)求积分时,可根据被积函数的类型直接 或经过简单变形后

合集下载

反常积分的计算方法

反常积分的计算方法

反常积分的计算方法反常积分是求解某些积分时需要采用的一种特殊方法,它是指被积函数在某一区间上无法定义的积分。

在反常积分的求解过程中,一些数学定理和技巧被广泛应用。

下面,我们将介绍一些反常积分的常见计算方法。

方法一:分部积分法对于一些形如$∫u(x)v'(x)dx$ 的积分,我们可以采用分部积分法进行求解。

此时,我们需要对被积函数做出适当的分解,使得积分表达式易于计算。

例:$∫lnx dx= xlnx - x + C$此式中,我们采用分部积分法,将 $lnx$ 分解为 $u(x)$,$1$ 分解为 $v'(x)$。

然后,我们可以用求导法和幂函数积分法求解出 $u(x)$ 和 $v(x)$。

方法二:换元法在某些情况下,我们可以使用换元法来简化被积函数的形式,进而使计算更为简便。

换元法的核心思想是将被积函数转化为形式更简单的函数。

例:$∫\frac{1}{1 + x^2}dx$此时,我们可以采用$x = tanθ$ 来进行换元。

这样,我们可以将 $\frac{1}{1 + x^2}$ 转化为 $\frac{cosθ}{sin^2θ +cos^2θ}$ 的形式,然后用三角函数的积分公式进行计算。

方法三:极限求解法对于一些反常积分,我们采用传统的解析方法难以求解。

此时,我们可以使用极限求解法。

基本思路是将被积函数化为某个函数在某一点附近的收敛级数,进而推导出反常积分的值。

例:$∫_0^1\frac{1}{lnx}dx$此式中,我们采用极限求解法,将被积函数变形成为$\lim_{n→0+}∫_n^1\frac{1}{lnx}dx$。

然后,我们对被积函数积分,得到其收敛级数为$∑_{k=2}^∞(-1)^{k+1}\frac{(ln(1/n))^k}{k!}$,然后推导极限值为 $-γ$,其中$γ$ 是欧拉常数。

总之,反常积分的计算方法有多种,采用不同的方法可以经过简单变形,使得积分表达式变得更加容易计算,求解过程也更为快捷高效。

高等数学 第3章不定积分

高等数学 第3章不定积分

4、基本积分表 由于微、积分是互逆的两种运算,故利用导数公 式,不难得到基本初等函数的积分公式。
例4
解:
练习:
答:
例5
解:
例6
解:
经验之一:
整理为“多项式”形式是解决只含有幂 函数的积分方法之一
例7 解:
例8 解:
经验之二: 当含有指数函数或对数函数时,尽可能 化为公式形式积分。
经验:当被积函数为三角函数的奇次方时,我 们常分离出其中一个,放在微分因子中。
例24
解:
例25
解:
例26
解:
例27
解:
经验:降次总是一种求三角函数积分的有效方法。
例28
解:
例29
解:
经验: 利用三角恒等式转化被积函数也是方法之一
例30 解:
例31 解:
(二)第二换元积分法
但必须满足:
定理3.4(第二换元积分法) 证明:
例32
根式代换法
解:
例33
解:
(待续)

此时,为了计 算其它三角函数值, 可以借助辅助三角 形(如右)。
例34
解:
(待续)

例35
解:
被积函数定 义域为:x>a 或x<-a 此处先讨论 x>a的情形
由上例可知
(待续)

原式
思考x<-a的情形
三角代换法
高等数学
第3章 不定积分
主要内容:
一、不定积分的概念与性质 二、换元积分法 三、分部积分法 四、积分表的使用
一、不定积分的概念与性质
1、原函数的定义
如:
又如:
★注意:
★注意:

不定积分教案

不定积分教案

第四章 不定积分教学目的: 1、 理解原函数概念、不定积分的概念。

2、 掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二)与分部积分法。

3、 会求有理函数、三角函数有理式和简单无理函数的积分。

教学重点:1、 不定积分的概念;2、 不定积分的性质及基本公式;3、 换元积分法与分部积分法。

教学难点:1、换元积分法;2、分部积分法;3、三角函数有理式的积分。

§4. 1 不定积分的概念与性质一、原函数与不定积分的概念定义1 如果在区间I 上, 可导函数F (x )的导函数为f (x ), 即对任一x ∈I , 都有F '(x )=f (x )或dF (x )=f (x )dx ,那么函数F (x )就称为f (x )(或f (x )dx )在区间I 上的原函数.例如 因为(sin x )'=cos x , 所以sin x 是cos x 的原函数.又如当x ∈(1, +∞)时,因为xx 21)(=', 所以x 是x 21的原函数. 提问:cos x 和x21还有其它原函数吗? 原函数存在定理 如果函数f (x )在区间I 上连续, 那么在区间I 上存在可导函数F (x ), 使对任一x ∈I 都有F '(x )=f (x ).简单地说就是: 连续函数一定有原函数.两点说明:第一, 如果函数f (x )在区间I 上有原函数F (x ), 那么f (x )就有无限多个原函数, F (x )+C 都是f (x )的原函数, 其中C 是任意常数.第二, f (x )的任意两个原函数之间只差一个常数, 即如果Φ(x )和F (x )都是f (x )的原函数, 则 Φ(x )-F (x )=C (C 为某个常数).定义2 在区间I 上, 函数f (x )的带有任意常数项的原函数称为f (x )(或f (x )dx )在区间I 上的不定积分, 记作⎰dx x f )(.其中记号⎰称为积分号, f (x )称为被积函数, f (x )dx 称为被积表达式, x 称为积分变量.根据定义, 如果F (x )是f (x )在区间I 上的一个原函数, 那么F (x )+C 就是f (x )的不定积分, 即⎰+=C x F dx x f )()(.因而不定积分dx x f )(⎰可以表示f (x )的任意一个原函数.例1. 因为sin x 是cos x 的原函数, 所以C x xdx +=⎰sin cos .因为x 是x21的原函数, 所以C x dx x+=⎰21.例2. 求函数xx f 1)(=的不定积分. 解:当x >0时, (ln x )'x1=, C x dx x+=⎰ln 1(x >0); 当x <0时, [ln(-x )]'xx 1)1(1=-⋅-=, C x dx x+-=⎰)ln( 1(x <0). 合并上面两式, 得到C x dx x+=⎰||ln 1(x ≠0). 例3 设曲线通过点(1, 2), 且其上任一点处的切线斜率等于这点横坐标的两倍, 求此曲线的方程.解 设所求的曲线方程为y =f (x ), 按题设, 曲线上任一点(x , y )处的切线斜率为y '=f '(x )=2x ,,即f (x )是2x 的一个原函数.因为 ⎰+=C x xdx 22,故必有某个常数C 使f (x )=x 2+C , 即曲线方程为y =x 2+C .因所求曲线通过点(1, 2), 故2=1+C , C =1.于是所求曲线方程为y =x 2+1.积分曲线: 函数f (x )的原函数的图形称为f (x )的积分曲线.从不定积分的定义, 即可知下述关系: ⎰=)(])([x f dx x f dxd , 或 ⎰=dx x f dx x f d )(])([;又由于F (x )是F '(x )的原函数, 所以⎰+='C x F dx x F )()(,或记作 ⎰+=C x F x dF )()(.由此可见, 微分运算(以记号d 表示)与求不定积分的运算(简称积分运算, 以记号⎰表示)是互逆的. 当记号⎰与d 连在一起时, 或者抵消, 或者抵消后差一个常数.二、基本积分表(1)C kx kdx +=⎰(k 是常数), (2)C x dx x ++=+⎰111μμμ, (3)C x dx x+=⎰||ln 1, (4)C e dx e x x +=⎰, (5)C aa dx a x x +=⎰ln , (6)C x xdx +=⎰sin cos ,(7)C x xdx +-=⎰cos sin , (8)C x xdx dx x +==⎰⎰tan sec cos 122, (9)C x xdx dx x+-==⎰⎰cot csc sin 122,(10)C x dx x+=+⎰arctan 112, (11)C x dx x +=-⎰arcsin 112, (12)C x xdx x +=⎰sec tan sec ,(13)C x dx x +-=⎰csc cot csc ,(14)C x dx x +=⎰ch sh ,(15)C x dx x +=⎰sh ch .例4⎰⎰-=dx x dx x 331C x C x +-=++-=+-21321131. 例5 ⎰⎰=dxx dx x x 252C x ++=+1251251C x +=2772C x x +=372. 例6 ⎰⎰-=dx x x x dx 343C x ++-=+-134134C x +-=-313C x+-=33. 三、不定积分的性质性质1 函数的和的不定积分等各个函数的不定积分的和, 即⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([.这是因为, ])([])([])()(['+'='+⎰⎰⎰⎰dx x g dx x f dx x g dx x f =f (x )+g (x ).性质2 求不定积分时, 被积函数中不为零的常数因子可以提到积分号外面来, 即 ⎰⎰=dx x f k dx x kf )()((k 是常数, k ≠0).例7. ⎰⎰-=-dx x x dx x x )5()5(21252 ⎰⎰-=dx x dx x 21255⎰⎰-=dx x dx x 21255 C x x +⋅-=232732572. 例8 dx x x x dx xx x x dx x x )133(133)1(222323-+-=-+-=-⎰⎰⎰ C x x x x dx xdx x dx dx x +++-=-+-=⎰⎰⎰⎰1||ln 3321113322.例9 ⎰⎰⎰-=-xdx dx e dx x e x x cos 3)cos 3(C x e x +-=sin 3.例10 C e C e e dx e dx e x x x x x x ++=+==⎰⎰2ln 12)2ln()2()2(2. 例11 dx xx dx x x x x dx x x x x )111()1()1()1(122222++=+++=+++⎰⎰⎰ C x x dx x dx x++=++=⎰⎰||ln arctan 1112. 例12 dx x x x dx x x dx x x ⎰⎰⎰++-+=++-=+222242411)1)(1(1111 ⎰⎰⎰⎰++-=++-=dx xdx dx x dx x x 222211)111( C x x x ++-=arctan 313. 例13 ⎰⎰⎰⎰-=-=dx xdx dx x dx x 222sec )1(sec tan= tan x - x + C .例14 ⎰⎰⎰-=-=dx x dx x dx x )cos 1(212cos 1 2sin 2 C x x +-=)sin (21. 例15 C x dx x dx xx +-==⎰⎰cot 4sin 142cos 2sin 1222.§4. 2 换元积分法一、第一类换元法设f (u )有原函数F (u ), u =ϕ(x ), 且ϕ(x )可微, 那么, 根据复合函数微分法, 有d F [ϕ(x ) ]=d F (u )=F '(u )d u = F ' [ϕ(x ) ] d ϕ(x )= F '[ϕ(x ) ]ϕ'(x )d x ,所以 F '[ϕ(x )]ϕ'(x )dx = F '[ϕ(x )] d ϕ(x )= F '(u )d u = d F (u )=d F [ϕ(x ) ],因此 ⎰⎰'='')()]([)()]([x d x F dx x x F ϕϕϕϕ⎰⎰='=)()(u dF du u F C x F x dF +==⎰)]([)]([ϕϕ.即 )(])([)()]([)()]([x u du u f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰=='=[F (u ) +C ] u = ϕ(x ) = F [ϕ(x )]+C .定理1 设f (u )具有原函数, u =ϕ(x )可导, 则有换元公式⎰⎰⎰+=+==='C x F C u F du u f x d x f dx x x f )]([)()()()]([)()]([ϕϕϕϕϕ .被积表达式中的dx 可当作变量x 的微分来对待, 从而微分等式ϕ'(x )dx =du 可以应用到被积表达式中.在求积分⎰dx x g )(时, 如果函数g (x )可以化为g (x )= f [ϕ(x )]ϕ'(x )的形式, 那么⎰dx x g )()(])([)()]([x u du u f dx x x f ϕϕϕ=⎰⎰='=.例1. ⎰⎰'⋅=dx x x xdx )2(2cos 2cos 2⎰=)2(2cos x xdC u udu +==⎰sin cos =sin 2x +C .例2. dx x x dx x ⎰⎰'++=+)23(23121231⎰++=)23(23121x d x C u dx u +==⎰||ln 21121C x ++=|23|ln 21. 例3. ⎰⎰⎰⎰=='=du e x d e dx x e dx xe u x x x )()(222222C e C e x u +=+=2.例4. 22222121)(1211dx x dx x x dx x x ⎰⎰⎰-='-=- C u du u x d x +-=-=---=⎰⎰2321223121)1(121 C x +--=232)1(31.C u du u+-=-=⎰||ln 1 =-ln|cos x |+C .即 C x xdx +-=⎰|cos |ln tan .类似地可得C x xdx +=⎰|sin |ln cot .熟练之后, 变量代换就不必再写出了.例6. dx ax a dx x a ⎰⎰+=+2222)(1111C ax a a x d ax a +=+=⎰arctan 1)(1112. 即 dx x a ⎰+221C a xa +=arctan 1. 例7. C ax a a x d a x a dx a x +==⎰⎰sh ch ch . 例8. 当a >0时,⎰⎰-=-dx a x a dx x a 222)(1111C a x a x d a x +=-=⎰arcsin )(112. 即 dx x a ⎰-221C a x +=arcsin . 例9. ⎰⎰+--=-dx a x a x a dx a x )11(21122]11[21⎰⎰+--=dx a x dx a x a ])(1)(1[21⎰⎰++---=a x d ax a x d a x a C a x a x a ++--=|]|ln ||[ln 21C ax a x a ++-=||ln 21. 即 dx a x ⎰-221C a x ax a ++-=||ln 21. 例10. ⎰⎰⎰++=+=+xx d x x d x x dx ln 21)ln 21(21ln 21ln )ln 21( C x ++=|ln 21|ln 21.xC e x +=332. 含三角函数的积分:例12. ⎰⎰⋅=xdx x xdx sin sin sin 23⎰--=x d x cos )cos 1(2⎰⎰+-=x xd x d cos cos cos 2C x x ++-=3cos 31cos . 例13. ⎰⎰=x xd x xdx x sin cos sin cos sin 4252⎰-=x d x x sin )sin 1(sin 222⎰+-=x d x x x sin )sin sin 2(sin 642C x x x ++-=753sin 71sin 52sin 31. 例14. dx x xdx ⎰⎰+=22cos 1cos 2)2cos (21⎰⎰+=xdx dx ⎰⎰+=x xd dx 22cos 4121C x x ++=2sin 4121. 例15. dx x xdx 224)(cos cos ⎰⎰=⎰+=dx x 2)]2cos 1(21[ ⎰++=dx x x )2cos 2cos 21(412 ⎰++=dx x x )4cos 212cos 223(41 C x x x +++=)4sin 812sin 23(41 C x x x +++=4sin 3212sin 4183. 例16. ⎰⎰+=dx x x xdx x )5cos (cos 212cos 3cos C x x ++=5sin 101sin 21. 例17. ⎰⎰=dx x xdx sin 1csc ⎰=dx x x 2cos 2sin 21C x xxd x x x d +===⎰⎰|2tan |ln 2tan 2tan 2cos 2tan 22=ln |csc x -cot x |+C . 即 ⎰xdx csc =ln |csc x -cot x |+C .例18. ⎰⎰+=dx x xdx )2csc(sec πC x x ++-+=|)2cot()2 csc(|ln ππ =ln |sec x + tan x | + C .即 ⎰xdx sec =ln |sec x + tan x | + C .二、第二类换元法定理2 设x =ϕ(t )是单调的、可导的函数, 并且ϕ'(t )≠0. 又设f [ϕ(t )]ϕ'(t )具有原函数F (t ), 则有换元公式C x F t F dt t t f dx x f +=='=-⎰⎰)]([)()()]([)(1ϕϕϕ.其中t =ϕ-1(x )是x =ϕ(t )的反函数.这是因为)()]([1)()]([)(})]([{1x f t f dtdx t t f dx dt t F x F =='='='-ϕϕϕϕ. 例19. 求dx x a ⎰-22(a >0).解: 设x =a sin t , 22 ππ<<-t , 那么22x a -t a t a a cos sin 222=-=, dx =a cos t d t , 于是⎰⎰⋅=-tdt a t a dx x a cos cos 22C t t a tdt a ++==⎰)2sin 4121(cos 222. 因为ax t arcsin =, a x a a x t t t 222cos sin 22sin -⋅==, 所以 dx x a ⎰-22C t t a ++=)2sin 4121(2C x a x a x a +-+=22221arcsin 2.解: 设x =a sin t , 22 ππ<<-t , 那么⎰⎰⋅=-tdt a t a dx x a cos cos 22C t t a tdt a ++==⎰)2sin 4121(cos 222C x a x a x a +-+=22221arcsin 2. 提示:22x a -t a t a a cos sin 222=-=, dx =a cos tdt .提示: a x t arcsin =, ax a a x t t t 222cos sin 22sin -⋅==.例20. 求⎰+22a x dx (a >0). 解法一: 设x =a tan t , 22 ππ<<-t , 那么 22a x +t a a 222tan +=t a 2tan 1+==a sec t , dx =a sec 2t d t , 于是⎰+22a x dx ⎰⎰==tdt dt t a t a sec sec sec 2= ln |sec t + tan t |+C . 因为aa x t 22sec +=, a x t =tan , 所以 ⎰+22a x dx = ln |sec t + tan t |+C C a a x a x +++=)ln(22122)ln(C a x x +++=, 其中C 1=C -ln a .解法一: 设x =a tan t , 22 ππ<<-t , 那么 ⎰⎰⎰==+tdt dt t a t a a x dx sec sec sec 222=ln|sec t +tan t |+C C aa x a x +++=)ln(22122)ln(C a x x +++=, 其中C 1=C -ln a .提示:22a x +t a a 222tan +==a sec t , dx =a sec 2t dt ,提示:aa x t 22sec +=, a x t =tan .解法二: 设x =a sh t , 那么⎰+22a x dx C a x C t dt dt t a t a +=+===⎰⎰arsh ch ch C a x a x +⎪⎭⎫ ⎝⎛++=1)(ln 2122)ln(C a x x +++=, 其中C 1=C -ln a .提示: 22a x +222a t sh a +==a ch t , dx =a ch t d t .例23. 求⎰-22a x dx (a >0). 解: 当x >a 时, 设x =a sec t (20π<<t ), 那么 22a x -222sec a t a -=1sec 2-=t a =a tan t ,于是⎰-22a x dx ⎰⎰==tdt dt t a t t a sec tan tan sec = ln |sec t + tan t |+C . 因为aa x t 22tan -=, a x t =sec , 所以 ⎰-22a x dx = ln |sec t + tan t |+C C a a x a x +-+=||ln 22122)ln(C a x x +-+=, 其中C 1=C -ln a .当x <a 时, 令x =-u , 则u >a , 于是⎰-22a x dx C a u u a u du +-+-=--=⎰)ln(2222 C a x x +-+--=)ln(22122)ln(C a x x +---=,122222)ln(ln C a x x C aa x x +---=+---=, 其中C 1=C -2ln a .综合起来有⎰-22a x dx C a x x +-+=||ln 22. 解: 当x >a 时, 设x =a sec t (20π<<t ), 那么⎰-22a x dx ⎰⎰==tdt dt t a t t a sec tan tan sec C aa x a x C t t +-+=++=)ln(|tan sec |ln 22 C a x x +-+=)ln(22,其中C 1=C -ln a .当x <-a 时, 令x =-u , 则u >a , 于是⎰-22a x dx C a u u a u du +-+-=--=⎰)ln(2222 C a a x x C a x x +---=+-+--=22222ln )ln( 122)ln(C a x x +---=,其中C 1=C -2ln a .提示:22a x -222sec a t a -=1sec 2-=t a =a tan t .提示:aa x t 22tan -=, a x t =sec . 综合起来有C a x x a x dx +-+=-⎰||ln 2222. 补充公式: (16)C x xdx +-=⎰|cos |ln tan ,(17)C x xdx +=⎰|sin |ln cot ,(18)C x x xdx ++=⎰|tan sec |ln sec ,(19)C x x xdx +-=⎰|cot csc |ln csc , (20)C a x a dx x a +=+⎰arctan 1122, (21)C a x a x a dx a x ++-=-⎰||ln 21122, (22)C a x dx x a +=-⎰arcsin 122, (23)C a x x a x dx +++=+⎰)ln(2222,(24)C a x x a x dx +-+=-⎰||ln 2222.§4. 3 分部积分法设函数u =u (x )及v =v (x )具有连续导数. 那么, 两个函数乘积的导数公式为(uv )'=u 'v +uv ',移项得 uv '=(uv )'-u 'v .对这个等式两边求不定积分, 得⎰⎰'-='vdx u uv dx v u , 或⎰⎰-=vdu uv udv ,这个公式称为分部积分公式.分部积分过程:⋅⋅⋅='-=-=='⎰⎰⎰⎰ vdx u uv vdu uv udv dx v u .例1 ⎰⎰⎰-==xdx x x x xd xdx x sin sin sin cos =x sin x -cos x +C .例2 C e xe dx e xe xde dx xe x x x x x x +-=-==⎰⎰⎰.例3 ⎰⎰⎰-==2222dx e e x de x dx e x x x x x⎰⎰-=-=x x x x xde e x dx xe e x 2222⎰+-=dx e xe e x x x x 222=x 2e x -2xe x +2e x +C =e x (x 2-2x +2 )+C .例4 ⎰⎰⎰⋅-==dx xx x x xdx xdx x 121ln 21ln 21ln 222 C x x x xdx x x +-=-=⎰22241ln 2121ln 21. 例5 ⎰⎰-=x xd x x xdx arccos arccos arccosdx x x x x ⎰-+=211arccos )1()1(21arccos 2212x d x x x ---=⎰-C x x x +--=21arccos . 例6 ⎰⎰=2arctan 21arctan xdx xdx x ⎰+⋅-=dx x x x x 2221121arctan 21 ⎰+--=dx x x x )111(21arctan 2122C x x x x ++-=arctan 2121arctan 212. 例7 求xdx e x sin ⎰.解 因为⎰⎰⎰-==x d e x e xde xdx e x x x x sin sin sin sin⎰⎰-=-=x x x x xde x e xdx e x e cos sin cos sin⎰+-=x d e x e x e x x x cos cos sin⎰+-=x d e x e x e x x x cos cos sin⎰--=xdx e x e x e x x x sin cos sin ,所以 C x x e xdx e x x +-=⎰)cos (sin 21sin .例8 求⎰xdx 3sec .解 因为⎰⎰⎰=⋅=x xd xdx x xdx tan sec sec sec sec 23⎰-=xdx x x x 2tan sec tan sec⎰--=dx x x x x )1(sec sec tan sec 2⎰⎰+-=xdx xdx x x sec sec tan sec 3⎰-++=xdx x x x x 3sec |tan sec |ln tan sec ,所以 ⎰xdx 3sec C x x x x +++=|)tan sec |ln tan (sec 21. 例9 求⎰+=nn a x dx I )(22, 其中n 为正整数. 解 C a x aa x dx I +=+=⎰arctan 1221; 当n >1时,用分部积分法, 有dx a x x n a x x a x dx n n n ⎰⎰+-++=+--)()1(2)()(222122122dx a x a a x n a x x n n n ⎰+-+-++=--])()(1[)1(2)(222122122, 即 ))(1(2)(211221n n n n I a I n a x x I --++=---, 于是 ])32()([)1(2111222---++-=n n n I n a x x n a I . 以此作为递推公式, 并由C ax a I +=arctan 11即可得n I . 例10 求dx e x ⎰. 解 令x =t 2 , 则 , dx =2tdt . 于dx e x ⎰C x e C t e dt te x t t +-=+-==⎰)1(2)1(22.x d e x x d e dx e x x x ⎰⎰⎰==2)(2x d e e x de x x x x ⎰⎰-==222C x e C e e x x x x +-=+-=)1(222.第一换元法与分部积分法的比较:共同点是第一步都是凑微分⎰⎰=')()]([)()]([x d x f dx x x f ϕϕϕϕu x =)(ϕ令⎰du u f )(,⎰⎰=')()()()(x dv x u dx x v x u ⎰-=)()()()( x du x v x v x u .哪些积分可以用分部积分法?⎰xdx x cos , ⎰dx xe x , dx e x x ⎰2;⎰xdx x ln , ⎰xdx arccos , ⎰xdx x arctan ;xdx e x sin ⎰, ⎰xdx 3sec .2222⋅⋅⋅===⎰⎰⎰du e dx e dx xe u x x ,2222⋅⋅⋅=-==⎰⎰⎰dx e e x de x dx e x x x x x .§4. 4 几种特殊类型函数的积分一、有理函数的积分有理函数的形式:有理函数是指由两个多项式的商所表示的函数, 即具有如下形式的函数:mm m m n n n n b x b x b x b a x a x a x a x Q x P ++⋅⋅⋅++++⋅⋅⋅++=----11101110)()(, 其中m 和n 都是非负整数; a 0, a 1, a 2, ⋅ ⋅ ⋅ , a n 及b 0, b 1, b 2, ⋅ ⋅ ⋅ , b m 都是实数, 并且a 0≠0, b 0≠0. 当n <m 时, 称这有理函数是真分式; 而当n ≥m 时, 称这有理函数是假分式.假分式总可以化成一个多项式与一个真分式之和的形式. 例如1111)1(1122223++=+++=+++x x x x x x x x . 真分式的不定积分:求真分式的不定积分时, 如果分母可因式分解, 则先因式分解, 然后化成部分分式再积分. 例1 求⎰+-+dx x x x 6532. 解 ⎰+-+dx x x x 6532⎰--+=dx x x x )3)(2(3⎰---=dx x x )2536( ⎰⎰---=dx x dx x 2536=6ln|x -3|-5ln|x -2|+C . 提示: )3)(2()32()(23)3)(2(3----++=-+-=--+x x B A x B A x B x A x x x , A +B =1, -3A -2B =3, A =6, B =-5.分母是二次质因式的真分式的不定积分:例2 求⎰++-dx x x x 3222. 解 ⎰++-dx x x x 3222dx x x x x x )3213322221(22++-+++=⎰ dx x x dx x x x ⎰⎰++-+++=321332222122 ⎰⎰+++-++++=2222)2()1()1(332)32(21x x d x x x x d C x x x ++-++=21arctan 23)32ln(212. 提示: 321332221323)22(213222222++⋅-++-⋅=++-+=++-x x x x x x x x x x x . 例3 求⎰-dx x x 2)1(1.解 ⎰⎰-+--=-dx x x x dx x x ])1(1111[)1(122 ⎰⎰⎰-+--=dx x dx x dx x 2)1(1111C x x x +----=11|1|ln ||ln .提示: 222)1(1)1(1)1(1)1(1-+--=-+-=-x x x x x x x x x 22)1(1111)1(1)1(1-+--=-+-+--=x x x x x x x x . 二、三角函数有理式的积分三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数, 其特点是分子分母都包含三角函数的和差和乘积运算. 由于各种三角函数都可以用sin x 及cos x 的有理式表示, 故三角函数有理式也就是sin x 、cos x 的有理式.用于三角函数有理式积分的变换:把sin x 、cos x 表成2tan x 的函数, 然后作变换2tan x u =: 222122tan 12tan 22sec 2tan 22cos 2sin 2sin u u x xx x x x x +=+===, 222222112sec 2tan 12sin 2cos cos u u x xx x x +-=-=-=. 变换后原积分变成了有理函数的积分.例4 求⎰++dx x x x )cos 1(sin sin 1. 解 令2tan x u =, 则212sin u u x +=, 2211cos u u x +-=, x =2arctan u , du u dx 212+=. 于是 ⎰++dx x x x )cos 1(sin sin 1⎰+-++++=)111(12)121(2222u u u u u udu u 212+⎰++=du u u )12(21 C u u u +++=|)|ln 22(212C x x x +++=|2tan |ln 212tan 2tan 412. 解 令2tan x u =, 则du uu u u u u udx x x x 2222212)111(12)121()cos 1(sin sin 1+⋅+-++++=++⎰⎰ ⎰++=+++=du uu C u u u )12(21|)|ln 22(212 C x x x +++=|2tan |ln 212tan 2tan 412. 说明: 并非所有的三角函数有理式的积分都要通过变换化为有理函数的积分. 例如,⎰⎰++=++=+C x x d x dx x x )sin 1ln()sin 1(sin 11sin 1cos .三、简单无理函数的积分无理函数的积分一般要采用第二换元法把根号消去.例5 求⎰-dx xx 1. 解 设u x =-1, 即12+=u x , 则du u u udu u u dx xx ⎰⎰⎰+=⋅+=-12211222 C u u du u+-=+-=⎰)arctan (2)111(22 C x x +---=)1arctan 1(2.例6 求⎰++321x dx . 解 设u x =+32. 即23-=u x , 则du uu du u u x dx ⎰⎰⎰++-=⋅+=++111331121223 C u u u du u u +++-=++-=⎰|)1|ln 2(3)111(32 C x x x +++++-+=|21|ln 23)2(233332. 例7 求⎰+x x dx )1(3. 解 设x =t 6, 于是dx =6t 5d t , 从而dt t t dt t t t x x dx ⎰⎰⎰+=+=+22325316)1(6)1(C t t dt t +-=+-=⎰)arctan (6)111(62 C x x +-=)arctan (666.例8 求⎰+dx xx x 11. 解 设t xx =+1, 即112-=t x , 于是 dt t t t t dx x x x ⎰⎰--⋅-=+222)1(2)1(11 dt t dt t t )111(212222-+-=--=⎰⎰ C t t t ++---=|11|ln 2 C xx x x x x +++-+-+-=11ln 12.练习1. 求⎰+xdx cos 2. 解: 作变换2tan x t =, 则有dt t dx 212+=, 2211cos t t x +-=, ⎰+x dx cos 2⎰+-++=22211212t t t dt⎰+=dt t 2312⎰+=3)3(11322t d t C t+=3arctan 32C x +=)2tan 31arctan(32. 2. 求⎰dx xx 45cos sin . 解: ⎰dx x x 45cos sin ⎰-=x d x x cos cos sin 44⎰--=x d xx cos cos )cos 1(422 ⎰+--=x d xx cos )cos 1cos 21(42 C x x x ++--=3cos 31cos 2cos . 3. 求⎰+-+dx x x x 23132.解: ⎰+-+dx x x x 23132⎰--+=dx x x x )1)(2(13⎰---=dx x x )1427(⎰-=dx x 217⎰--dx x 114 =7ln|x -2|-4ln|x -1|+C .§4.5积分表的使用积分的计算要比导数的计算来得灵活、复杂. 为了实用的方便, 往往把常用的积分公式汇集成表, 这种表叫做积分表. 求积分时, 可根据被积函数的类型直接地或经过简单变形后, 在表内查得所需的结果.积分表一、含有ax +b 的积分 1.⎰++=+C b ax ab ax dx ||ln 1 2.)1()()1(1)(1-≠+++=++⎰μμμμC b ax a dx b ax 3.C b ax b b ax a dx b ax x ++-+=+⎰|)|ln (124.[]C b ax b b ax b b ax a dx b ax x ++++-+=+⎰||ln )(2)(2112232 5.C x b ax b b ax x dx ++-=+⎰ln 1)( 6.C x b ax b a bx b ax x dx +++-=+⎰ln 1)(22 7.()C b ax b b ax a dx b ax x ++++=+⎰||ln 1)(22 8.()C b ax b b ax b b ax a dx b ax x ++-+-+=+⎰2322||ln 21)( 9.C xb ax b b ax b b ax x dx ++-+=+⎰ln 1)(1)(22 例1求⎰+dx x x 2)43(. 解: 这是含有3x +4的积分, 在积分表中查得公式()C b ax b b ax a dx b ax x ++++=+⎰||ln 1)(22.现在a =3、b =4, 于是 ()C x x dx x x ++++=+⎰434|43|ln 91)43(2. 二、含有b ax +的积分1.C b ax adx b ax ++=+⎰3)(32 2.C b ax b ax a dx b ax x ++-=+⎰32)()23(152 3.C b ax b abx x a a dx b ax x +++-=+⎰322232)()81215(1052 4.C b ax b ax a dx b ax x ++-=+⎰)2(322 5.C b ax b abx x a a dx bax x +++-=+⎰)843(15222232 6.⎰⎪⎩⎪⎨⎧<+-+->+++-+=+)0( arctan 2)0( ln 1b C b b ax bb C b b ax b b ax b b ax x dx 7.⎰⎰+-+-=+b ax x dx b a bx b ax bax x dx 22 8.⎰⎰+++=+bax x dx b b ax dx x b ax 2 9.⎰⎰+++-=+bax x dx a x b ax dx x b ax22 三、含x 2±a 2的积分1.⎰+=+C a x a a x dx arctan 122 2.⎰⎰--+--++-=+1222122222)()1(232)()1(2)(n n n a x dx a n n a x a n x a x dx 3.C ax a x a a x dx ++-=-⎰ln 2122 四、含有ax 2+b (a >0)的积分1.⎪⎩⎪⎨⎧<+-+--->+=+⎰)0( ln 21)0( arctan 12b C bx a b x a ab b C x b a ab b ax dx 2.C b ax adx b ax x ++=+⎰||ln 21223.⎰⎰+-=+b ax dx a b a x dx b ax x 222 4.C b ax x b b ax x dx ++=+⎰||ln 21)(222 5.⎰⎰+--=+dx b ax b a bx b ax x dx 22211)( 6.C bx x b ax b a b ax x dx +-+=+⎰22222321||ln 2)( 7.⎰⎰+++=+dx bax b b ax b x b ax dx 2222121)(2)( 五、含有ax 2+bx +c (a >0)的积分 六、含有22a x + (a >0)的积分1.C a x x C a x a x dx +++=+=+⎰)ln(arsh 22122 2.C a x a x a x dx +++⎰222322)( 3.C a x dx a x x ++=+⎰2222 4.C a x dx a x x ++-=+⎰223221)( 5.C a x x a a x x dx a x x +++-+=+⎰)ln(2222222222 6.C a x x a x x dx a x x +++++-=+⎰)ln()(22223222 7.C x a a x a a x x dx +-+=+⎰||ln 12222 8.C x a a x a x x dx ++-=+⎰222222 9.C a x x a a x x dx a x +++++=+⎰)ln(222222222 例3求⎰+942x x dx . 解: 因为⎰⎰+=+222)23(2194x x dx x x dx , 所以这是含有22a x +的积分, 这里23=a . 在积分表中查得公式C x a a x a a x x dx +-+=+⎰||ln 12222. 于是 C x x C x x x x dx +-+=+-+⋅=+⎰||2394ln 31||23)23(ln 3221942222. 七、含有22a x -(a >0)的积分1.⎰+-+=+=-C a x x C a x x x a x dx ||ln ||arch ||22122 2.⎰+--=-C a x a x a x dx 222322)( 3.C a x dx a x x +-=-⎰2222 4.⎰+--=-C a x dx a x x 223221)( 5.C a x x a a x x dx a x x +-++-=-⎰||ln 2222222222 6.⎰+-++--=-C a x x a x x dx a x x ||ln )(22223222 7.⎰+=-C x a a a x x dx ||arccos 122 8.⎰+-=-C x a a x ax x dx 222222 9.C a x x a a x x dx a x +-+--=-⎰||ln 222222222 八、含有22x a -(a >0)的积分1.⎰+=-C a x x a dx arcsin 22 2.⎰+--=-C x a a x x a dx 222322)( 3.C x a dx x a x +--=-⎰2222 4.⎰+-=-C x a dx x a x 223221)( 5.C a x a x a x dx x a x ++--=-⎰arcsin 22222222 6.⎰+--=-C a x x a x dx x a x arcsin )(2232227.⎰+--=-C x x a a a x a x dx ||ln 12222 8.⎰+--=-C x a x a x a x dx 222222 9.C ax a x a x dx x a +--=-⎰arcsin 2222222 九、含有)0(2>++±a c bx ax 的积分 十、含有bx a x --±或))((b x a x --的积分 十一、含有三角函数的积分1.C x x xdx ++=⎰|tan sec |ln sec2.C x x xdx +-=⎰|cot csc |ln csc3.C x xdx x +=⎰sec tan sec4.C x xdx x +-=⎰csc cot csc5.C x x xdx +-=⎰2sin 412sin 2 6.C x x xdx ++=⎰2sin 412cos 2 7.⎰⎰---+-=xdx nn x x n xdx n n n 21sin 1cos sin 1sin 8.⎰⎰---+=xdx nn x x n xdx n n n 21cos 1sin cos 1cos 9.C x b a b a x b a b a bxdx ax +---++-=⎰)cos()(21)cos()(21cos sin 10.C x b a b a x b a b a bxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin 11.C x b a b a x b a b a bxdx ax +--+++=⎰)sin()(21)sin()(21cos cos 12.)( 2tan arctan 2sin 222222b a C b a b x a b a x b a dx >+-+-=+⎰13.)( 2tan 2tan ln 2sin 22222222b a C a b b x a a b b x a a b x b a dx <+-++--+-=+⎰ 14.())( 2tan arctan 2cos 22b a C x b a b a b a b a b a x b a dx >++--++=+⎰ 14.)( 2tan 2tan ln 2cos 22b a C a b ba x ab ba x ab b a b a x b a dx <+-+--++-++=+⎰ 例2求⎰-xdx cos 45. 解: 这是含三角函数的积分. 在积分表中查得公式())( 2tan arctan 2cos 22b a C x b a b a b a b a ba xb a dx >++--++=+⎰. 这里a =5、b =-4, a 2>b 2, 于是 () 2tan )4(5)4(5arctan )4(5)4(5)4(52cos 45C x x dx +-+-----+-+=-⎰ ()C x +=2tan 3arctan 32. 例4 求⎰xdx 4sin .解: 这是含三角函数的积分. 在积分表中查得公式⎰⎰---+-=xdx n n x x n xdx n n n 21sin 1cos sin 1sin , C x x xdx +-=⎰2sin 412sin 2. 这里n =4, 于是C x x x x xdx x x xdx +-+-=+-=⎰⎰)2sin 412(43cos sin 41sin 43cos sin 41sin 3234.。

不定积分典型例题

不定积分典型例题

不定积分典型例题一、直接积分法直接积分法是利用基本积分公式和不定积分性质求不定积分的方法,解题时往往需对被积函数进行简单恒等变形,使之逐项能用基本积分公式.例1、求∫(1−1)x x dx x 234−54714解原式=∫(x −x )dx =x 4+4x 4+C 7e 3x +1例2、求∫x dx e +1解原式=∫(e 2x −e x +1)dx =例3、求∫12x e −e x +x +C 21dx 22sin x cos xsin 2x +cos 2x 11解原式=∫dx =dx +dx =tan x −cot x +C 2222∫∫sin x cos x cos x sin x例4、∫cos 2解原式=∫x dx 2x +sin x 1+cos x dx =+C 22x 2例5、∫dx 21+x x 2+1−11dx =(1−解原式=∫∫1+x 2)dx =x −arctan x +C 1+x 2注:本题所用“加1减1”方法是求积分时常用的恒等变形技巧.二、第一类换元积分法(凑微分法)∫f (x )dx =∫g [ϕ(x )]ϕ'(x )dx 凑成令ϕ(x )=u =∫g (u )du 求出=G (u )+C 还原=G [ϕ(x )]+C 在上述过程中,关键的一步是从被积函数f (x )中选取适当的部分作为ϕ'(x ),与dx 一起凑成ϕ(x )的微分d ϕ(x )=du 且∫g (u )du 易求.tan x dx cos x例1、求∫3−2sin x −d cos x =−∫(cos x )2d cos x =+C dx =∫解原式=∫cos x cos x cos x cos x cos x例2、求∫arcsin xx −x 2dx解原式=∫arcsin x1−x ⋅1x dx =∫2arcsin x1−(x )2d (x )=2∫arcsin xd (arcsin x )=(arcsin x )2+C注1dx =2d (x )x1−x9−4x 2 例3、求∫dx1−1d (2x )12 解原式=∫+∫(9−4x )2d (9−4x 2)232−(2x )28=12∫2d (x )11213+9−4x 2=arcsin x +9−4x 2+C 423421−(x )23例4、求∫tan 1+x 2⋅x1+x 2dx解原式=∫tan1+x 2d 1+x 2=−ln |cos 1+x 2|+C 例5、求∫x x −x −12dxx (x +x 2−1)22dx =x dx +x x −1dx 解原式=∫2∫∫x −(x 2−1)3x 31x 31222=+∫x −1d (x −1)=+(x −1)2+C 3233例6、求∫1dx 1+tan xcos x 1cos x −sin x )dx dx =∫(1+sin x +cos x 2cos x +sin x解原式=∫=1⎡1⎤1++(cos sin )x d x x =(x +ln |cos x +sin x |)+C ∫⎢⎥2⎣cos x +sin x ⎦211+x ln dx 1−x 21−x11+x 1+x 121+x ln (ln +C )d ln =∫21−x 1−x 41−x例7、求∫ 解原式= 例8、求∫1dx x e +1e x 1+e x −e x dx =∫dx −∫dx 解原式=∫e x +11+e x=∫dx −∫1x x d (1+e )=x −ln(1+e )+C x1+e例9、求∫1dx e x +e −xe x 1 解原式=∫2x dx =∫d (e x )=arctan e x +C x 2e +11+(e ) 例10、求∫sin x dx 1+sin x11−sin x )dx =∫dx −∫dx 21+sin x cos x解原式=∫(1−=x −∫1sin x dx +dx =x −tan x +sec x +C 22∫cos x cos x例11、求∫dx x 2−3ln x−12 解原式=∫(2−3ln x )d (ln x )1111(2−3ln x )2+C =∫(2−3ln x )(−)d (2−3ln x )=−⋅33−1+12−12=−22−3ln x +C 31dx a 2sin 2x +b 2cos 2x1b 2+a 2tan 2x d (tan x )=11a (tan x )d ab ∫1+(a tan x )2b b例 12、求∫ 解原式=∫=1a arctan(tan x )+C ab bx 4+1dx 例13、求∫6x +1(x 2)2−x 2+1x 2x 4−x 2+1+x 2dx +∫32dx dx =∫解原式=∫(x 2)3+1(x )x 6+1=∫111133dx +dx =arctan x +arctan x +C 232∫1+x 31+(x )3例14、求∫1dx x (1+x 8)1+x 8−x 811x 78=−dx dx dx 解原式=∫=ln |x |−ln(1+x )+C 88∫x ∫1+x x (1+x )8例15、求∫3x −2dx x 2−4x +53d (x 2−4x +5)1+4∫2 解原式=∫2dx 2x −4x +5x −4x +5d (x −2)3ln |x 2−4x +5|+4∫22(x −2)+13ln |x 2−4x +5|+4arctan(x −2)+C 2== 注由于分子比分母低一次,故可先将分子凑成分母的导数,把积分化为形1dx 的积分(将分母配方,再凑微分).如∫2ax +bx +cx 2 例16、已知f (x −1)=ln 2,且f [ϕ(x )]=ln x ,求∫ϕ(x )dx .x −22x 2−1+1x +1 解 因为f (x −1)=ln 2,故f (x )=ln ,又因为x −1−1x −12f [ϕ(x )]=ln ϕ(x )+1ϕ(x )+1x +1=ln x ,得=x ,解出ϕ(x )=,从而ϕ(x )−1ϕ(x )−1x −1∫ϕ(x )dx =∫ 例17、求∫x +12dx =∫(1+)dx =x +2ln |x −1|+C x −1x −11dx cos 4x1 解原式=∫sec 2xd tan x =∫(1+tan 2x )d tan x =tan x +tan 3x +C 3例18、求∫1+ln x dx 22+(x ln x ) 解原式=∫1d (x ln x )x ln x arctan(=)+C 2+(x ln x )222三、第二类换元法设x =ϕ(t )单调可导,且ϕ'(t )≠0,已知∫f [ϕ(t )]ϕ'(t )dt =F (t )+C ,则∫f (x )dx 令x =ϕ(t )=∫f [ϕ(t )]ϕ'(t )dt =F (t )+C t =ϕ−1(x )还原=F [ϕ−1(x )]+C选取代换x =ϕ(t )的关键是使无理式的积分化为有理式的积分(消去根号),同时使∫f [ϕ(t )]ϕ'(t )dt 易于计算.例1、求∫xdx(x +1)1−x 22 解令x =sin t ,dx =cos tdt原式=∫111sin t cos tdt d cos t (=−)d cos t =−+22∫∫(sin t +1)cos t 2−cos t 222−cos t 2+cos t2+cos t 12+1−x 2ln +C =−+C ln =−2222−cos t 222−1−x 1例2、求∫dxx41+x2解令x=tan t,dx=sec2tdtsec2tdt cos3tdt1−sin2t原式=∫=∫=∫d sin t=∫(sin−4t−sin−2t)d sin t 444tan t⋅sec t sin t sin t(1+x2)3(1+x2)111++C=−++C=−333sin t sin t3x xx2−9dxx2例3、求∫解令x=3sec t,则dx=3sec t⋅tan tdt3tan t tan2t原式=∫⋅3sec t⋅tan tdt=∫dt=∫(sec t−cos t)dt29sec t sec t=ln|sec t+tan t|−sin t+C1x x2−a2x2−a2=ln+−+C1a a xx2−a2+C=ln x+x−a−x22例4、求∫1dxx(x7+2)11 解令x=,则dx=−2dt,t t1t 6117 原式=∫(−2)dt =−∫dt =−d (1+2t )77∫11+2t 141+2t +2t 7t t 111ln |1+2t 7|+C =−ln |2+x 7|+ln |x |+C 14142=− 注设m ,n 分别为被积函数的分子,分母关于x 的最高次数,当n −m >1时,可用倒代换求积分.例5、求∫x +1x 2x −12dx11 解令x =,dx =−2dt t t 1+111+t 1d (1−t 2)t (−2)dt =−∫dt =−∫dt +∫ 原式=∫222t 111−t 1−t 21−t −1t 2t 2=−arcsin t +1−t +C =2x 2−11−arcsin +C x x例6、求∫x 3x −x 24dxt 10⋅t 4t 6t 1411解原式=11∫83⋅12t dt =12∫5dt =12∫5dt dx =12t dt t −t t −1t −1令12x =t t 10−1+14121121212⋅t dt =∫(t 5+1+5)dt 5=t 10+t 5+ln |t 5−1|+C =12∫5t −15t −1105561212=x 6+x 12+ln x 12−1+C 555555例7、求∫dx1+e x解令1+e x =t ,e x =t 2−1,dx =2t dt 2t −112t 1t −11+e x −1原式=∫⋅2dt =2∫2dt =ln +C =ln +C x t t −1t −1t +11+e +1ln x dx x 1+ln x例8、求∫解令t =1+ln x原式=∫ln x t −1d ln x =∫dt 1+ln x t112322=∫(t −)dt =t −2t 2+C =(ln x −2)1+ln x +C 33t例9、求∫x +1−1dx x +1+1解令x +1=t ,x =t 2−1,dx =2tdt因为原式=∫x +2−2x +1x +1dx =x +2ln |x |−2∫dx x x而∫x +12t 2dt 1dx =∫2=2∫(1+2)dt x t −1t −1t −1x +1−1+C =2x +1+ln +C t +1x +1+1=2t +ln原式=x +2ln |x |−4x +1−2ln x +1−1+C =x −4x +1+4ln x +1+1+C x +1+1四、分部积分法分部积分公式为∫uv 'dx =uv −∫u 'vdx 使用该公式的关键在于u ,v '的选取,可参见本节答疑解惑4.例1、求∫x 3e x dx解原式=∫x 3de x =x 3e x −3∫x 2de x =x 3e x −3x 2e x +6∫xde x =x 3e x −3x 2e x +6xe x −6e x +C例2、求∫x 2cos 2解原式=x dx 2121312x (1+cos x )dx =x +∫x cos xdx ∫262=131211x +∫x d sin x =x 3+x 2sin x −∫x sin xdx 6262131211x +x sin x +∫xd cos x =x 3+x 2sin x +x cos x −∫cos xdx 62621312x +x sin x +x cos x −sin x +C 623==例3、求∫e x dx令3x =t 解原式dx =3t 2dt=3∫t e dt =3∫t de 2t 2t =3t 2e t −6te t +6e t +C=33x 2e 3x −63xe 3x +6e 3x +C例4、求∫cos(ln x )dx解原式=x cos(ln x )+∫sin(ln x )dx=x cos(ln x )+x sin(ln x )−∫cos(ln x )dxx移项,整理得原式=[cos(ln x )+sin(ln x )]+C2注应用一次分部积分法后,等式右端循环地出现了我们所要求出的积分式,移项即得解,类似地能出现循环现象的例题是求如下不定积分:αxe ∫cos βxdx 或αxe ∫sin βxdx例5、求∫ln(x +1+x 2)dx解原式=x ln(x +1+x 2)−∫x 1+x 2dx =x ln(x +1+x 2)−1+x 2+Cln 3x例6、求∫2dx x 1ln 3x 1 解原式==∫−ln xd ()=−−3∫ln 2xd ()x x x3ln 3x ⎡ln 2x 1⎤ln 3x 3ln 2x 6ln x 6−3⎢+2∫ln xd ()⎥=−−−−+C=−x x ⎦x x x x ⎣x例7、推导∫1dx 的递推公式22n(x +a ) 解令I n =∫1dx (x 2+a 2)nx x 2+a 2−a 21x 2I n =2n +dx 222=+−nI na dx n 2n 22n +122n 22n +1∫∫(x +a )(x +a )(x +a )(x +a )=x 2+2nI −2na In +1n 22n(x +a )I n +1=12na 2⎡⎤x(2n 1)I +−n ⎥⎢(x 2+a 2)n ⎣⎦⎡⎤x(2n 3)I +−n −1⎥⎢(x 2+a 2)n −1⎣⎦I n =12(n −1)a 2例8、推导I n=∫tan n xdx 的递推公式.解I n=∫tan n −2x ⋅tan 2xdx =∫tan n −2x ⋅(sec 2x −1)dx=∫tan n −2x ⋅sec 2xdx −∫tan n −2xdx =∫tann −2xd (tan x )−In −2=1tan n −1x −I n −2n −1注应用分部积分法可以建立与正整数n 有关的一些不定积分的递推公式.例9、已知f (x )的一个原函数是e −x ,求∫xf '(x )dx解原式=∫xdf (x )=xf (x )−∫f (x )dx =xf (x )−e −x +C例10、求∫x arctan x ln(1+x2)dx解因为∫x ln(1+x 2)dx ==221ln(1+x 2)d (1+x 2)∫211(1+x 2)ln(1+x 2)−x 2+C 221⎤⎡1所以 原式=∫arctan xd ⎢(1+x 2)ln(1+x 2)−x 2⎥2⎦⎣211⎡x 2⎤2222=(1+x )ln(1+x )−x arctan x −∫⎢ln(1+x )−2⎥22⎣1+x ⎦[]=13x arctan x (1+x 2)ln(1+x 2)−x 2−3−ln(1+x 2)+x +C 222[]注本题是三类函数相乘的形式,这类问题大多采用本题的方法.xe arctan xdx 例11、求∫2(1+x )解令x =tan t ,dx =sec 2tdttan t ⋅e t sec 2tdt =∫sin t cos te t dt 原式=∫4sec te arctan x (x 2+x −1)11t t +C =∫sin 2te dt =e (sin 2t −cos 2t )+C =25(1+x )210x 2arctan xdx 例12、求∫21+x 解原式=∫(1−11=−)arctan xdx arctan xdx ∫∫1+x 2arctan xdx 1+x 211=x arctan x −ln(1+x 2)−(arctan x )2+C22arcsin x 1+x 2⋅dx 例13、求∫22x 1−x 解令x =sin t ,arcsin x =t ,dx =cos tdt ,t (1+sin 2t )t cos ⋅tdt = 原式=∫∫sin 2tdt +∫tdt sin 2t cos t=td (−cot t )+∫121t=−t cot t +∫cot tdt +t2221=−t cos t +ln |sin t |+t 2+C21−x 21=−arcsin x +ln |x |+(arcsin x )2+Cx 2注直接积分法、换元法、分部积分法是求不定积分最重要的方法,主要用到了“拆、凑、换、分”的技巧,同时应注意这些方法的综合运用.五、有理函数的积分有理函数的积分总可化为整式和如下四种类型的积分:(1)∫Adx =A ln |x −a |+C x −a−AA 1dx =+C (n ≠1)n n −1(x −a )n −1(x −a )(2)∫(3)∫dx dx dx =∫⎡p 4q −p 2⎤n(x 2+px +q )n 2⎢(x +)+⎥24⎣⎦p令x +=u24q −p 2令=a 4=du 22n∫(u +a )2(4)∫(x +a )dx 11p dx()dx a =−+−,其2n 2n −12n∫(x +px +q )2(n −1)(x +px +q )2(x +px +q )中p 2−4q <0.这就是说有理函数积分,从理论上讲,可先化假分式为整式与真分式之和,再将真分式化为若干部分分式之和,然后逐项积分,但这样做有时非常复杂,因此我们最好先分析被积函数的特点,寻求更合适,更简捷的方法也是很必要的.例1、求∫dx2x −2x +31dx d (x −1)x −1arctan ==+C(x −1)2+2∫2+(x −1)222解原式=∫x 2+5x +4例2、求∫4dx 2x +5x +4x 2+4x解原式=∫2dx +5dx222∫(x +1)(x +4)(x +1)(x +4)dx 5dx 25112=∫2arctan x ()dx +∫2=+−222∫x +12(x +1)(x +4)6x +1x +45x 2+1+C=arctan x +ln 26x +4本题若用待定系数法,较麻烦一些,也可获得同样的结果.事实上,x 2+5x +4Ax +B Cx +D 设4=2+2,通分后应有2x +5x +4x +1x +4x 2+5x +4=(Ax +B )(x 2+4)+(Cx +D )(x 2+1)得A +C =0,B +D =0,4A +C =5,4B +D =4比较等式两端x 的同次幂的系数,55由此,A =,B =1,C =−,D =−1335⎡5⎤−−+11x x ⎢3⎥5x 2+13+2+arctan x +C 故原式=∫⎢2⎥dx =ln 2x +4⎥6x +4⎢x +1⎣⎦例3、求∫解设xdx3x −1x A Bx +C2=+,通分后应有x =A (x +x +1)+(Bx +C )(x −1)32x −1x −1x +x +1比较等式两端x 的同次幂的系数,得A +B =0,A −B +C =1,A −C =0,由此,111A =,B =−,C =333⎡1⎤x −1故原式=∫⎢dx −⎥2⎣3(x −1)3(x +x +1)⎦1d (x +)1dx 12x +112dx +∫=∫−∫23x −16x +x +12(x +1)2+324(x −1)212x +11=ln 2+arctan +C 6x +x +133例4、求∫dx24x (1−x )(x 2+1)−x 211解原式=∫2dx dx =−∫x 2(1−x 2)∫(1−x 2)(1+x 2)dx x (1−x 4)=∫(11111+−+)dx ()dx x 21−x 22∫1−x 21+x 211111=−+∫−dx dx 22∫21+x x 21−x 111+x 1−arctan x +C=−+ln x 41−x 2注:本题若用待定系数法,应当将被积函数分解为A B C D Ex +F11==++++x 2(1−x 4)x 2(1−x )(1+x )(1+x 2)x x 21−x 1+x 1+x 2然后再确定系数,显然这样做比较麻烦,也可获同样结果,此处从略.x 11dxdx 例5、求∫8x +3x 4+3解令x 4=u ,则du =4x 3dx ,于是,u 21411−原式=∫2du =∫(1+)du u +1u +24u +3u +241x 41=(u +ln |u +1|−4ln |u +2|+C )=+ln(1+x 4)−ln(x 4+2)+C 444x 5例6、求∫dx23(2x +3)解令2x 2+3=t ,x 2=t −3,4xdx =dt ,从而,2(t −3)21169原式=∫dt =(−2+3)dt 3∫4⋅4t 16t t t 169169(ln |t |+−2)+C =[ln |2x 2+3|+2−]+C 221616t 2t 2x +32(2x +3)=x 4dx 例7、求∫4x +5x 2+4x 4−(5x 2+4)解4=1+4x +5x 2+4x +5x 2+4−(5x 2+4)A 1x +B 1A 2x +B2设4=2+2,通分后应有x +5x 2+4x +1x +4−(5x 2+4)=(A 1x +B 1)(x 2+4)+(A 2x +B 2)(x 2+1)116由此,A 1=0,B 1=,A 2=0,B 2=−,故33⎡18116⎤xdx −原式=∫⎢1+arctan arctan =x +x −+C ⎥223(1)3(4)++x x 332⎣⎦例8、求∫dx 102x (x +1)x 10+1−x 10x 911==−10解由于102102102x (x +1)x (x +1)x (x +1)(x +1)1x 9x 9=−10−102x (x +1)(x +1)⎤⎡1x 9x 91d (x 10+1)1d (x 10+1)dx =ln |x |−∫10原式=∫⎢−10−∫10−102⎥2x x x (1)(1)10x +110(x +1)++⎦⎣111x 10110=ln |x |−ln(x +1)++C =ln ++C10x 10+110(x 10+1)1010(x 10+1)注对被积函数先做初等变形常常可以使问题得到简化,常见的初等变形有:分子分母同乘一个因子;有理化;加一项或者减一项以及利用三角函数恒等变形等.六、三角函数有理式的积分一般从理论上讲,三角函数有理式的积分∫R (sin x ,cos x )dx 可通过万能代换x化为代数有理式的积分,但有时较繁,因此我们常采用三角恒等变形,2然后再求解.t =tan 例1、求∫dx4sin x cos xsin 2x +cos 2x sin x dx dx dx =+解原式=∫442∫∫sin x cos x cos x sin x cos x=−∫=sin x dx1d (cos x )dx ++∫cos 2x ∫sin xcos 4x x 111d (cos x )x −+ln |tan |=++ln |tan |+C 3cos 3x ∫cos 2x 23cos 3x cos x 2例2、求∫1+sin xdxx x x x +cos 2+2sin cos dx2222解原式=∫sin 2=∫(sin x x x x x x+cos )2dx =∫(sin +cos )dx =−2cos +2sin +C222222例3、求∫dx2sin x −cos x +5x 2t 1−t 22dt,cos x ,dx ==,于是解令t =tan ,则sin x =22221+t 1+t 1+t x ⎞⎛3tan +1⎟⎜11dt ⎛3t +1⎞2⎟+C 原式=∫2arctan ⎜arctan ⎜=⎟+C =3t +2t +2555⎜⎟⎝5⎠⎜⎟⎝⎠例4、求∫sin xdx 1+sin xsin x (1−sin x )sin x 1−cos 2xdx =∫dx −∫dx 解原式=∫cos 2x cos 2x cos 2x=1−tan x +x +C cos xsin xdx sin x +cos x1sin x +cos x +sin x −cos x 1⎛sin x −cos x ⎞dx =⎜1+⎟dx ∫∫2sin x +cos x 2⎝sin x +cos x ⎠例5、求∫解原式==11−d (sin x +cos x )1x +∫=(x −ln |sin x +cos x |)+C 22sin x +cos x 2例6、求∫sin 5x cos xdx解原式=111[sin 4x +sin 6x ]dx =−cos 4x −cos6x +C 2∫812注积化和差公式1sin αx ⋅cos βx =[sin(α+β)x +sin(α−β)x ]21sin αx ⋅sin βx =[cos(α−β)x −cos(α+β)x ]21cos αx ⋅cos βx =[cos(α+β)x +cos(α−β)x ]2例7、求∫dx2(2+sin x )cos x解令sin x =t ,cos xdx =dt1(2+t 2)+(1−t 2)dt =于是原式=∫dt(2+t 2)(1−t 2)3∫(2+t 2)(1−t 2)=1dt 111+t 1dt tln +=+arctan()+C 22∫∫31−t 32+t 61−t 32211+sin x 1sin xarctan(=ln +)+C 61−sin x 322注形如∫R (sin x ,cos x )dx 的有理函数的积分,一般可利用代换tan 为有理函数的积分.(i) 若R (−sin x ,cos x )=−R (sin x ,cos x )或R (sin x ,−cos x )=−R (sin x ,cos x )成立,最好利用代换cos x =t 或对应的sin x =t .(ii) 若等式R (−sin x ,−cos x )=R (sin x ,cos x )成立,最好利用代换tan x =t .x=t 化2例8、求∫sin xdx sin 3x +cos 3x解令tan x =t ,则sec 2xdx =dt ,于是t 1(1+t )2−(1−t +t 2)1t +11dt dt =dt =dt −原式=∫1+t 33∫(1+t )(1−t +t 2)3∫1−t +t 23∫1+t 112t −11arctan()−ln |1+t |+C =ln(t 2−t +1)+63332tan x −11tan 2x −tan x +11+arctan()+C =ln 26(1+tan x )33 21。

求不定积分的方法与技巧

求不定积分的方法与技巧

求不定积分的方法与技巧作者:贡云梅陈贝来源:《读书文摘(下半月)》2017年第08期摘要:随着知识的更新和时代的发展,我国的教育教学工作取得了巨大的成就,其中高等数学的研究工作也有很大的进步,高等数学对于学科研究具有至关重要的作用。

微积分可以说是高等代数中一个非常重要的部分,而不定积分又是它的重中之重,处于核心部分。

然而求解不定积分不是那么简单,本文简单介绍了不定积分的定义和性质,在定义和性质的基础上重点研究求解不定积分的方法和技巧,从而学生更好的掌握解不定积分积分方法和技巧,使之遇到不同的不定积分知道如何入手。

本文详细讲解了高等数学中的各种不定积分方法和技巧,希望在一定程度上为学习者提供帮助。

关键词:不定积分;换元积分法;分部积分法;待定系数1前言为了更好地提高思维逻辑和利用数学手段分析解决问题的能力,学习高等数学是理工科大学生必修的基础理论课之一,而微分学与积分学是高等数学中最重要的部分,二者互为逆运算。

一般的,都是先讲授微分学再讲授积分学,微分学给积分学提供了必要的知识储备。

大家都知道不定积分是积分学的关键,是求定积分的基础,对于不定积分的定义、性质、理论和技巧的牢固掌握,不仅能够促使学生巩固所学的导数和微分的概念,在一定程度上更好地进行复习熟记工作,而且在学习定积分、微分方程和多元函数的积分学等学科的过程中要求定积分的运算熟练。

因此决定了不定积分在数学计算中的重要地位,至还会对其他的课程有一定的影响。

在高等数学中,不定积分的积分方法和技巧有很多,因此归纳总结其积分方法对于学科研究起着重要的作用。

虽然求不定积分的过程没有固定的格式也没有特定的步骤,但是求不定积分的方法具有灵活性和技巧性,这种技巧性大大优于微分运算。

本文在这个基础之上总结归纳了求不定积分的方法和技巧,为以后的学习做铺垫。

2不定积分的积分技巧不定积分的积分方法最主要的是四种,即直接积分法、第一换元积分法(凑微分法)、第二换元积分法和分部积分法,这四种积分方法在教科书中都有详细的论述,而且这四种积分方法规定了不定积分方法的大方向,而且是进行不定积分运算的总原则,但是不定积分的积分方法具有灵活性,所以在发展的过程中积分方法也要不断地提高技巧,在这个原则上进行改进是我们不断努力的方向,因为不定积分的积分方法也要做到与时俱进,而在这个大方向上进行改进和拓展是我们的一项任务。

求积分几种常规方法

求积分几种常规方法

合肥学院论文求积分的若干方法姓名:陈涛学号: 1506011005学院:合肥学院专业:机械设计制造及其自动化老师:左功武完成时间: 2015年12月29日求积分的几种常规方法陈涛摘要:数学分析中,不定积分是求导问题的逆运算,而且是联系微分学和积分学的一条纽带。

为灵活运用积分方法求不定积分,本文介绍了求积分的几种重要方法和常用技巧,讨论和分析了求积分的几种方法:直接积分法,换元积分法,分部积分法以及有理函数积分的待定系数法,对于快速求不定积分有重要意义,适当的运用积分方法求不定积分,才可以简捷,准确。

关键词:定积分、不定积分、换元积分法、分部积分法、待定系数法引言数学分析是师范大学数学专业必修专业课,微分和积分都是数学分析的重点,而不定积分是积分学的基础,更是关键,直接关系到学习数学的重点。

其任务是掌握逻辑思维方法和提高使用数学手段解决问题的能力。

一般地,求不定积分要比求导数难很多,运用积分法则和积分公式只能解决一些简单的积分,更多的不定积分要因函数的不同形式和不同类型选用不同的方法,巧妙运用恰当的方法,可以化难为易,从而简单、快捷、准确的求出不定积分。

本文为解决求积分的困难问题给出了相应的解决方法,帮助理解不定积分。

1 积分的概念设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分(indefinite integral)。

记作∫f(x)dx。

其中∫叫做积分号(integral sign),f(x)叫做被积函数(integrand),x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。

1.1 不定积分积分还可以分为两部分。

第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x),C是任意的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用F(x)+C代替,这就称为不定积分。

二重积分知识点

二重积分知识点

二重积分知识点一、基本概念二重积分是在平面上对一个有界区域内的函数进行积分,其本质是对该区域进行分割,然后对每个小部分进行近似求和,最后取极限得到积分值。

二重积分也可以看作是将一个曲面投影到平面上,并对其在平面上的投影面积进行积分。

二、计算方法1. 通过直角坐标系计算:将被积函数表示为x和y的函数,根据被积区域的形状选择合适的坐标系,然后按照一元函数求导法则进行计算即可。

2. 通过极坐标系计算:将被积函数表示为r和θ的函数,根据被积区域的形状选择合适的极坐标系,在极坐标系下进行计算即可。

三、应用领域1. 物理学:在物理学中,二重积分常用于求解质心、转动惯量等问题。

2. 经济学:在经济学中,二重积分可以用于估算市场需求曲线和供给曲线之间的交点。

3. 工程学:在工程学中,二重积分可以用于计算物体表面或体内某些特性(如温度、压力等)的平均值。

四、注意事项1. 被积函数必须在被积区域内连续,否则二重积分不存在。

2. 被积区域必须是有界的,否则二重积分不存在。

3. 选择合适的坐标系或极坐标系可以简化计算过程。

4. 在计算过程中要注意积分上下限和被积函数的表达式是否正确。

五、常见误区1. 计算二重积分时忘记乘以微元面积,导致结果错误。

2. 选择不合适的坐标系或极坐标系,导致计算过程复杂或无法进行。

3. 对于非简单闭合曲线围成的区域,需要将其拆分为多个简单闭合曲线围成的子区域进行计算。

4. 忘记对被积函数进行化简或变形,导致计算结果错误。

六、例题解析1. 求解二重积分∬Dxydxdy,其中D为由y=x^2和y=4-x^2所围成的区域。

解:首先画出该区域图形,并确定其在直角坐标系下的边界方程为y=x^2和y=4-x^2。

因此可以将被积区域拆分为两个子区域D1和D2,其中D1为x从-2到2,y从0到4-x^2,D2为x从-2到2,y 从x^2到4-x^2。

然后根据题目要求进行计算,得到二重积分的值为16/15。

2. 求解二重积分∬D(x^3+y^3)dxdy,其中D为由y=x和y=x^3所围成的区域。

求积分的几种常规方法

求积分的几种常规方法

合肥学院论文求积分的若干方法姓名:陈涛学号:1506011005学院:合肥学院专业:机械设计制造及其自动化老师:左功武完成时间:2015年12月29日求积分的几种常规方法陈涛摘要:数学分析中,不定积分是求导问题的逆运算,而且是联系微分学和积分学的一条纽带。

为灵活运用积分方法求不定积分,本文介绍了求积分的几种重要方法和常用技巧,讨论和分析了求积分的几种方法:直接积分法,换元积分法,分部积分法以及有理函数积分的待定系数法,对于快速求不定积分有重要意义,适当的运用积分方法求不定积分,才可以简捷,准确。

关键词:定积分、不定积分、换元积分法、分部积分法、待定系数法引言数学分析是师范大学数学专业必修专业课,微分和积分都是数学分析的重点,而不定积分是积分学的基础,更是关键,直接关系到学习数学的重点。

其任务是掌握逻辑思维方法和提高使用数学手段解决问题的能力。

一般地,求不定积分要比求导数难很多,运用积分法则和积分公式只能解决一些简单的积分,更多的不定积分要因函数的不同形式和不同类型选用不同的方法,巧妙运用恰当的方法,可以化难为易,从而简单、快捷、准确的求出不定积分。

本文为解决求积分的困难问题给出了相应的解决方法,帮助理解不定积分。

1 积分的概念设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分(indefinite integral)。

记作∫f(x)dx。

其中∫叫做积分号(integral sign),f(x)叫做被积函数(integrand),x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。

1.1 不定积分积分还可以分为两部分。

第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x),C是任意的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用F(x)+C代替,这就称为不定积分。

三角函数和对数复合求积分

三角函数和对数复合求积分

三角函数和对数复合求积分标题:从基本概念到深入理解——三角函数和对数复合求积分导语:在微积分学中,求不定积分是一项重要且常见的任务。

其中,三角函数和对数复合求积分在实际问题中具有广泛的应用。

本文将从基本概念出发,逐步深入探讨三角函数和对数复合求积分的方法和技巧,帮助读者更好地理解和应用于实际问题中。

正文:1. 三角函数的基本概念在数学中,三角函数是研究角和三角形相互关系的重要工具,包括正弦函数、余弦函数和正切函数等。

在求积分时,我们经常会遇到三角函数的复合形式,例如sin^2(x)、cos^2(x)等。

对于这些三角函数的复合形式,我们可以通过变换和公式来简化。

2. 三角函数的复合求积分对于形如sin^m(x)和cos^n(x)的函数,其中m、n为正整数,我们可以利用倍角公式或半角公式来化简。

以sin^2(x)为例,我们可以利用sin^2(x) = 1/2 - 1/2 * cos(2x)的形式进行变换,进而将其转化为常见积分形式,如定积分或反三角函数的积分形式。

类似地,对于cos^2(x),我们可以通过将其转化为sin^2(x)的形式进行求解。

这种通过变换和公式化简的方法,使得我们能够更加简洁地处理三角函数的复合积分。

3. 对数函数的基本概念对数函数是一类重要的数学函数,其表达式为log_base(b)(x),表示以b为底的x的对数。

求对数函数的积分,我们可以用最基本的方法——替换或换元法。

当然,求解对数函数的积分对于不同的底和不同的被积函数表达式,也有着各自的技巧和方法。

4. 对数函数的复合求积分对数函数的复合求积分常常涉及到指数函数和幂函数的运算。

我们可以通过对被积函数进行适当的替换或变形,使其转化为对数函数的积分形式。

以指数函数为例,当被积函数中包含指数函数且指数为常数时,我们可以适用换元法,将其转化为对数函数的积分形式。

而如果被积函数为幂函数时,我们可以通过适当的替换或变形,得到类似于对数积分或反函数的积分形式,进而求解。

不定积分点火公式

不定积分点火公式

不定积分点火公式
不定积分点火公式是一种计算不定积分的方法。

在使用不定积分点火公式时,我们需要将被积函数变形成可以使用点火公式的形式,然后再进行积分。

不定积分点火公式可以用于求解简单的函数的不定积分,例如多项式函数、三角函数等。

其中,最基本的不定积分点火公式是幂函数的点火公式。

幂函数的点火公式是指将幂函数的指数加1,然后除以新指数,得到的结果再加上常数项,就是原函数的不定积分。

例如,对于函数x^n(n不等于-1),其不定积分是x^(n+1)/(n+1)+C。

另外,三角函数也有对应的点火公式。

例如正弦函数的不定积分是-cos(x)+C,余弦函数的不定积分是sin(x)+C,正切函数的不定积分是ln|sec(x)|+C,余切函数的不定积分是ln|sin(x)|+C。

除了幂函数和三角函数,指数函数、对数函数等也有对应的点火公式。

在使用不定积分点火公式时,我们需要注意函数的定义域和取值范围,以免出现错误的
计算结果。

总之,不定积分点火公式是一种求解不定积分的方法,可以用于计算简单的函数的不定积分。

在使用不定积分点火公式时,我们需要将被积函数变形成可以使用点火公式的形式,然后再进行积分。

同时,我们需要注意函数的定义域和取值范围,以免出现错误的计算结果。

不定积分变量替换法

不定积分变量替换法

不定积分变量替换法不定积分是微积分学中的重要概念,而变量替换法是解决不定积分问题的常用方法之一。

本文将介绍四种常见的变量替换法:凑微分法、三角代换法、倒代换法和根幂代换法。

凑微分法凑微分法是将被积函数中的某些项进行整理和变形,以便与微分符号dx或dt等价。

通过凑微分,可以将被积函数转化为容易积分的简单形式。

步骤:(1) 分析被积函数的特征,寻找可以凑微分的项;(2) 将被积函数进行变形和整理,使其与微分符号dx或dt等价;(3) 用dx或dt等价替换被积函数中的某些项,得到一个较为简单的积分形式。

举例:求积分∫ x cos x dx。

解:观察被积函数,可以发现cos x可以与dx凑微分,因此进行如下替换:∫ x cos x dx = ∫ cos x d(x/2) = ∫ cos x d(cos x) = ∫ (cos x)^2 dx = (1/2)∫ (1 + cos 2x) dx = (1/2)(x + (1/2)sin 2x) + C三角代换法三角代换法是通过引入三角函数,将积分变量表示成三角函数的幂的形式,从而简化积分计算。

常见的方法包括正弦代换、余弦代换和正切代换等。

步骤:(1) 根据被积函数的特征,选择适当的三角函数进行代换;(2) 得到新的积分变量,并对被积函数进行化简;(3) 运用三角函数的性质进行积分计算。

举例:求积分∫ x^2/(1+x^2) dx。

解:令x = tan t,则x^2 = tan^2 t,dx = (sec t)^2 dt。

代入被积函数中得:∫ x^2/(1+x^2) dx = ∫ (tan t)^2/(1+(tan t)^2) d(tan t) = ∫ sec^4 t/(sec^2 t) dt= ∫ sec^2 t d(sec t) = (1/2)(sec t)^4 + C倒代换法倒代换法是通过将积分变量倒数后进行代换,以简化积分计算。

这种方法在求解不定积分问题时也经常用到。

直接积分法

直接积分法

(10)
3 x2 x2 (1 x2
)
dx
(11) 1 3x2 dx x2 (1 x2 ) .
拓展训练1:
.
.
拓展训练2:
dt
.
.
总结
直接积分法主要有哪几种方法?
.
布置下次课任务
什么是第一类换元积分。 完成第一类换元积分线上学习。
.( 2 e ) x C (来自e)x Cln(2e)
ln 2+lne
(2e)x
C
ln 2 1 .
【例4】 求
x2 dx
1 x2
x 2
解:
dx 1 x2
x2 11 dx
1 x2
(1 1 )dx 1 x2
xarctanxC
.
【例5】求
1 x2 (1
x2 ) dx
解:
x2
1 (1
.
例 12ex+3cosxdx
2exdx+3cosxdx 2exdx+3cosxdx
2ex+3sinxC
.
例 2 (3x3x25sinx)dx
3xdx3x2dx5sinxdx
3xdx3x2dx5sinxdx
3x
x3 5cosxC
ln3
.
【例3】 求 2 x e x d x
解: 2 x e x d x (2e)xdx
2被积函数经过简单的恒等变形以后再利用公式和性质这种计算不定积分的方法叫做直接积分法edxxdxedxxdxdxxdxxdx5cosln3dxxdxxdx2eln2e2eln2eln2lnelnarctan拓展训练2
直接积分法
.
任务内容
不定积分的基本公式? 什么是直接积分法? 怎样利用公式直接积分?

不定积分基本公式表

不定积分基本公式表

1 2 dx
1 1 2
C 2x C
例3
求不定积分

2 x e x dx .


2 x e x dx ( 2e) x dx

( 2e) x C ln(2e)
2xex C. 1 ln 2
二、不定积分的基本运算法则
法则 1 两个函数的代数和的不定积分等于这
代数和的情况, 即
f ( x) f ( x) f ( x)dx f ( x )dx f ( x )dx f ( x ) dx.
1 2 n
1 2 n
法则 2
被积函数中的不为零的常数因子可以
提到积分号前面,即
kf ( x )dx k f ( x )dx (k 为不等于零的常数)
当 a e 时,

e x dx e x C ;
(5) (6) (7) (8) (9)
cos xdx sin x C; sin xdx cos x C;
sec2 xdx tan x C; csc2 xdx cot x C;
sec x tan xdx sec x C; (10) csc x cot xdx csc x C;
证 类似性质 1 的证法, 有
k f ( x)dx k f ( x)dx kf ( x).
例4 解
求不定积分
e
(e x 2 sin x 2 x x )dx
x

(e x 2 sin x 2 x x )dx .
dx 2 sin xdx 2 x x dx
2x 2 1
2

求不定积分的几种方法

求不定积分的几种方法

求不定积分的几种方法摘要:求不定积分的方法有很多种,针对不同类型的函数采用最适合的方法往往会起到事半功倍的效果,本文就不定积分的求解方法进行了归类,结合实例讨论了这些方法在不定积分求解中的可行性,对快速正确求解不定积分有一定意义。

关键词:不定积分直接积分法分部积分法方程法Abstract: There are many kinds of methods to solve the indefinite integral. For different types of function using the most suitable method often can play a multiplier effect. In this paper, indefinite integral solutions are divided into several different types and the feasibility of the method of indefinite integral is discussed by integrating the practical examples, which is of certain significance to rapidly, correctly solving indefinite integral.Key words: indefinite integral; direct integration method; integration by parts; equation method不定积分是一元微积分中非常重要的内容之一,是积分学中最基本的问题之一,又是求定积分的基础,牢固掌握不定积分的理论和运算方法,不仅能使学生进一步巩固所学的导数和微分概念,而且也将为学习定积分,微分方程和多元函数的积分学以及其他课程打好基础,因此切实掌握求不定积分的方法非常重要。

几种求定积分的方法

几种求定积分的方法

(1)当含有 姨a2-x2 时,可令 x=asint
(1)乘积形式:一般来说两个函数相乘的形式,求不定积分
(2)当含有 姨x2+a2 时,可令 x=atant
时,可以先把其中比较简单的一个积分积到 d 后面,然后把 d 后 面的式子进行换元,就可以转化成直接积分法进行运算了。
(3)当含有 姨x2-a2 时,可令 x=asect 以上三种变换叫做三角代换。
所以这四条曲线所围成的曲边梯形的面积正是以原点为圆心以a为半径的圆的面积的这两种解法和思路相比较显而易见数形结合的方法简单容易得多
108 治学之定积分的方法
文/项慧慧
摘 要:微积分是高等数学的一个重要分支,它是数学的一个基础学科。特别对于高职院校来说,微积分是高职高等数学的主要内 容。而微积分中定积分的运算对于高职其他学科所涉及的数学运算和很多实际问题的解决有重要作用。
可以求任意函数的定积分了。具体步骤是:先求出函数的不定积 示由 x 轴,x=0,x=a 和曲线 y= 姨a2-x2 所围成的曲边梯形的面积。
分,再代值作差。
二、定积分的换元积分法
乙4
例 6.求
dx
0 1+ 姨 x
而曲线 y= 姨a2-x2 就是圆 x2+y2=a2 位于 x 轴上方的部分。所以这四
条曲线所围成的曲边梯形的面积正是以原点为圆心,以 a 为半径
面的尽量配成复合函数的自变量形式,然后把 d 后面的式子进行
[F(x)]ba 。
换元,就可以转化成直接积分法进行运算了。
由上式可知,想求定积分,先要求不定积分,然后再代值作 差。那么不定积分的求法有哪些呢?总结起来大致有以下三种:
(一)直接积分法 直接积分法,就是根据积分公式和法则直接对被积函数进行

定积分的参数化代换法

定积分的参数化代换法

定积分的参数化代换法定积分是高等数学中的一个重要分支,它对于各个领域的数学科学都有着重要的贡献。

在计算一些较为复杂的定积分时,常常采用参数化代换法,该方法通过对被积函数进行参数化,将复杂的积分式转化为简单的形式,从而方便计算。

以下,我们将从定积分的概念入手,详细介绍参数化代换法的具体应用。

一、定积分的概念在高等数学中,定积分是指对于一个函数f(x),确定其在区间[a,b]上的某一部分的面积。

这个面积可以看作是由一系列无限小的短条形成的。

在[ a, b ]之间分出n等份,每份长度为(xᵢ₊₁- xᵢ),取一点xᵢ*,其中i=0,1,2,...,n-1。

这时将[ xᵢ, xᵢ₊₁ ]看做一个小区间,将函数在这个小区间内的取值f(xᵢ*)看做是小区间的高,则小区间面积为f(xᵢ*)·(xᵢ₊₁ - xᵢ),将所有小区间面积相加,这个和即为定积分,记作∫(下限a,上限b)f(x)dx。

具体公式如下:∫(a,b)f(x)dx=lim(Δt→0)Σf(xᵢ*)Δx二、参数化代换法的含义在实际计算定积分时,有时我们会面对一些较为复杂的被积函数,此时如果采用传统的积分方法,往往会变得非常繁琐。

这时,我们可以通过参数化代换法,对被积函数进行参数化,将变量替换成一组新的参数,从而化繁为简,方便计算。

具体来说,参数化代换法即是将原来的自变量x用一个或多个新的参数t表示出来,即x=x(t),然后将原来的被积函数f(x)写成f(x(t)),此时,对于变量t,可以进行简单的积分计算,从而方便求出整个定积分。

这个过程可以看作是将原来的积分区域用一定的方式变形,从而使得被积函数变得更加简单。

三、参数化代换法的基本思路在采用参数化代换法计算定积分时,我们需要遵循以下基本思路:(1)选取合适的替代变量:一般情况下,我们会选择对称、周期或者特殊的函数作为替代变量。

(2)确定替换公式:确定替代变量后,需要根据替代变量和原函数的关系确定替换公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-12-1 积分表的使用(11) 6
例4 求 ∫ sin xdx . 在积分表(十一)中查得公式(95)
n −1 sin x cos x n − 1 n n− 2 sin xdx =− + sin xdx ∫ ∫ n n
4
利用此公式可使正弦的幂次减少两次, 重复使 用可使正弦的幂次继续减少, 直到求出结果. 这 个公式叫递推公式. 现在 n = 4 于是
1 6. arccos + C . 7. x 8.
2011-12-1
x+1 (1 − x )(1 + x ) + 2 arcsin + C. 2
积分表的使用(11) 11
2011-12-1 积分表的使用(11) 3
1 dx . 被积函数中含有三角函数 例2 求 ∫ 5 − 4 cos x
在积分表(十一)中查得此类公式有两个
Q a = 5, b = − 4 a > b
2
2
选公式(105)
⎞ ⎛ a−b a+b x 2 dx ⎟+C tan ∫ a + b cos x = a + b a − b arctan⎜ ⎟ ⎜ a+b 2 ⎠ ⎝
2பைடு நூலகம்

dx
.
2. 4. 6. 8.

2 x 2 + 9dx .
−2 x e ∫ sin 3 xdx .
∫x ∫
1 x −1
2
dx .
7.
2011-12-1
∫x
2
x − 2dx .
2
1− x dx . 1+ x
10
积分表的使用(11)
课堂练习题答案
1. 2. 3. 4. 1 ln 2 x + 4 x 2 − 9 + C . 2 1 9 2 2 2x + 9 + ln( 2 x + 2 x 2 + 9 + C . 2 4 x2 x x ( − 1) arcsin + 4 − x2 + C. 2 2 4 e −2 x 1 1− x − ( 2 sin 3 x + 3 cos 3 x ). 5. − − ln + C. 13 x x x ( x 2 − 1) x 2 − 2 1 − ln( x + x 2 − 2 ) + C . 4 2
将 a = 5, b = −4 代入得 1 2 x⎞ ⎛ 3 tan ⎟ + C . ∫ 5 − 4 cos xdx = 3 arctan⎜ 2⎠ ⎝
2011-12-1 积分表的使用(11) 4
例3 求 ∫
dx x 4x + 9
2
.
表中不能直接查出, 需先进行变量代换. 令2x = u
⇒ 4x + 9 = u + 3 1 du dx du 2 ∫ x 4 x 2 + 9 = ∫ u 2 2 = ∫ u u2 + 32 u +3 2 被积函数中含有 u 2 + 3 2 ,
2 2 2
2011-12-1
积分表的使用(11)
5
在积分表(六)中查得公式(37)
2 2 dx 1 x +a −a +C ∫ x x 2 + a 2 = a ln | x| 2 2 du 1 u + 3 − 3 ∴∫ ln +C 2 2 = u u +3 3 |u|
将 u = 2 x 代入得 dx 1 4x2 + 9 − 3 ∫ x 4 x 2 + 9 = 3 ln 2 | x | + C .
2
2011-12-1
积分表的使用(11)
8
说明 初等函数在其定义域内原函数一定存 在,但原函数不一定都是初等函数. 例
∫e
− x2
dx ,
sin x ∫ x dx ,
1 ∫ ln x dx ,

1 1 + x4
dx .
常用表积分 2011-12-1 积分表的使用(11) 9
课堂练习题
利用积分表计算下列不 定积分 : 1. 4x − 9 x 3. ∫ x arcsin dx . 2 1 dx . 5. ∫ 2 x (1 − x )
二、例题
x dx . 例1 求 ∫ 2 ( 3 x + 4)
被积函数中含有 ax + b 在积分表(一)中查得公式(7)
1⎡ x b ⎤ ln | ax + b | + +C ∫ (ax + b )2 dx = a 2 ⎢ ⎥ ax + b ⎦ ⎣
现在 a = 3, b = 4 于是
x 4 ⎤ 1⎡ + C. ln | 3 x + 4 | + ∫ (3 x + 4)2 dx = 9 ⎢ ⎥ 3 x + 4⎦ ⎣
一、关于积分表的说明
(1)常用积分公式汇集成的表称为积分表. (2)积分表是按照被积函数的类型来排列的. (3)求积分时,可根据被积函数的类型直接 或经过简单变形后,查得所需结果. (4)积分表见《高等数学》(四,五版)上册 (同济大学数学教研室主编)附录(III).
2011-12-1 积分表的使用(11) 2
2011-12-1
积分表的使用(11)
7
sin 3 x cos x 3 2 sin xdx =− + ∫ sin xdx ∫ 4 4 2 对积分∫ sin xdx 使用公式(93)
4
x 1 ∫ sin xdx = 2 − 4 sin 2 x + C 3 x cos x 3 ⎛ x 1 sin ⎞ 4 ∴ ∫ sin xdx = − + ⎜ − sin 2 x ⎟ + C . 4 4⎝ 2 4 ⎠
相关文档
最新文档