合B 中的元素2;1和-1对应集合B 中的元素1;4对应集合B 中的元素4.所以B ={1,2,3,4},有4个元素.4.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水量不超过10立方米的,按每立方米m 元收费;用水量超过10立方米的,超过部分按每立方米2m 元收费.某职工某月缴水费16m 元,则该职工这个月实际用水量为( )A .13立方米B .14立方米C .18立方米D .26立方米解析:选A 该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎪⎨⎪⎧ mx ,0≤x ≤10,2mx -10m ,x >10.由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13. 5.函数f (x )=⎩⎪⎨⎪⎧ x 2+1,x ≥0,2-x ,-2≤x <0,的值域是________.解析:当x ≥0时,f (x )≥1,当-2≤x <0时,2<f (x )≤4,∴f (x )≥1或2<f (x )≤4,即f (x )的值域为[1,+∞).答案:[1,+∞)6.设函数f (x )=⎩⎪⎨⎪⎧ 12x -1,x ≥0,1x ,x <0,若f (a )>1,则实数a 的取值范围是________.解析:当a ≥0时,f (a )=12a -1>1, 解得a >4,符合a ≥0;当a <0时,f (a )=1a>1,无解. 答案:(4,+∞)7.如图所示,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4).(1)求f (f (0))的值;(2)求函数f (x )的解析式.解:(1)直接由图中观察,可得f (f (0))=f (4)=2.(2)设线段AB 所对应的函数解析式为y =kx +b ,将⎩⎪⎨⎪⎧ x =0,y =4与⎩⎪⎨⎪⎧ x =2,y =0代入,解得⎩⎪⎨⎪⎧ 4=b ,0=2k +b .得⎩⎪⎨⎪⎧ b =4,k =-2.∴y =-2x +4(0≤x ≤2).同理,线段BC 所对应的函数解析式为y =x -2(2<x ≤6).∴f (x )=⎩⎪⎨⎪⎧ -2x +4,0≤x ≤2,x -2,2<x ≤6.8.A ,B 两地相距150公里,某汽车以每小时50公里的速度从A 地到B 地,在B 地停留2小时之后,又以每小时60公里的速度返回A 地.写出该车离A 地的距离s (公里)关于时间t (小时)的函数关系,并画出函数图象.解:(1)汽车从A 地到B 地,速度为50公里/小时,则有s =50t ,到达B 地所需时间为15050=3(小时). (2)汽车在B 地停留2小时,则有s =150.(3)汽车从B 地返回A 地,速度为60公里/小时,则有s =150-60(t -5)=450-60t ,从B 地到A 地用时15060=2.5(小时). 综上可得:该汽车离A 地的距离s 关于时间t 的函数关系为s =⎩⎪⎨⎪⎧ 50t ,0≤t ≤3,150,3<t ≤5,450-60t ,5<t ≤7.5.函数图象如图所示.。

高中数学必修(1)第一章集合和函数概念(知识点汇总).docx

高中数学必修(1)第一章集合和函数概念(知识点汇总).docx

《集合》知识点汇总1、集合的概念:一般地,我们把研究对象统称为元素,把-些元素组成的总体叫做集合。

2、元素与集合的关系:属于:不属于:”尹;3、集合与集合的关系:包含:或n” ;真包含:“U或二相等:“二”;丰工4、集合中元素具有的特性:确定性,互异性,无序性。

5、集合的表示方法:①列举法;②描述法;6、集合的分类:①有限集;②无限集;③空集;7、集合屮子、真子、交、并、补、全的概念:①子集:若集合A中的任何一个元素都是集合B的元素,则称集合A是集合B的子集,记作A o B(或B o A);②真子集:若AoB,且集合B中至少有一个元素不属于A,即xwB,且xgA,则称A是B的真子集,记作人匸皿或^二①;工*③交集:由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A门B, 即:AC\B = {x\xeA,Rx^B};④并集:由属于集合A或属于集合B的所有元素组成的集合,称为八与B的并集,记作AUB, 即:A U 3 = {兀I兀丘A,或x e B];⑤补集:对于一个集合A,由全集U中不屈于集合A的所有元素组成的集合,称为集合A相对于全集U的补集,记作即:C]二{xwt/,且xgA};⑥全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集, 通常记作8、空集:我们把不含任何元素的集合叫做空集,记为0。

规定:空集是任何集合的子集。

9、集合相等:如果AgB,且Bq 4,则4 = 3;10、V enn图:在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称Venn图。

11、数轴法表示集合:我们通常用数轴来表示集合之间的关系,求集合与集合之间的交集和并集通常用采用此法。

12、含n个元素的集合的子集、真子集、非空子集、非空真子集的个数:①含n个元素的集合的所有子集有2〃个;②含n个元素的集合的所有真子集有2" -1个;③含n个元素的集合的所有非空子集有2" -1个;④含n个元素的集合的所有非空真子集有2〃-2个;13、集合屮的常用性质:(1)若A,则人=3;若则AyC;(2)A,若则0u A;(3)的心4,的0 = 0,的3 = 3门&(4)AUA = A,AU^ = A,AUB = BUA;(5)/OdAUC)= U;(6)(AAB)o Ac(AUB);(AnB)oBo(4UB);(7)AqBo 的3 = Ao AUB = 3;⑻的(3门0 = 0422 4U(BUC) = (AUB)UC⑼ An(BUc)=(AnB)u(Anc); AU(Bnc)=(Aus)n(Auc);do) C^=(C^)U(CJ); C;uj(c;m(C{);14、数学中一些常用的数集及其记法:实数集:R;整数集:Z;自然数集:N;正整数集:N*或N+有理数集:Q;15、区分集合中的数集与点集:①数集的表示法{X\y = f(x)}t {y\y = f(x)}i②点集的表示法{(x, y) I y = f(x)};16、新定义集合:A-B = {x\xe AJHLx纟B]AXB={x|xGAUB 且x年A QB}P^Q = {x\x = ab,ae P.beQ}A®B = {z\ z = xy(x+ y),xE A.y^B}《函数》知识点汇总1、函数的概念:给定两个非空数集A和B,如果按照某个对应关系/,对于集合A屮任何一个数x,在集合B中都存在唯一确定的数/(兀)与Z对应,那么就把对应关系/叫做定义在集合A上的函数,记作f : A T B ,或y=f (x), xe Ao此吋,x叫做自变量,集合A 叫做函数的定义域,集合{f(x)\xeA}叫做函数的值域。

高中数学第一章集合与函数概念1.1.1集合的含义与表示

高中数学第一章集合与函数概念1.1.1集合的含义与表示
【情境导学】 导入 问题1:你能找出班级中比较高的同学,比较胖的同学吗? 答案:不能.比较高,比较胖没有明确的标准,是一个模糊的概念. 问题2:你能找出班级中身高在1米75以上的同学吗?体重在60 kg以上的呢? 答案:可以.有明确的判断标准.
知识探究
1.集合的概念 (1)一般地,我们把 研究对象 统称为元素,把一些元素组成的总体叫做集合. (2)集合与元素的表示 通常用大写拉丁字母A,B,C,…表示集合. 通常用小写拉丁字母a,b,c,…表示集合中的元素. 2.集合中元素的特性
简称
非负整正数整集数(或集自然数集) .
整数集 有理数集
实数集
记法 N
.
N*或N+ QZ
R. .
【拓展延伸】 集合语言的转换与应用 集合语言的不同形态各有自己的特点,符号语言比较简洁、严谨,可大大缩短 语言表达的“长度”,有利于推理、运算;图形语言易引起清晰的视觉形象, 它能直观地表达概念、定理的本质以及相互间的关系,在抽象的数学思维面 前起着具体化和帮助理解的作用;文字语言比较自然、生动,它能将问题所研 究的对象的含义更加明白地叙述出来.集合语言与其他语言的关系如图所示.
自我检测
1.(集合元素的确定性)下列各项中,不可以组成集合的是( C ) (A)所有的正数 (B)等于2的数 (C)接近于0的数 (D)不等于0的偶数
2.(元素与集合的关系)设集合M={(1,2)},则下列关系式成立的是(
(A)1∈M
(B)2∈M
(C)(1,2)∈M
(D)(2,1)∈M
C)
3.(集合元素的互异性)若一个集合中的三个元素a,b,c是△ABC的三边长, 则此三角形一定不是( D ) (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)等腰三角形

2019届人教版高中数学必修一知识点总结

2019届人教版高中数学必修一知识点总结

高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

◆有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即。

高中数学第一章集合与函数概念1.1集合1.1.3第2课时补集及集合运算的综合应用课件新人教A版必修1

高中数学第一章集合与函数概念1.1集合1.1.3第2课时补集及集合运算的综合应用课件新人教A版必修1

2.已知集合A={x|x<a},B={x|x<-1,或x> 0},若A∩(∁RB)=∅,求实数a的取值范围.
解:∵B={x|x<-1,或x>0},
∴∁RB={x|-1≤x≤0}. 因而要使A∩(∁RB)=∅,结合数轴分析(如下图), 可得a≤-1.
1.全集与补集的互相依存关系 (1)全集并非是包罗万象,含有任何元素的集合,它是对于 研究问题而言的一个相对概念,它仅含有所研究问题中涉及的 所有元素,如研究整数,Z就是全集,研究方程的实数解,R 就是全集.因此,全集因研究问题而异. (2)补集是集合之间的一种运算.求集合A的补集的前提是 A是全集U的子集,随着所选全集的不同,得到的补集也是不 同的,因此,它们是互相依存、不可分割的两个概念.
解:∁RB={x|x≤1 或 x≥2}≠∅. ∵A ∁RB,∴分 A=∅和 A≠∅两种情况讨论. (1)若 A=∅,此时有 2a-2≥a,∴a≥2; (2)若 A≠∅,则有2aa≤-1,2<a, 或22aa- -22<≥a2,, ∴a≤1. 综上所述,a≤1 或 a≥2.
解答本题的关键是利用 A ∁RB,对 A=∅与 A≠∅进行分类 讨论,转化为等价不等式(组)求解,同时要注意区域端点的问 题.
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/5/25
最新中小学教学课件
25
谢谢欣赏!
求集合补集的基本方法及处理技巧
(1)基本方法:定义法.
(2)两种处理技巧:
①当集合用列举法表示时,直接套用定义或借助 Venn图求解.

2019年高中数学人教版必修1(全部教案).doc

2019年高中数学人教版必修1(全部教案).doc

集合的含义与表示(第一课时)教学时间:2010年8月26日星期四教学班级:高一(11、12)班教学目标:1.理解集合的含义。

2.了解元素与集合的表示方法及相互关系。

3.熟记有关数集的专用符号。

4.培养学生认识事物的能力。

教学重点:集合含义教学难点:集合含义的理解教学方法:尝试指导法教学过程:引入问题(I)提出问题问题1:班级有20名男生,16名女生,问班级一共多少人问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛讨论问题:按小组讨论。

归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(板书标题)。

复习问题问题3:在小学和初中我们学过哪些集合(数集,点集)(如自然数的集合,有理x-<的解的集合,到一个定点的距离等于定长的点的集合,到一条数的集合,不等式73线段的两个端点距离相等的点的集合等等)。

(II)讲授新课(1)含义:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。

说明:在初中几何中,点,线,面都是原始的,不定义的概念,同样集合也是原始的,不定义的概念,只可描述,不可定义。

(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

问题4:由此上述例中集合的元素分别是什么2. 集合元素的三个特征(1)确定性:设A是一个给定的集合,a是某一具体的对象,则a或者是A的元素,或者不是A的元素,两种情况必有一种而且只有一种成立。

如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)若a是集合A中的元素,则称a属于集合A,记作a∈A;若a不是集合A的元素,则称a不属于集合A,记作a∉A。

(完整版)人教版高中数学必修一第一章知识点

(完整版)人教版高中数学必修一第一章知识点

第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A {|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0) ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R ()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。

必修一数学第一章集合与函数的概念1 (1)

必修一数学第一章集合与函数的概念1 (1)

课题:§1.1.1(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样4.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a ∈A)(举例)5.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1)列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;例1.(课本例1)思考2,引入描述法说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;例2.(课本例2)说明:(课本P5最后一段)思考3:(课本P6思考)强调:描述法表示集合应注意集合的代表元素{(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高中数学第一章集合与函数概念1
[课时作业]
[A组基础巩固]
1.下面四个命题:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R).其中正确命题有( )
A.1个B.2个
C.3个D.4个
解析:偶函数的图象关于y轴对称,但不一定与y轴相交,如y=,故①错误,③正确.奇函数的图象关于原点对称,但不一定经过原点,如y=,故②错误.若y=f(x)既是奇函数又是偶函数,由定义可得f(x)=0,但未必x∈R,如f(x)=+,其定义域为{-1,1},故④错误.故选A.
答案:A
2.若奇函数f(x)在区间[3,7]上的最小值是5,那么f(x)在区间[-7,-3]上有( )
A.最小值5 B.最小值-5
C.最大值-5 D.最大值5
解析:当3≤x≤7时,f(x)≥5,
设-7≤x≤-3,则3≤-x≤7,又∵f(x)是奇函数.
∴f(x)=-f(-x)≤-5.
答案:C
3.y=x+的大致图象是( )
解析:设f(x)=x+,则f(-x)=(-x)+=-(x+)=-f(x)
∴f(x)是奇函数,图象关于原点对称.
又x>0时,x>0,>0,∴f(x)=x+>0.
答案:B
4.f(x)=|x-1|+|x+1|是( )
A.奇函数B.偶函数
C.非奇非偶函数D.既奇又偶函数
解析:函数定义域为x∈R,关于原点对称.
∵f(-x)=|-x-1|+|-x+1|=|x+1|+|x-1|=f(x)
∴f(x)=|x-1|+|x+1|是偶函数.
答案:B
5.设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b 为常数),
则f(-1)=( )
A.3 B.1
C.-1 D.-3
解析:因为f(x)为定义在R上的奇函数,所以有f(0)=20+2×0+b =0,解得b=-1,所以当x≥0时,f(x)=2x+2x-1,所以f(-1)=-f(1)=-(21+2×1-1)=-3.
答案:D
6.已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-4x,则x<0时,f(x)的解析式为________.
解析:设x<0,则-x>0,∵f(x)是奇函数,
∴f(x)=-f(-x)=-[(-x)2-4(-x)]=-(x2+4x)=-x2-4x.
答案:f(x)=-x2-4x
7.已知f(x)是奇函数,F(x)=x2+f(x),f(2)=4,则F(-2)=________.
解析:∵f(x)是奇函数且f(2)=4,∴f(-2)=-f(2)=-4.
∴F(-2)=f(-2)+(-2)2=-4+4=0.
答案:0
8.已知f(x)是实数集上的偶函数,且在区间[0,+∞)上是增函数,则f(-2),
f(-π),f(3)的大小关系是________.
解析:本题是利用函数的单调性比较函数值的大小.当自变量的值不在同一区间上时,利用函数的奇偶性,化到同一单调区间上比较其大小.因为f(x)为偶函数,所以f(-2)=f(2),f(-π)=f(π),又因为f(x)在[0,+∞)上是增函数,2<3<π,所以f(2)<f(3)<f(π),
所以f(-2)<f(3)<f(-π).
答案:f(-2)<f(3)<f(-π)
9.已知函数f(x)和g(x)满足f(x)=2g(x)+1,且g(x)为R上的奇函数,f(-1)=8,求f(1).
解析:∵f(-1)=2g(-1)+1=8,
∴g(-1)=,
又∵g(x)为奇函数,
∴g(-1)=-g(1).
∴g(1)=-g(-1)=-,
∴f(1)=2g(1)+1=2×+1=-6.
10.函数f(x)的定义域D ={x|x≠0},且满足对于任意x1,x2∈D, 有f(x1·x2)=f(x1)+f(x2). (1)求f(1)的值;
(2)判断f(x)的奇偶性并证明. 解析: (1)令x1=x2=1,
有f(1×1)=f (1)+f(1),解得f(1)=0. (2)f(x)为偶函数,证明如下: 令x1=x2=-1,
有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0. 令x1=-1,x2=x ,有f(-x)=f(-1)+f(x), 所以f(-x)=f(x).所以f(x)为偶函数.
[B 组 能力提升]
1.函数f(x)=是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .既奇又偶
解析:∵⎩⎪⎨


4-x2≥0,|x +2|-2≠0,
∴f(x)的定义域为x ∈[-2,0)∪(0,2],关于原点对称. 此时f(x)==.
又f(-x)==-=-f(x), ∴f(x)=为奇函数. 答案:A
2.已知偶函数f(x)在区间[0,+∞)上是单调递增的,则满足f(2x -1)<f 的
x 的取值范围是( )
A. B.⎣⎢⎡⎭⎪⎫13,2
3 C.
D.⎣⎢⎡⎭
⎪⎫12,23 解析:∵f(x)在[0,+∞)上是单调递增, ∴f(x)在(-∞,0)上单调递减, ∴-<2x -1<, 解得<x <. 答案:A
3.已知f(x)在R 上是奇函数,且满足f(x +4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=________.
解析:f(7)=f(3+4)=f(3)=f(-1+4)=f(-1), 又∵f(x)是R 上的奇函数,当x∈(0,2)时,f(x)=2x2, ∴f(-1)=-f(1)=-2. ∴f(7)=f(-1)=-2. 答案:-2
4.已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x -1)>0,则x 的取值范围是________.
解析:∵f(x)是偶函数,∴图象关于y 轴对称.又f(2)=0,且f(x)
在[0,+∞)单调递减,则f(x)的大致图象如图所示,由f(x -1)>0,
得-2<x-1<2,
即-1<x<3.
答案:(-1,3)
5.已知函数f(x)=x2+|x-a|+1,a∈R.
(1)试判断f(x)的奇偶性;
(2)若-≤a≤,求f(x)的最小值.
解析:(1)当a=0时,
函数f(-x)=(-x)2+|-x|+1=f(x),
此时,f(x)为偶函数.
当a≠0时,
f(a)=a2+1,f(-a)=a2+2|a|+1,
f(a)≠f(-a),f(a)≠-f(-a),
此时, f(x)为非奇非偶函数.
(2)当x≤a时, f(x)=x2-x+a+1=(x-)2+a+;
∵a≤,故函数f(x)在(-∞,a]上单调递减,
从而函数f(x)在(-∞,a]上的最小值为f(a)=a2+1.
当x≥a时,
函数f(x)=x2+x-a+1=2-a+,
∵a≥-,故函数f(x)在[a,+∞)上单调递增,
从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.
综上得,当-≤a≤时,函数f(x)的最小值为a2+1.
6.已知f(x)为奇函数,且当x<0时f(x)=x2+3x+2.若当x∈[1,3]时,n≤f(x)≤m恒成立,求m-n的最小值.
解析:∵x<0时,f(x)=x2+3x+2=2-,
∴当x∈[-3,-1]时,
f(x)min=f=-,
f(x)max=f(-3)=2.
由于函数为奇函数,
∴函数在x∈[1,3]时的最小值和最大值分别是-2,,∴m的最小值为,n的最大值为-2.
∴(m-n)min=-(-2)=.
即m-n的最小值为.。

相关文档
最新文档