高二数学期末复习测试

合集下载

高二数学期末复习测试10

高二数学期末复习测试10

高二数学期末复习测试10一、填空题(3*12=36分)1、两异面直线所成角大小的取值范围是_________。

2、若复数i x x z )12()1(-+-=的模小于10,则实数的取值范围是_________。

3、已知2184182+-=x x C C ,则x 的值为 。

4、正三棱锥底面边长为4cm ,侧棱长为3cm ,则其体积为__________。

5、已知复数z 满足1=z ,则复数i z --1的模的取值范围是 。

6、若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 。

7、在1,2,3,…,9这9个自然数中,任取3个数,则至少取出2个奇数的概率是 。

8、已知北纬︒45线上有A 、B 两地,且A 地在东经︒30线上,B 地在西经︒60线上,设地球半径为R ,则A 、B 两地的球面距离为 。

9、设n n n x a x a x a a x x x ++++=++++++ 22102)1()1()1(,若254210=++++n a a a a ,则正整数n = 。

10、圆5)2(22=++y x 绕直线02=--y kx 旋转一周所得的几何体的体积为_________。

11、已知二面角βα--l 内一点P 到平面βα,和直线l 的距离分别为4222,,,则二面角大小是 。

12、从集合{}d c b a U ,,,= 的子集中选出4个不同的子集,且必须同时满足以下两个条件: ①U ,φ都要选出;②对选出的任意两个子集A 和B ,必有B A ⊆或A B ⊆。

那么共有________种不同的选法。

二、选择题(3*5=15分)13、对两条不相交的空间直线a 与b ,必存在平面α,使得( )A .αα⊂⊂b a ,B .b a ,α⊂∥αC .αα⊥⊥b a ,D .αα⊥⊂b a ,14、集合}3,1{},,)65()13(,2,1{22-=∈--+--=N R m i m m m m M ,若∅≠N M ,则=m ( )A .0或3B .1-或3C .1-或6D .1-15、n n n n n C C C C 22624222++++ 的值为( )A.n 2B.122-nC. 12-nD. 1212--n 16、已知棱锥的顶点为P ,P 在底面上的射影为O ,PO=a ,现用平行于底面的平面去截这个棱锥,截面交PO 于点M ,并使截得的两部分侧面积相等,设OM=b ,则a 与b 的关系是( ) A .a b )12(-= B .a b )12(+= C .2)22(a b -=D .2)22(a b += 17、如图,正方体1111D C B A ABCD -的棱长为1,线段11D B 上有两个动点E 、F , 且EF =12,则下列结论中错误的是 ( ) A .AC⊥BE B .EF∥平面ABCDC .三棱锥A -BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等三、解答题(8+8+9+12+12=49分)18、已知复数)()6()23(22R m i m m m m z ∈-+++-=;(1)若z 是实数,求m 满足的条件;(2)若z 是纯虚数,求m 满足的条件。

高二数学期末复习(7)

高二数学期末复习(7)

常熟市浒浦高级中学高二数学期末复习(7)综合卷(1)期末考试倒计时:12天姓名:____________ 1.复数z=在复平面上对应的点位于第_________象限.2.“a>0”是“>0”的______________条件.3.“无理数是无限小数,而是无限小数,所以是无理数.”这个推理是 _推理(在“归纳”、“类比”、“演绎”中选择填空)4.圆C:的圆心到直线的距离_______. 5.若展开式的二项式系数之和为64,则展开式的常数项为 .(用数字作答)6.以抛物线的焦点为圆心,且过坐标原点的圆的方程为________________.7.已知向量,若,则的值是_ ___.8.现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是_________.9.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。

假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于 ___.10.观察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根据上述规律,第四个等式.....为_________________________________. 11.、设a n(n=2,3,4…)是(3+)n的展开式中x的一次项的系数,则 (++…+ )的值是.12.若点O和点分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为_________________.13.设是不等式的解集,整数.(1)记使得“成立的有序数组”为事件A,试列举A包含的基本事件;(2)设,求的分布列及其数学期望.14.如图,圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径.(Ⅰ)证明:平面平面;(Ⅱ)设AB=,在圆柱内随机选取一点,记该点取自于三棱柱内的概率为.(i)当点C在圆周上运动时,求的最大值;(ii)记平面与平面所成的角为,当取最大值时,求的值.15.在二项式的展开式中,前三项系数的绝对值成等差数列.(1)求展开式的第四项;(2)求展开式的常数项;(3)求展开式中各项的系数和.16.如图,在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB,BP=BC=2,E,F 分别是PB,PC的中点.(Ⅰ)证明:EF∥平面PAD;(Ⅱ)求三棱锥E—ABC的体积V.17.如图,椭圆C:的顶点为A1,A2,B1,B2,焦点为F1,F2,,= ,(Ⅰ)求椭圆C的方程;(Ⅱ)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,,是否存在上述直线l使成立?若存在,求出直线l的方程;若不存在,请说明理由.18.参考答案1.一【解析】2.充分不必要_【解析】3.演绎【解析】4.3【解析】5.20【解析】6.【解析】7.-3或1【解析】8._126【解析】9.0.128【解析】10.13+23+33+43+53=(1+2+3+4+5)2(或152).【解析】11.18【解析】12.【解析】13.。

高二数学期末复习卷

高二数学期末复习卷
A.10B.13C.15D.25
7、若 , , ,则a,b,c的大小关系为( )
A. B. C. D.
8、函数 的大致图象是( )
A. B.
C. D.
9、已知 是两条不同的直线, 是一个平面,则下列命题中正确的是
A.若 B.若
C.若 D.若
10、为了得到函数 的图象,可以将函数 的图象( ).
A.向左平移 个单位长度,再向下平移 个单位长度
4、已知 , ,则 ( )
A. B. C. D.
5、某地区空气质量检测资料表明,一天的空气质量为优良的概率是0.9,连续两天为优良的概率是0.75,已知某天的空气质量为优良,则随后一天的空气质量也为优良的概率为( )
A. B. C. D.
6、如图,某城市中, 、 两地有整齐的道路网,若( )
A. B. C. D.
二、填空题()
13、已知实数 , 满足 ,则目标函数 的最小值为______.
14、函数 在点 处的切线的倾斜角是_____________.
15、 展开式的二项式系数之和为256,则展开式中 的系数为_____.
16、现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有____种.(用数字作答)
B.向右平移 个单位长度,再向上平移 个单位长度
C.向左平移 个单位长度,再向下平移 个单位长度
D.向右平移 个单位长度,再向上平移 个单位长度
11、若双曲线 ( , )的一条渐近线被圆 所截得的弦长为2,则 的离心率为( )
A.2B. C. D.
12、已知三棱锥 的所有顶点都在球 的球面上, 是边长为 的正三角形, 两两垂直,则球 的体积为()。
(2)若关于 的方程 在区间 上有两个不同的实根,求实数 的取值范围.

高二期末数学复习试卷

高二期末数学复习试卷

高二期末数学复习试卷一、选择题('60'512=⨯)1、已知α、β是两个不重合的平面,l 、m 是两条不重合的直线,则α∥β的一个充分条件是………………………………………( )(A) βββα//,//,m l m l 且⊂⊂ (B) m l m l //,且βα⊂⊂(C) m l m l //,且βα⊥⊥(D) m l m l ////,//且βα2、在正方体ABCD-A 1B 1C 1D 1过顶点A 1在空间作直线l ,使l 与直线AC 、BC 1所成的角都等于60°,这样的直线的条数为………( )(A) 1 (B) 2 (C) 3 (D) 43、已知菱形ABCD 的边长为1,∠DAB=60°,将这个菱形沿AC 折成120°的二面角,则B,D 两点间的距离为………………………( ) (A)23 (B)21 (C)23 (D)434、PA、PB 、PC 为三条射线,且 ∠APB = ∠APC= 60°, ∠BPC=90°,则PA 与平面BPC 所成的角为…………………( )(A )30° (B )45° (C )60° (D )90°5、6人并排站成一排,乙必须站在甲的右方,丙必须站在乙的右方,则不同排法的种数为……………………………………………( )(A )4433A A (B )44A (C )3366A A (D )3544A A6、用1,2,3,4,5,7这6 个数字排成无重复的六位数,其中偶数数字不相邻的排法有………………………………………………………() (A )5566A A -(B )224466A A A -(C )141512A A A (D )3544A A 7、在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有2件次品的取法种数为………………………………………( )(A )39723C C (B )2973339723C C C C +(C )497135100C C C -(D )5975100C C - 8、n 是奇数,二项式(1-x)2n+1展开式中系数最大的项是…( )(A )第n 项(B )第n +1项(C )第n+2项(D )第n+1,n +2项9、二项式244)1(xx +的展开式中,有理项共有………( ) (A )3项 (B )5项 (C )6项(D )7项 10、从装有白球3个、红球4个的箱子中,把球一个一个地取出来,到第五个恰好把白球全部取出的概率是………………………( )(A )354 (B )71 (C )356(D )72 11、从两件正品和两件次品中任取两件互为对立事件的是() (A )至少有一件正品与至少有一件次品(B )恰有一件正品与恰有两件正品(C )至多有一件次品与全是次品(D )至少有一件正品与全是正品12、一次游戏中有人出了12道选择题,每题附有4个答案,其中只有一个是符合要求的。

高二数学期末复习试题及答案

高二数学期末复习试题及答案

高二数学期末考试复习试题一、 选择题 :(本大题共12小题 ,每小题5分,共60分) 1.下列给出的赋值语句中正确的是( ).A .4M =B .M M =-C .3B A ==D .0x y += 2. 在如图所示的“茎叶图”表示的数据中,众数和中位数分别 ( ).A.23与26 B .31与26 C .24与30D .26与30 3.图l 是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为1A 、2A 、…、m A (如2A 表示身高(单位:cm )在[150,155)内的学生人数).图2是统计图l 中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm (含160cm ,不含180cm )的学生人数,那么在流程图中的判断框内应填写的条件是.9.8.7.6Ai B i C i D i <<<<,4. 将一个各个面上均涂有颜色的正方体锯成()33n n ≥个同样大小的小正方体,从这些小正方体中任取1个,则其中三面都涂有颜色的概率为( ) (A )31n (B )34n (C )38n (D )21n5.函数[]2()255f x x x x =--∈-,,,在定义域内任取一点0x ,使0()0f x ≤的概率是( ).A.110B.23C.310D.456.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A 、3个1 2 42 03 5 6 3 0 1 14 12球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A 的球,则在第二号盒子中任取一个球;若第一次取得标有字母B 的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为( ) A .0.59 B .0.54 C .0.8 D .0.157.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是1/70.根据这位负责人的话可以推断出参加面试的人数为( ) A .21B .35C .42D .708.某厂生产的零件外直径ξ~N (10,0.04),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.9cm 和9.3cm ,则可认为( ) A .上午生产情况正常,下午生产情况异常 B .上午生产情况异常,下午生产情况正常 C .上、下午生产情况均正常 D .上、下午生产情况均异常9. 310(1)(1)x x -+的展开式中,5x 的系数是( )A.297- B.252- C.297 D.20710.四棱锥的8条棱分别代表8种不同的化工产品,有公共点的两条棱所代表的化工产品在同一仓库中存放是危险的,没有公共点的棱所代表的化工产品在同一仓库中存放是安全的。

高中数学-高二期末复习卷(1)

高中数学-高二期末复习卷(1)

高二期末复习卷一、单选题1.已知()f x '是()f x 的导函数,()f x '的图象如图所示,则()f x 的图象只可能是()A.B.C.D.2.“m>2”是“方程22212x ym m +=+表示焦点在x 轴上的椭圆”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知等差数列{}n a 的前n 项和为n S ,且2121S =,则616a a +的值为()A .1B .2C .3D .44.若直线l :12y x m =-+与曲线C :21164x x y +=有两个公共点,则实数m 的取值范围为()A.()(0,- B.(0,C .()()2,00,2-⋃D .()0,25.已知()f x 在0x x =处可导,则()()02200lim x x f x f x x x →-⎡⎤⎡⎤⎣⎦⎣⎦-等于()A .()0f x 'B .()0f x C .()20f x '⎡⎤⎣⎦D .()()002f x f x '6.有关数据显示,2015年我国快递行业产生的包装垃圾约为400万吨.有专家预测,如果不采取措施,快递行业产生的包装垃圾年平均增长率将达到50%.由此可知,如果不采取有效措施,则从()年(填年份)开始,快递行业产生的包装垃圾超过4000万吨.(参考数据:lg 20.3010,lg 30.4771≈≈)A .2019B .2020C .2021D .20227.数列{}n a 满足154a =,211n n n a a a +=-+,*n ∈N ,则122022111a a a +++ 的整数部分是()A .1B .2C .3D .48.已知抛物线22(0)y px p =>)的焦点为F ,过F 且倾斜角为π4的直线l 与抛物线相交于A ,B 两点,12AB =,过A ,B 两点分别作抛物线的切线,交于点Q .则下列四个命题中正确的个数是()个.①QA QB ⊥;②若M (1,1),P 是抛物线上一动点,则||||PM PF +的最小值为52;③AOB (O为坐标原点)的面积为;④(,0)2PM -,则tan AMB ∠=A .1B .2C .3D .4二、多选题9.下列说法正确的是()A .已知函数3()2f x x x =+,则该函数在区间[]1,3上的平均变化率为30B .已知11(,)A x y ,22(,)B x y 在函数()y f x =图象上,若函数()f x 从1x 到2x则曲线()y f x =的割线AB 的倾斜角为3πC .已知直线运动的汽车速度V 与时间t 的关系是221V t =-,则2t =时瞬时加速度为7D .已知函数()f x x =,则(9.05) 3.008f ≈10.在底面边长为2、高为4的正四棱柱1111ABCD A B C D -中,O 为棱1A A 上一点,且111,4A O A A P Q =、分别为线段1111B D A D 、上的动点,M 为底面ABCD 的中心,N 为线段AQ 的中点,则下列命题正确的是()A .CN 与QM 共面B .三棱锥A DMN -的体积为43C .PQ QO +的最小值为322D .当11113D Q D A = 时,过,,A Q M 三点的平面截正四棱柱所得截面的周长为()82103+11.数列{}n a 满足1a a =,2131n n n a a a +=--,则下列说法正确的是()A .若1a ≠且2a ≠,数列{}n a 单调递减B .若存在无数个自然数n ,使得1n n a a +=,则1a =C .当2a >或1a <时,{}n a 的最小值不存在D .当3a =时,121111,12222n a a a ⎛⎤++⋅⋅⋅⋅⋅⋅+∈ ⎥---⎝⎦12.设F 是抛物线2:4C y x =的焦点,直线:1l x ty =+与抛物线C 交于,A B 两点,O 为坐标原点,则下列结论正确的是()A .||4AB ≥B .OA OB ⋅可能大于0C .P 为抛物线上异于A 、B 的点,直线l 与准线交于点T ,当0,t A >为第一象限的点时,若APB α∠=,PF 平分APB ∠,则π2APT +∠=αD .若在抛物线上存在唯一一点Q (异于,)A B ,使得QA QB ⊥则3t =±三、填空题13.若()f x 为可导函数,且()()0121lim 14x f x f x→--=-,则过曲线()y f x =上点()()1,1f 处的切线斜率为______.14.对于数列{}n a ,若1,n n a a +是关于x 的方程2103n n x c x -+=的两个根,且12a =,则数列{}n c 所有项的和为________.15.法国数学家加斯帕•蒙日被称为“画法几何创始人”、“微分几何之父”.他发现与椭圆相切的两条互相垂直的切线的交点的轨迹是以该椭圆中心为圆心的圆,这个圆称为该椭圆的蒙日圆.若椭圆()2222:10x y a b a bΓ+=>>的蒙日圆为2223:2C x y a +=,过C 上的动点M 作Γ的两条切线,分别与C 交于P ,Q 两点,直线PQ 交Γ于A ,B 两点,则下列说法,正确的有______.①椭圆Γ的离心率为22②MPQ 面积的最大值为232a③M 到Γ的左焦点的距离的最小值为()22a-④若动点D 在Γ上,将直线DA ,DB 的斜率分别记为1k ,2k ,则1212k k =-16.已知数列{}n a 的通项公式为4152nn n a +⎛⎫=-⋅ ⎪⎝⎭,设数列{}n a 的最大项和最小项分别为,M N ,则M N +=______.四、解答题17.已知椭圆()2222:10x y C a b a b+=>>的四个顶点构成的四边形的面积为12.(1)求椭圆C 的标准方程;(2)过椭圆C 右焦点且倾斜角为135︒的直线l 交椭圆C 于M 、N 两点,求MN 的值.18.已知双曲线2222:1(0,0)x y C a b a b -=>>,四点12346,,4,,4,333M M M M ⎛⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中恰有三点在C 上.(1)求C 的方程;(2)过点(3,0)的直线l 交C 于P ,Q 两点,过点P 作直线1x =的垂线,垂足为A .证明:直线AQ 过定点.19.如图1,在等腰直角三角形ABC 中,4AC BC ==,D 是AC 的中点,E 是AB 上一点,且DE AB ⊥.将ADE V 沿着DE 折起,形成四棱锥-P BCDE ,其中点A 对应的点为点P ,如图2.(1)在图2中,在线段PB 上是否存在一点F ,使得CF ∥平面PDE ?若存在,请求出PFPB的值,并说明理由;若不存在,请说明理由;(2)在图2中,平面PBE 与平面PCD 所成的锐二面角的大小为3π,求四棱锥-P BCDE 的体积.20.在①11a =,525S =;②35a =,917a =;③416S =,864S =这三个条件中任选一个补充在下面的横线上并解答.已知等差数列{}n a 满足________.(1)求数列{}n a 的通项公式;(2)求数列{3}n n a ⋅的前n 项和.n T (如果选择多个条件分别解答,按第一个解答计分)21.在一个有穷数列的每相邻两项之间插入这两项的和,形成新的数列,我们把这样的操作称为该数列的一次“Z 拓展”.如数列1,2第1次“Z 拓展”后得到数列1,3,2,第2次“Z 拓展”后得到数列1,4,3,5,2.设数列a 、b 、c 经过第n 次“Z 拓展”后所得数列的项数记为n P ,所有项的和记为n S .(1)求1P 、2P ;(2)若2023n P ≥,求n 的最小值;(3)是否存在实数a 、b 、c ,使得数列{}n S 为等比数列?若存在,求a 、b 、c 满足的条件;若不存在,说明理由.21.记数列{}n a 的前n 项和为111,2,34n n n n S a S S a ++=+=-.(1)求{}n a 的通项公式;(2)设2log n n n b a a =,记{}n b 的前n 项和为n T .若2(1)2n t n T -+≤对于2n ≥且*N n ∈恒成立,求实数t 的取值范围.22.已知抛物线的顶点为原点,焦点F 在x轴的正半轴,F 到直线20x +=的距离为54.点()2,2N ,不过点N 的直线l 与抛物线交于两点,A B ,且2NA NB k k +=-.(1)求抛物线方程及抛物线的准线方程(2)求证:直线AB 过定点,并求该定点坐标.高二期末复习卷(答案)一、单选题1.已知()f x '是()f x 的导函数,()f x '的图象如图所示,则()f x 的图象只可能是()2.“m>2”是“方程22212x y m m +=+表示焦点在x 轴上的椭圆”的()A .充分不必要条件B .必要不充分条件3.已知等差数列{}n a 的前n 项和为n S ,且2121S =,则616a a +的值为()A .1B .2C .3D .4【答案】B【分析】根据等差数列前n 项和公式以及等差数列的性质,可得2121S =与616a a +的关系式,即可求得结果.4.若直线l :12y x m =-+与曲线C :21164x x y +=有两个公共点,则实数m 的取值范围为()A .()(0,-B .(0,2,00,2-⋃0,2如图可知,当直线l 介于直线12y x =-和与曲线C 有两个公共点.设1l 的方程为012y x m =-+,()00m >,则有联立220116412x yy x m⎧+=⎪⎪⎨⎪=-+⎪⎩,消去x 并整理得2y 由()2200Δ4840m m =--=,解得022m =故m 的取值范围为()0,22.故选:B .5.已知()f x 在0x x =处可导,则()()02200lim x x f x f x x x →-⎡⎤⎡⎤⎣⎦⎣⎦-等于()A .()0f x 'B .()0f x C .()20f x '⎡⎤⎣⎦D .()()002f x f x '业产生的包装垃圾年平均增长率将达到50%.由此可知,如果不采取有效措施,则从()年(填年份)开始,快递行业产生的包装垃圾超过4000万吨.(参考数据:lg 20.3010,lg 30.4771≈≈)7.数列{}n a 满足154a =,211n n n a a a +=-+,*n ∈N ,则122022111a a a +++ 的整数部分是()8.已知抛物线22(0)y px p =>)的焦点为F ,过F 且倾斜角为π4的直线l 与抛物线相交于A ,B 两点,12AB =,过A ,B 两点分别作抛物线的切线,交于点Q .则下列四个命题中正确的个数是()个.①QA QB ⊥;②若M (1,1),P 是抛物线上一动点,则||||PM PF +的最小值为52;③AOB (O 为坐标原点)的面积为;④(,0)2PM -,则tan AMB ∠=二、多选题9.下列说法正确的是()A .已知函数3()2f x x x =+,则该函数在区间[]1,3上的平均变化率为30B .已知11(,)A x y ,22(,)B x y 在函数()y f x =图象上,若函数()f x 从1x 到2x 则曲线()y f x =的割线AB 的倾斜角为3πC V 与时间t 的关系是221V t =-,则2t =时瞬时加速度为7D .已知函数()f x =,则(9.05) 3.008f ≈【答案】BD10.在底面边长为2、高为4的正四棱柱1111ABCD A B C D -中,O 为棱1A A 上一点,且11,4A O A A P Q =、分别为线段1111B D A D 、上的动点,M 为底面ABCD 的中心,N 为线段AQ 的中点,则下列命题正确的是()A .CN 与QM 共面B .三棱锥A DMN -的体积为43C .PQ QO +的最小值为2D .当11113D Q D A = 时,过,,A Q M 三点的平面截正四棱柱所得截面的周长为83对于C ,如图2,展开平面点P ,交11A D 与点Q ,则此时对于D ,如图3,取11113D H D C =uuuu r uuuu r共面,即过,,A Q M 三点的正四棱柱的截面为梯形,且12233QH AC ==,所以平面截正四棱柱所得截面的周长为故选:ACD.11.数列{}n a 满足1a a =,1n n n +=--,则下列说法正确的是()A .若1a ≠且2a ≠,数列{}n a 单调递减B .若存在无数个自然数n ,使得1n n a a +=,则1a =C .当2a >或1a <时,{}n a 的最小值不存在D .当3a =时,121111,12222n a a a ⎛⎤++⋅⋅⋅⋅⋅⋅+∈ ⎥---⎝⎦【答案】ACD【分析】A 选项,根据()2110n n n a a a +=--<-求出1n a ≠,再由21311n n n a a a +=--≠求出2n a ≠,从而得到1a ≠且2a ≠,数列{}n a 单调递减,A 正确;B 选项,可举出反例;与抛物线C 交于两点,O 为坐标原点,则下列结论正确的是()A .||4AB ≥B .OA OB ⋅可能大于0C .P 为抛物线上异于A 、B 的点,直线l 与准线交于点T ,当0,t A >为第一象限的点时,若APB α∠=,PF 平分APB ∠,则π2APT +∠=α对于D 选项,因QA QB ⊥,则Q 为以因()()1122,,A x y B x y ,,1222y y t +=,212212x xt +=+,2AB 则以AB 为直径的圆的方程为(22x t -将其与2:4C y x =联立,消去x 化简得:注意到()4228166448y t y ty +---4y =()()2244412yty yty =--++,由题可得,联立方程有2440y ty --=,其判别式恒大于0,则24120y ty ++=的判别式216t -故选:ACD【点睛】关键点点睛:本题为直线与抛物线综合题为常用手段;对于C 选项,在抛物线中有很多的等量关系与成比例的关系分解因式处理.三、填空题13.若()f x 为可导函数,且()()121lim14x f x f x→--=-,则过曲线()y f x =上点()()1,1f 处的切线斜率为14.对于数列n a ,若1,n n a a +是关于x 的方程203n n x c x -+=的两个根,且12a =,则数列{}n c 所有项的和为________.【答案】92##4.5种情况进行分类讨论,利用分组和法来求得n T ,进而可利用极限求得“数列所有项的和”.15.法国数学家加斯帕•蒙日被称为“画法几何创始人”、“微分几何之父”.他发现与椭圆相切的两条互相垂直的切线的交点的轨迹是以该椭圆中心为圆心的圆,这个圆称为该椭圆的蒙日圆.若椭圆()2222:10x y a b a bΓ+=>>的蒙日圆为2223:2C x y a +=,过C 上的动点M 作Γ的两条切线,分别与C 交于P ,Q 两点,直线PQ 交Γ于A ,B 两点,则下列说法,正确的有______.①椭圆Γ②MPQ 面积的最大值为232a③M到Γ的左焦点的距离的最小值为(2a④若动点D 在Γ上,将直线DA ,DB 的斜率分别记为1k ,2k ,则1212k k =-16.已知数列{}n a 的通项公式为52n n a +⎛⎫=-⋅ ⎪⎝⎭,设数列{}n a 的最大项和最小项分别为,M N ,则四、解答题17.已知椭圆()2222:10x y C a b a b+=>>的四个顶点构成的四边形的面积为12.18.已知双曲线2222:1(0,0)x yC a ba b-=>>,四点12346,,4,,3M M M M⎛⎛⎛-⎝⎭⎝⎭⎝⎭中恰有三点在C上.(1)求C的方程;将ADEV沿着DE折起,形成四棱锥-P BCDE,其中点A对应的点为点P,如图2.(1)在图2中,在线段PB 上是否存在一点F ,使得CF ∥平面PDE ?若存在,请求出PFPB的值,并说明理由;若不存在,请说明理由;(2)在图2中,平面PBE 与平面PCD 所成的锐二面角的大小为3π,求四棱锥-P BCDE 的体积.3PB 理由如下:过点C 作CH ED ⊥,垂足为H ,在PE 上取一点M ,使得13PM PE =,连接因为13PM PE =,13PF PB =,所以FM 建立空间直角坐标系,设PEB θ∠=,则()2,0,0D -,()22,2,0C -,(P 则()2,2,0DC =- ,(2,2cos DP = 设平面PCD 的法向量为(),,m x y z =,则220,22cos 2sin m DC x y m DP x y θθ⎧⋅=-+=⎪⎨⋅=+⋅+⎪⎩取sin x θ=,则sin y θ=,cos z θ=-所以()sin ,sin ,cos 1m θθθ=--,,948153线上并解答.已知等差数列{}n a满足________.(1)求数列{}n a的通项公式;(2)求数列{3}na⋅的前n项和.n Tn一次“Z拓展”.如数列1,2第1次“Z拓展”后得到数列1,3,2,第2次“Z拓展”后得到数列1,4,3,5,2.设数列a、b、c经过第n次“Z拓展”后所得数列的项数记为n P,所有项的和记为n S.(1)求1P 、2P ;(2)若2023n P ≥,求n 的最小值;(3)是否存在实数a 、b 、c ,使得数列{}n S 为等比数列?若存在,求a 、b 、c 满足的条件;若不存在,说明n 项和为111n n n n ++(1)求{}n a 的通项公式;(2)设2log n n n b a a =,记{}n b 的前n 项和为n T .若2(1)2n t n T -+≤对于2n ≥且*N n ∈恒成立,求实数t 的取值范围.【答案】(1)2nn a =(2)8t ≤【分析】(1)利用n a 与n S 的关系证得数列{}n a 是等比数列,从而求得2n n a =;22.已知抛物线的顶点为原点,焦点F 在x 轴的正半轴,F 到直线20x +=的距离为4.点2,2N ,不过点N 的直线l 与抛物线交于两点,A B ,且2NA NB k k +=-.(1)求抛物线方程及抛物线的准线方程。

高二数学下学期期末考试试卷含答案(共3套)

高二数学下学期期末考试试卷含答案(共3套)

B .C .D .8.若 S = ⎰ 2 x 2dx , S = ⎰ 2 dx, S = ⎰ 2 e x d x ,则 S , S , S 的大小关系为( )1 x 1 1高二年级下学期期末考试数学试卷(考试时间:120 分钟;满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.设 Z = 10i3 + i,则 Z 的共轭复数为( )A . -1 + 3iB . -1 - 3iC .1+ 3iD .1- 3i2.6 把椅子摆成一排,3 人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24v v v v3.已知 a = (1- t,2 t - 1,0), b = (2, t, t ), 则 b - a 的 最小值是( )A . 5B . 6C . 2D . 3uuuv uuuv uuuv v4.已知正三棱锥 P - ABC 的外接球 O 的半径为1 ,且满足OA + OB + OC = 0, 则正三棱锥的体积为()A .344 2 45.已知函数 f ( x ) = - x, 且a < b < 1,则 ( )e x A .f (a) = f (b )B . f (a) < f (b )C . f (a) > f (b )D . f (a),f (b )大小关系不能确定6.若随机变量 X ~ B(n, p ), 且 E( X ) = 6, D( X ) = 3,则P( X = 1) 的值为()A . 3 2-2B . 2-4C . 3 2-10D . 2-8作检验的产品件数为()A.6B.7C.8D.91123123A.S<S<S123B.S<S<S213C.S<S<S231D.S<S<S3211A . n + 1B . 2nC .D . n 2 + n + 112.设点 P 在曲线 y = e x 上,点 Q 在曲线 y = ln(2 x) 上,则 PQ 的最小值为()13.已知复数 z = (i 是虚数单位) ,则 z = __________;15.二项式 (x- )8的展开式中,x 2 y 2的系数为 __________; 16.已知 f (n ) = 1 + + + … + (n ∈ N * ), 经计算得f (4) > 2, f (8) > , f (16) > 3 ,f (32) > , 则有__________(填上合情推理得到的式子).17.已知曲线 C 的极坐标方程是 ρ = 2cos(θ + ) ,以极点为平面直角坐标系的原点,极轴为 x,9.平面内有 n 条直线,最多可将平面分成 f (n) 个区域,则 f (n) 的表达式为()n 2 + n + 2 210.设m 为正整数,( x + y)2m 展开式的二项式系数的最大值为 a ,( x + y)2m +1 展开式的二项式系数的最大值为 b .若13a = 7b ,则 m = ( )A .5B .6C .7D .811.已知一系列样本点 ( x , y ) (i = 1,2,3, … , n) 的回归直线方程为 y = 2 x + a, 若样本点 (r,1)与(1,s) ii的残差相同,则有( ) A . r = s B . s = 2r C . s = -2r + 3 D . s = 2r + 112A .1- ln2B . 2(1 - ln 2)C .1+ ln2D . 2(1 + ln2)二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)5i1 + 2i14.直线 2 ρcos θ = 1 与圆 ρ = 2cos θ 相交的弦长为__________;y y x1 1 1 52 3 n 272三、解答题(本大题共 6 小题,17 小题 10 分, 18-22 题每小题 12 分,共 70 分;解答应写出文字说明、证明过程或演算步骤)π 3轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线 l 的参数方程是⎧⎪ x = -1 - t, ⎨⎪⎩ y = 2 + 3t(t 是参数) 设点 P(-1,2) .(Ⅰ)将曲线 C 的极坐标方程化为直角坐标方程,将直线 l 的参数方程化为普通方程;(Ⅱ)设直线 l 与曲线 C 相交于 M , N 两点,求 PM PN 的值.已知从该班随机抽取1人为喜欢的概率是.(参考公式:K2=,其中n=a+b+c+d)20.已知数列{x}满足x=,xn+1=18.我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽样的办法在我校高一年级抽出一个有60人的班级进行问卷调查,得到如下的2⨯2列联表:喜欢不喜欢合计男生18女生6合计6013(Ⅰ)请完成上面的2⨯2列联表;(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.参考临界值表:P(K2≥k)0.150.100.050.0250.0100.0050.001k2.072 2.7063.841 5.024 6.6357.87910.828n(ad-bc)2(a+b)(c+d)(a+c)(b+d)19.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设a,a,a分别表123示甲,乙,丙3个盒中的球数.(Ⅰ)求a=2,a=1,a=0的概率;123(Ⅱ)记ξ=a+a,求随机变量ξ的概率分布列和数学期望.1211n121+xn,其中n∈N*.(Ⅰ)写出数列{x}的前6项;n(Ⅱ)猜想数列{x}的单调性,并证明你的结论.2na21 .如图,四棱锥 P - ABCD 中,底面 ABCD 是梯形, AD / / B C , AD > BC , ∠BAD = 900 ,P A ⊥ 底面ABCD, P A = AB, 点 E 是PB 的中点 .(Ⅰ)证明: PC ⊥ AE ;(Ⅱ)若 AB = 1, AD = 3, 且P A 与平面 PCD 所成角的大小为 450 ,求二面角 A - PD - C 的正弦值.22.已知函数 g ( x ) =x, f ( x ) = g ( x ) - ax .ln x(Ⅰ)求函数 g ( x ) 的单调区间;(Ⅱ)若函数 f ( x ) 在 (1, +∞)上是减函数,求实数 的最小值;(Ⅲ)若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a(a > 0) 成立,求实数 a 的取值范围.12 1 2( x - )2 + ( y + )2 = 1 ;⎪⎪ (Ⅱ) 直线 l 的参数方程化为标准形式为 ⎨ (m 是参数) ,①19.解:由题意知,每次抛掷骰子,球依次放入甲,乙,丙盒中的概率分别为 , , .下学期高二年级期末考试数学参考答案一、选择题题号答案1D 2D 3C 4A 5C 6C 7C 8B9C10B 11C 12B二、填空题13.514.315.7016. f (2n) >n + 22(n ≥ 2, n ∈ N * )三、解答题17 . 解 : ( Ⅰ ) 曲 线 C 的 极 坐 标 方 程 化 为 直 角 坐 标 方 程 为 : x 2 + y 2 = x - 3 y,即1 32 2直线 l 的参数方程化为普通方程为: 3x + y + 3 - 2 = 0 .⎧1 x = -1 - m ,2 ⎪ y = 2 +3 m ⎪⎩ 2将①式代入 x 2 + y 2 = x - 3 y ,得: m 2 + (2 3 + 3)m + 6 + 2 3 = 0 ,②由题意得方程②有两个不同的根,设 m , m 是方程②的两个根,由直线参数方程的几何意义知:1 2PM PN = m m = 6 + 2 3 .1218.解:(Ⅰ)列联表如下;喜欢 男生 14 女生 6 合计20 不喜欢18 22 40 合计 32 28 60(Ⅱ)根据列联表数据,得到 K 2 = 60(14⨯ 22 - 6 ⨯18)2 32 ⨯ 28 ⨯ 20 ⨯ 40≈ 3.348 > 2.706,所以有 90%的可靠性认为“喜欢与否和学生性别有关”.1 1 16 3 2p=p(a=2,a=1,a=0)=C1()2()=.3633683323628 3626323328p(a=3,a=0,a=0)=.8期望E(ξ)=0⨯+1⨯+2⨯+3⨯=.20.解:(Ⅰ)由x=,得x==;21+x3由x=,得x==;31+x5由x=,得x==;51+x8由x=,得x==;81+x13由x=8,得x==;131+x21(Ⅰ)由题意知,满足条件的情况为两次掷出1点,一次掷出2点或3点,111123(Ⅱ)由题意知,ξ可能的取值是0,1,2,3.1p(ξ=0)=p(a=0,a=0,a=3)=,12311113 p(ξ=1)=p(a=0,a=1,a=2)+p(a=1,a=0,a=2)=C1()()2+C1()()2= 123123p(ξ=2)=p(a=2,a=0,a=1)+p(a=1,a=1,a=1)+p(a=0,a=2,a=1)123123123 11111113=C1()2()+A3()()()+C1()2()=3p(ξ=3)=p(a=0,a=3,a=0)+p(a=1,a=2,a=0)+p(a=2,a=1,a=0)+ 1231231231123故ξ的分布列为:ξ0123P13883818 1331388882112121213232315343518454113565(Ⅱ)由(Ⅰ)知x>x>x,猜想:数列{x}是递减数列.2462n下面用数学归纳法证明:①当n=1时,已证命题成立;(Ⅰ)证明: AE = ⎛ 0, b , b ⎫⎪ , PC = (c, b , - b ) , 所以 AE ⋅ PC = 0 ⨯ c + b ⋅ b + b ⋅ (-b ) = 0 , r 由 ⎪⎨ur uuur即 ⎪⎨ 令 z = 1 ,得 m = ⎛ 1 , 1 - c , 1⎫⎪ . ⎩ ⎩ 1 ⎛ c ⎫2 3 ⎝ 3 ⎭ ur AP r |②假设当 n = k 时命题成立,即 x > x2k 2k +2易知 x > 0 ,当 n = k + 1时,2k.x2k +2- x 2k +4=11 + x2k +1-11 + x2k +3==x- x2k +32k +1(1+ x)(1+ x)2k +12k +3x - x2k 2k +2(1+ x )(1+ x )(1+ x2k 2k +1 2k +2)(1+ x2k +3)> 0即 x2( k +1)> x2( k +1)+ 2.也就是说,当 n = k + 1时命题也成立.根据①②可知,猜想对任何正整数 n 都成立.21. 解:解法一(向量法):建立空间直角坐标系 A - xyz ,如图所示.根据题设,可设 D(a, 0, 0), B(0, b , 0), P(0, 0, b ), C (c, b , 0) ,uuuruuu⎝2 2 ⎭ uuur uuur22uuur uuur所以 AE ⊥ PC ,所以 PC ⊥ AE .uuur(Ⅱ)解:由已知,平面 P AD 的一个法向量为 AB = (0, 1, 0) .ur设平面 PCD 的法向量为 m = ( x , y , z) ,ur uuur⎧m ⋅ PC = 0,⎪m ⋅ PD = 0,⎧cx + y - z = 0,⎪ 3x + 0 ⋅ y - z = 0,ur⎝ 3 3 ⎭uuur而 AP = (0, 0, 1) ,依题意 P A 与平面 PCD 所成角的大小为 45︒ ,ur uuur所以 sin 45︒ = 2 = | m ⋅ uuuu ,即 2 | m || AP | 1 1 = 2+ 1 - ⎪ + 17,, 1⎪⎪ . 3 cos θ = ur uuur = PG ⋅ DF 3解得 BC = c = 3 - 2 ( BC = c = 3 + 2 舍去),所以ur ⎛ 1m =  3 ,⎝2 ⎫⎭设二面角 A - PD - C 的大小为 θ ,则ur uuur m ⋅ AB | m || AB | 2 31 2+ + 1 3 3= 3 , 3所以 sin θ = 6 ,所以二面角 A - PD - C 的正 3弦值为6 3 . 解法二(几何法): Ⅰ)证明:因为 P A ⊥ 平面 ABCD ,BC ⊂ 平面 ABCD ,所以 BC ⊥ P A .又由 ABCD 是梯形, AD ∥ BC , ∠BAD = 90︒ ,知 BC ⊥ AB ,而 AB I AP = A , AB ⊂ 平面 P AB , AP ⊂ 平面 P AB ,所以 BC ⊥ 平面 P AB .因为 AE ⊂ 平面 P AB ,所以 AE ⊥ BC .又 P A = AB ,点 E 是 PB 的中点,所以 AE ⊥ PB .因为 PB I BC = B , PB ⊂ 平面 PBC , BC ⊂ 平面 PBC ,所以 AE ⊥ 平面 PBC .因为 PC ⊂ 平面 PBC ,所以 AE ⊥ PC .(Ⅱ)解:如图 4 所示,过 A 作 AF ⊥ CD 于 F ,连接 PF ,因为 P A ⊥ 平面 ABCD , CD ⊂ 平面 ABCD ,所以 CD ⊥ P A ,则 CD ⊥ 平面 PAF ,于是平面 PAF ⊥ 平面 PCD ,它们的交线是 PF .过 A 作 AG ⊥ PF 于 G ,则 AG ⊥ 平面 PCD ,即 P A 在平面 PCD 上的射影是 PG ,所以 P A 与平面 PCD 所成的角是 ∠APF .由题意, ∠APF = 45︒ .在直角三角形 APF 中, P A = AF = 1 ,于是 AG = PG = FG = 2 .2在直角三角形 ADF 中, AD = 3 ,所以 DF = 2 .方法一:设二面角 A - PD - C 的大小为 θ ,则 cos θ = △S PDG △SAPD 2 = = 2=P A ⋅ AD 1⨯ 3 3⨯ 2,8x = ln x - 1,+ 2 = , 即 x = e 2时, f '( x ) max = - a .所以 - a ≤ 0, 于是a ≥, 故a 的最小值为 .=1+ a = . 4 4所以 sin θ = 6 ,所以二面角 A - PD - C 的正弦值为 6 .33方法二:过 G 作 GH ⊥ PD 于 H ,连接 AH ,由三垂线定理,得 AH ⊥ PD ,所以 ∠AHG 为二面角 A - PD - C 的平面角,在直角三角形 APD 中, PD = P A 2 + AD 2 = 2 , AH = P A ⋅ AD = 1⨯ 3 = 3 .PD2 22在直角三角形 AGH 中, sin ∠AHG = AG = 2 = 6 ,AH 33 2所以二面角 A - PD - C 的正弦值为 6 .322.解:由已知,函数 g ( x ) , f ( x ) 的定义域为 (0,1) U (1,+∞),且 f ( x ) =x- ax .ln x(Ⅰ)函数 g '( x ) = 1ln x - x ⋅(ln x)2 (ln x)2当 0 < x < e 且x ≠ 1时,g '( x ) < 0 ;当 x > e 时,g '( x ) > 0 .所以函数 g ( x ) 的单调减区间是 (0,1),(1,e), 增区间是(e , ∞) .(Ⅱ)因 f ( x ) 在 (1, +∞) 上为减函数,故 f '( x ) =所以当 x ∈ (1,+∞) 时, f '( x )max ≤ 0 .ln x - 1 (ln x)2- a ≤ 0 在 (1, +∞) 上恒成立.又 f '( x ) = ln x - 1 1 1 1 1 1- a = -( )2 + - a = -( - )2 + - a,(ln x) ln x ln x ln x 2 4故当1 1 1ln x 2 4 1 1 1 4 4 4(Ⅲ)命题“若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a 成立 ”等价于1212“当 x ∈ [e , e 2 ]时, 有f ( x ) min≤ f '( x )max + a ” .由(Ⅱ)知,当 x ∈ [e , e 2 ]时, 有f '( x )- a,∴ f '( x )max1min≤”.①当a≥时,由(Ⅱ)知,f(x)在[e,e2]上为减函数,=f(e)=-ae2≤,故a≥-②当0<a<时,由于f'(x)=-(-)2+-a在[e,e2]上为增函数,故f'(x)的值域为[f'(e),f'(e2)],即[-a,-a].,ln x -ax≤,x∈(e,e2).4->->-=,与0<a<综上,得a≥1问题等价于:“当x∈[e,e2]时,有f(x)1 41 4则f(x)min2e21112424e2. 1111 4ln x2414由f'(x)的单调性和值域知,∃唯一x∈(e,e2)使f'(x)=0,且满足:00当x∈(e,x)时,f'(x)<0,f(x)为减函数;当x∈(x,e2)时,f'(x)>0,f(x)为增函数;所以,f(x)min =f(x)=x001所以,a≥1ln x11111114x ln e24e2444矛盾,不合题意.1-24e2.1.已知集合 M = x x 2 < 2x + 3 , N = x x < 2 ,则 M ⋂ N = (){}3⎩- log 2 ( x + 1) f ( x ) = ⎨ “ 12 ,则可以利用方程 x = 求得 x ,高二年级第二学期期末考试数学试题一、选择题(每小题 5 分,共 50 分){ }A .(-1,2)B .(-3,2)C .(-3,1)D .(1,2)2.欧拉公式 e i x = cos x + i sin x ( i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天骄”。

高二数学期末复习题库

高二数学期末复习题库

高二数学期末复习题库一、选择题1. 若函数f(x) = 2x^3 - 3x^2 + 5x - 7,求f(1)的值。

A. -3B. 0C. 2D. 52. 已知等差数列的首项a1=3,公差d=2,求第10项a10的值。

A. 23B. 25C. 27D. 293. 圆的方程为(x-3)^2 + (y-4)^2 = 25,求圆心坐标和半径。

A. 圆心(3,4),半径5B. 圆心(4,3),半径5C. 圆心(3,4),半径3D. 圆心(4,3),半径34. 已知三角形ABC的三边长分别为a=5,b=7,c=8,求其面积。

A. 12B. 15C. 18D. 205. 函数y = sin(x) + cos(x)的周期是多少?A. πB. 2πC. 3πD. 4π二、填空题6. 已知直线l1: 2x + 3y - 6 = 0与直线l2: x - 4y + 8 = 0,求它们的交点坐标。

交点坐标为:________。

7. 求函数y = x^2 - 4x + 4的顶点坐标。

顶点坐标为:________。

8. 已知向量a = (1, 2),b = (3, 4),求向量a与向量b的点积。

点积为:________。

9. 已知方程x^2 - 6x + 9 = 0,求它的根。

根为:________。

10. 已知正弦函数y = sin(ωx + φ),其中ω = 2,φ = π/4,求函数的周期。

周期为:________。

三、解答题11. 证明:对于任意实数x,等式e^x ≥ x + 1恒成立。

12. 已知椭圆的方程为x^2/a^2 + y^2/b^2 = 1(a > b > 0),求椭圆的焦点坐标。

13. 解不等式:|x - 2| + |x + 3| ≥ 5。

14. 已知函数f(x) = x^3 - 3x^2 + 2,求其导数f'(x)。

15. 利用向量的知识证明勾股定理。

四、应用题16. 某工厂生产产品的成本函数为C(x) = 100 + 30x,其中x为生产数量。

高二数学期末考试题及答案

高二数学期末考试题及答案

高二数学期末考试题及答案一、选择题1. 设集合$A=\{x \mid x\text{是正整数},1\leqslant x\leqslant 10\}$,若集合$B$表示$A$中能除以5但不能除以4,且单位数为偶数的数所构成的集合,则集合$B$的元素个数是()。

A. 1B. 2C. 3D. 42. 已知实数$x$满足$x+\frac{1}{x}=3$,则$x^n+\frac{1}{x^n}$的值为()。

A. $n$B. $3n$C. $3^n$D. $2^n$3. 已知函数$f(x)=\log_2(x-a)+\log_2(x-b)$,其中$a>b$,则函数的定义域为()。

A. $[a,+\infty)$B. $[b,a]$C. $[a,+\infty)\backslash [b,+\infty)$D. $(-\infty,a)\backslash [b,a]$4. 摩天轮在运行过程中,以正比例的方式将载客量从40人逐渐增加到80人,然后又逐渐减少到40人。

从摩天轮开始运行到载客量减半,共用去了旋转的$\frac{1}{4}$的时间。

假设摩天轮的一次旋转用时不变,那么完成一个旋转用时是()。

A. 8分钟B. 10分钟C. 12分钟D. 16分钟5. 已知数列$\{a_n\}$满足$a_1=1$,$a_n=\frac{a_{n-1}}{n}+\frac{1}{n(n+1)}$,则数列$\{a_n\}$的极限值为()。

A. 0B. 1C. $\frac{1}{2}$D. $\frac{2}{3}$二、填空题6. 若直线$2x+y-3=0$与圆$x^2+y^2-4x-2y+4=0$相切,则切点坐标为()。

7. 已知函数$f(x)=(x^2-2x)e^{-mx}+c$,若曲线$y=f(x)$过点$(0,1)$且切线斜率为1,则$m$的值为()。

8. 设$A$,$B$是两个$n$阶矩阵,且$AB=BA$,则$|AB-BA|$的值为()。

北京市人大附中2022-2023学年高二数学期末复习参考试题(3)

北京市人大附中2022-2023学年高二数学期末复习参考试题(3)

北京市人大附中2022-2023学年高二数学期末复习参考试题(3)学校:___________姓名:___________班级:___________考号:___________二、填空题11.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.12.能够说明“设,,a b c 是任意实数,若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为__________.三、单选题13.已知数列{}n a 的前n 项和为n S ,则“{}n a 为常数列”是“*N n "Î,n n S na =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件14.“a b c d ,,,成等差数列”是“a d b c +=+”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件15.数列{}n a 的通项公式为||n a n c =-(*)n N Î,则“1c £”是 “{}n a 为递增数列”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件16.已知数列{}na 满足11a =,1n n a ra r +=+,(*n ÎN ,r R Î,0r ¹),则“1r =”是“数列{}na 为等差数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件17.已知S n 是等差数列{}()*N na n Î的前n 项和,且675S S S >>,有下列四个命题,假命题的是( )A .公差0d <B .在所有S 0n <中,13S 最大C .满足S 0n>的n 的个数有11个D .67a a >18.设,ab R Î,则“a b >”是“22a b >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件19.设0,0a b >>,则( )A .若2223a b a b +=+,则a b >B .若2223a b a b +=+,则a b <C .若2223a b a b -=-,则a b >D .若2223a b a b -=-,则a b<四、填空题20.比较下列各数的大小:可借助Venn图;对连续的数集间的运算,常利用数轴;对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽略空集是任何集合的子集.5.C【详解】试题分析:由题意得,(2,3)Ç=,故选C.A B【考点】集合的交集运算【名师点睛】1.首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合,,三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽略互异性而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn图;对连续的数集间的运算,常利用数轴;对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽略空集是任何集合的子集.6.A【详解】在数轴上将集合A,B表示出来,如图所示,由交集的定义可得,A BÇ为图中阴影部分,即{}-<<,故选A.|32x x考点:集合的交集运算.【详解】分析:举的反例要否定增函数,可以取一个分段函数,使得f (x )>f (0)且(0,2]上是减函数.详解:令0,0()4,(0,2]x f x x x =ì=í-Îî,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.又如,令f (x )=sin x ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.点睛:要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值0x ,使0()p x 不成立即可.通常举分段函数.12.1,2,3---【详解】试题分析:()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.13.C【分析】利用常数列、数列前n 项和的意义,结合充分条件、必要条件的定义判断作答.【详解】数列{}na 为常数列,则*N n "Î,1n a a =,121n n n S a a a na na =+++==L ,*N n "Î,n n S na =,则当2n ³时,11(1)n n n n n a S S na n a --=-=--,即1(1)(1)n n n a n a --=-,有1n n a a -=,因此,*N n "Î,11n a a S ==,数列{}n a 为常数列,所以“{}n a 为常数列”是“*N n "Î,n n S na =”的充分必要条件.故选:C 14.A【详解】a ,b ,c ,d 成等差数列Þ a d b c +=+,而1533+=+ ,但1,3,3,5不成等差数列,。

高二数学期末复习题

高二数学期末复习题

高二数学期末复习题一、选择题: (每小题5分,共60分)1、复数1i1.1i z -+=-+在复平面内,z 所对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限2、若复数312a ii++(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为 A .-2B .4C .-6D .63由曲线2y x =与y =的边界所围成区域的面积为( )A.13B.23C.1D.164、若函数f (x )在x =1处的导数为3,则f (x )的解析式可以为 A .f (x )=(x -1)2+3(x -1) B .f (x )=2(x -1) C .f (x )=2(x -1)2 D .f (x )=x -15、一个学生能够通过某种英语听力测试的概率是12,他连续测试2次,那么其中恰有一次获得通过的概率是A .14B .13C .12D .346、曲线)12ln(-=x y 上的点到直线032=+-y x 的最短距离是( )A.5B.52C.53D.07、已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是( )A.),3[]3,(+∞--∞B.]3,3[-C.),3()3,(+∞--∞D.)3,3(-8..连续抛掷一枚骰子两次,得到的点数依次记为(m ,n ),则点(m ,n )恰能落在不等式组|4|23x y y +-<⎧⎨≤⎩所表示的平面区域内的概率为( ) A .14 B .29 C .736D .169、从4位男教师和3位女教师中选出3位教师,派往郊区3所学校支教,每校1人,要求这3位教师中男、女教师都要有,则不同的选派方案有 A .210种 B .186种 C .180种 D .90种10、若A ,B ,C ,D ,E ,F 六个不同元素排成一列,要求A 不排在两端,且B 、C 相邻,则不同的排法共有 A .72种 B .96种 C .120种 D .144种 11. 5678(1)(1)(1)(1)x x x x -+-+-+-在的展开式中,含3x 的项的系数( )A.74B.121C.-74D.-12112.已知函数32()f x x px qx =--的图像与x 轴切于点(1,0),则()f x 的极值为 ( )A.极大值为427,极小值为0 B.极大值为0,极小值为427 C.极小值为427-,极大值为0 D. 极大值为427-,极小值为0二、填空题: (每小题5分,共20分) 13、若,)2(i b ii a -=-,其中a 、b ∈R ,i 是虚数单位,则____22=+b a .14、(1)⎰321dx x的值为__________.(2)01-⎰(x 2+2 x +1)dx =_________________.15、从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽1张,已知第1次抽到A ,那么第2次也抽到A 的概率为_______________________16、若(2x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 5+a 3+a 1=_____________. 三、解答题:(共70分.解答应写出文字说明、演算步骤或推证过程。

(完整word版)高二数学期末考试试题及其答案

(完整word版)高二数学期末考试试题及其答案

禄劝一中高中2018-2019学年高二(上)期末数学模拟试卷、选择题:本大题共 12个小题,每小题 5分,共60分.1. (5分)已知集合 M={1, 2, 3}, N={2, 3, 4},则下列式子正确的是( A. M?NB. N?MC. MAN={2, 3} D. M U N={1 , 4}C.向左平移单位B.向右平移单位 ……冗、,D.向右平移亏单位7 .下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量 x (吨)与相应的生产能耗y (吨)的几组对应数据:根据上表提供的数据,若求出y关于x 的线性回归方程为 ? 0.7x 0.35 ,那么表中t 的值为B. 3.158 .已知 f (x) = (x — m) (x — n) +2,并且 m, n, a, 3的大小关系可能是(2.已知向量 a=(-b l)f 正⑵ -3),则 2%-b 等于() A. (4, - 5) B. (—4, 5) C. (0, T) D. (0, 1) 3.在区间(1, 7)上任取一个数,这个数在区间 5, 8)上的概率为4.要得到函数B-i7Ty=sin (4x-F-)的图象,只需将函数y=sin4x 的图象 5.已知两条直线m, n,两个平面鹏 8给出下面四个命题:①m H n, m± a? n± a ② a// & m? a, n?仅 m // n @ aJ & m " n, m± ? n± 3 其中正确命题的序号是 A.①③B.②④C.①④D.②③ 6.执行如图所以的程序框图,如果输入 a=5 ,那么输出 n=(A. 2B. 3C. 4D. 5A.向左平移 ,单位x 3 4 5 6y 2.5 t 4 4.5A. 3 a 、 D. 4.53是方程f (x ) =0的两根,则实数A. a< mvnv 3 B- m< a< 3< n C. m< a< n< 3 D. a< mv 3< n 9 .已知某锥体的三视图(单位: cm )如图所示,则该锥体的体积为( )10 .在等月ABC 中,/BAC=90°, AB=AC=2,同=2而I,菽=3凝,则前■刘的值为()Dy11 .已知一个三角形的三边长分别是 5, 5, 6, 一只蚂蚁在其内部爬行, 若不考虑蚂蚁的大小,13.若直线 2X + (m+1) y+4=0 与直线 mX+3y+4=0 平行,则 m=y<l15 .若变量x 、y 满足约束条件 y+y>口 ,则z=x-2y 的最大值为bkx 3,x 016 .已知函数f X 1k,若方程f f X 2 0恰有三个实数根,则实数k 的-,x 02取值范围是三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17 .在△ ABC 中,a, b, c 分别为内角 A, B, C 的对边,2bsinB= (2a+c) sinA+ (2c+a) sinC. (I) 求B 的大小;(n) 若 b=" A=T\求^ ABC 的面积.r . ..-18 .已知:a 、b 、c是同一平面上的三个向量,其中a=(l, 2).A. 2cm 3B. 4cm 3C. 6cm 3D . 8cm 3B.则某时刻该蚂蚁距离三角形的三个顶点的距离均超过 2的概率是(B. 1-C. 1 -12.已知函数f (x )= ,X 1 , X 2 , X 3, X 4, X 5 是方程 f (x) =m 的五个不等的实数根,则 X 1+X 2+X 3+X 4+X 5的取值范围是(A. (0,同 B .(一兀,兀) C. (lg ,兀 1) D. ( 为 10)二、填空题(每题 5分,,茜分20分)14.已知sinOL IcosCl①若|C 1=2 j5,且c // a,求C的坐标.… .. 5②右|b |=——,且a +2 b与2 a -b垂直,求a,与b的夹角219.设S n是等差数列{a n}的前n项和,已知S3=6, a4=4.(1)求数列{a n}的通项公式;(2) 若bn=3 — 3 %,求证:—+---+ , , •+ ——<—.b L b2 L 420为了了解某省各景点在大众中的熟知度,随机对15〜65岁的人群抽样了n人,回答问题15 25 35 45 55 e5 学龄(1)分别求出a,b,x,y的值;(2)从第2, 3, 4组回答正确的人中用分层抽样的方法抽取6人,求第2, 3, 4组每组各抽取多少人?(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.21.在三柱ABC-A i B i C i中,△ ABC是边长为2的正三角形,侧面BB i C i C是矩形,D、E分别是线段BB i、AC i的中点.(i)求证:DE//平面A i B i C i;(2)若平面ABC,平面BB i C i C, BB i=4 ,求三棱锥A- DCE的体积.22.已知圆C: x2+y2+2x- 3=0.(i)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A (xi, yi)、B (X2, y2)两点, 求证:1 :工为定值;町K2(3)斜率为i的直线m与圆C相交于D、E两点,求直线m的方程,使^ CDE的面积最大.禄劝一中高中2018-2019学年高二(上)期末数学模拟试卷参考答案选择题(每小题分,共分) 1 2 3 4 5 6 7 8 9 10 11 12 CBCBCBABAACD、填空题(每小题 5分,共12分),、M A TV - n 2n 兀 兀 n 解:A =——,,C =兀- =———4 q 3 3 2••,|b=V3, B =-^-JbsinC V5 ^/218.解:①设 c (x, y) • •• c // a 且|C |二2 J52x y 0•• 2 2 x 2 y 2 202 c =(2,4)或 c =(-2, -4).13.-3 14. — 15. 3 16.1,17 (I)解::2bsinB= (2a+c) sinA+ (2c+a) sinC,由正弦定理得, 2b 2= (2a+c) a+ (2c+a) c, 化简彳导,a 2+c 2B=2TT...sinC=sin (2L 』)=、3 「 JT由正弦定理得,SliTT-COS-^-COS-SLIT^ bI sinC sinBcsinBsin号X 炳乂配yXsin-TT 3^/3b 2+ac=0.・•.△ABC 的面积②「( a+2b ) ± (2a-b),( a+2b) (2a-b) =0,-r -to- -► —*■• -2a 2+3a b-2 b 2=0• •.2|a |2+3| a | b||cos -2|b |2=02X 5+3X v -'5 X — cos -2X - =0, cos = -1 2 4打九 2k Tt, 长[0,兀]「. 0 =Tt.9 CL— 2520解:(1)由频率表中第 4组数据可知,第 4组总人数为 —再结合频率分布直方图可知n ----------- 1000.025 10a 100 0.01 10 0.5 519.解:(1)设公差为 d,则解得=1-a n =n. (2)证明:b n =3—3 、=3n+1— 3n=2?3n,0.36 (1分)•}是等比数列.,q1b 100 0.03 10 0.9 2乙x 180.9, y — 0,220 15(2)因为第2, 3, 4组回答正确的人数共有 54人,所以利用分层抽样在 54人中抽取6人,每组分别抽取的人数为:(3)设第2组2人为:A 1, A 2;第3组3人为:B 1, B 2, B 3;第4组1人为:C 1 .则从6人中随机抽取2人的所有可能的结果为:(A1,A 2), (A 1,B 1), (A 1,B 2), (A 1,B 3), (A 1C1),(A 2,B 1), (A 2, B 2), (A 2,B 3), (A2,C I ), (B I ,B2), (B I ,B3), (B 1,C 1), (B 2,B 3), (B2,C I ), (B 3,C I )共15个基本事件,其中恰好没有第3组人共3个基本事件, ……,一,…— …31,所抽取的人中恰好没有第 3组人的概率是:P - -155贝U 由EF 是△ AA 1C 1的中位线得 EF // AA 1, 又 DB 1//AA 1, DB 1卷AA 1 所以 EF // DB 1, EF = DB 1所以DE //平面A 1B 1C 1(n)解:因为E 是 AC 1 的中点,所以 V A DCE =V D ACE =2过A 作AH ,BC 于H 因为平面平面 ABC ,平面BB 1C 1C,所以AHL 平面BB 1C 1C,所以 V A DCE =V D —ACE =「5二「7 (4)第2组:18 54 2人;第3组:27 54 3人;第4组:9 54…(8分)21. (1)证明:取棱A i C i 的中点F,连接EF 、B 1F…(10分)…(12分)故四边形DEFB 1是平行四边形,从而 DE// B1FEF122.解:(1)圆 C: x 2+y 2+2x-3=0,配方得(x+1) 2+y 2=4,则圆心C 的坐标为(-1,0),圆的半径长为 2;(2)设直线l 的方程为y=kx,联立方程组工卜了 +2x3=。

高二数学期末复习题及答案

高二数学期末复习题及答案

高二数学期末复习题及答案高二数学期末复习题及答案高二数学期末复习题选择题1.若点Q在直线b上,b在平面内,则Q,b,之间的关系可记作()A.B.C.D.2.已知A,B是两不重合的点,则以下四个推理中,错误的一个推理是()A.B.C.D.A,B,CA,B,C,且A,B,C三点不共线3.设A,B,C三点不共线,直线,但与不垂直,则与一定()A.不垂直B.不平行C.不异面D.垂直4.对于直线和平面,则的一个充分条件是()A.B.C.D.5.若一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的大小关系是()A.相等B.互补C.相等或互补D.不能确定6.长方体的表面积为,所有棱的总长度为,则长方体的对角线的长度是()A.B.C.D.7.设地球半径为R,在北纬30的纬度圈上有A,B两地,它们的经度差为1200,则这两地间的纬度线长等于()A.B.C.D.8.若三棱锥的顶点在底面内的射影是底面三角形的内心,则下列命题错误的是()A.各侧面与底面所成的二面角相等B.顶点到底面各边距离相等C.这个棱锥是正三棱锥D.顶点在底面的射影到各侧面的距离相等9.正二十面体的面是正三角形,且每一个顶点为其一端都有五条棱,则其顶点数V和棱数E应是()A.V=30,E=12B.V=12,E=30C.V=32,E=10D.V=10,E=3210.在正方形中,,分别是及的中点,是的中点,现沿,及把这个正方形折成一个四面体,使,,三点重合记为,则必有()A.平面B.平面C.平面D.平面11.异面直线a,b所成角为80,过空间一点作与直线a,b所成角都为的直线只可以作2条,则的取值范围为()A.80100B.4050C.4050D.509012.设a,b,c表示直线,表示平面,给出下列命题:①若//,//,则//;②若,//,则//;③若,,则//;④若,,则//.其中错误命题的个数为()A.0B.1C.2D.313.有一高度为米的山坡,坡面与坡脚水平面成角,山坡上的一条直道与坡脚的水平线成角,一人在山脚处沿该直道上山至山顶,则此人行走了()A.米B.米C.米D.米14.已知二面角的平面角为,于,于,,设,到二面角棱的距离分别为,,当变化时,点的轨迹是下列图中的()ABCD15.已知等边三角形的边长为1,沿边上的高将它折成直二面角后,点到直线的距离是()A.1B.C.D.16.如右图,正方体中,是异面线段和的中点,则和的关系是()A.相交不垂直B.相交垂直C.平行直线D.异面直线17.在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰与棱锥的四个面都接触上,经过棱锥的一条侧棱和高作截面,正确的截面图形是()18.给出下列命题:①平行于三角形两边的平面平行于三角形的第三边;②垂直于三角形两边的直线垂直于三角形的第三边;③与三角形各顶点距离相等的平面平行于三角形所在平面;④钝角三角形在一个平面内的射影可以是锐角三角形.其中假命题的个数是()A.一个B.两个C.三个D.四个19.如果直线与平面满足:,那么()A.B.C.D.20.如图在正方形ABCDA1B1C1D1中,M是棱DD1的中点,O为底面ABCD的中点,P为棱A1B1上任意一点,则直线OP与直线AM所成的角的大小为()A.B.C.D.与P点位置有关21.在三棱锥PABC中,D,E,F分别是PA,PB,PC上的三个点,AD:DP=1:3,BE:EP=1:2,CF=FP,则三棱锥PDEF与三棱锥PABC的体积比是()A.1:3B.1:4C.1:5D.1:622.已知E是正方体的棱的中点,则二面角的正切值是()A.B.C.D.23.一平面截一球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是()A.B.C.D.24.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()A.B.C.D.25.设m,n是两条不同的直线,,,是三个不同的平面,给出下列四个命题:若m,n‖,则m若‖,‖,m,则m若m‖,n‖,则m‖n;若,,则‖.其中正确命题的.序号是()(A)①和②(B)②和③(C)③和④(D)①和④26.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是()直线圆双曲线抛物线27.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两全等,则该四棱柱为直四棱柱.其中真命题的编号是(写出所有真命题的编号).28.已知球O的半径为1,A,B,C三点都在球面上,且每两点间的球面距离均为,则球心O到平面ABC的距离为()ABCD29.如图,在长方体中,,分别过BC,的两个平行截面将长方体分成三部分,其体积分别记为,.若,则截面的面积为()(A)(B)(C)(D)30.将正方体的纸盒展开(如右图),直线AB,CD在原来正方体中的位置关系是()A平行B垂直C相交且成60的角D异面且成60的角二,填空题31.长方体全面积为24cm2,各棱长总和为24cm,则其对角线长为cm.32.以正方体ABCDA1B1C1D1的8个顶点中4个为顶点,且4个面均为直角三角形的四面体是(只要写出一个四面体即可).33.已知球的表面积为20,球面上有A,B,C三点,如果AB=AC=2,BC=2,则球心到平面ABC的距离为________.34.如图为正三棱柱的平面展开图,该正三棱柱的各侧面都是正方形,对这个正三棱柱有如下判断:①;②与BC是异面直线;③与BC所成的角的余弦为;④与垂直.其中正确的判断是_________.35.长方体的全面积为,所有棱长之和为,则这个长方形对角线长为______.36.已知为平面的一条斜线,在平面内,到的距离为,,则的取值范围用区间表示为______________________.37.已知异面直线,的公垂线段长为,点,在直线上,,若直线,所成的角为,则点到直线的距离=________.38.在四面体中,平面平面,平面,给出下列结论:①;②;③平面平面;④平面平面.其中正确结论的序号为______________.39.棱长为a正方体ABCDA1B1C1D1中,异面直线AC,A1B1的距离是40.用平面截半径为R的球,如果球心到平面的距离为,那么截得小圆的面积与球的表面积的比值为____.三,解答题:41.在正三棱锥中,.(1)求此三棱锥的体积;(2)求二面角的正弦值.42.如图,二面角的平面角为,,.(1)求的长;(2)求直线与所成的角.43.在正方体中,(1)求证:平面平面;(2)求直线与平面所成的角.44.在四棱锥中,为矩形,平面,,分别为,的中点.(1)求证:平面;(2)当二面角的大小为多少时,就有平面成立,证明你的结论.45.已知正方体ABCD中,E为棱CC上的点.(1)求证:(2)求平面ABD与平面ABCD所成二面角的余弦值;(3)当E恰为棱CC的中点时,求证:平面平面;46.如图,已知四棱锥P-ABCD的底面是直角梯形,ABC=BCD=900,AB=BC=PB=PC=2CD,侧面PBC底面ABCD.(1)求斜线PB与平面ABCD所成角大小.(2)PA与BD是否相互垂直,请证明你的结论.(3)求二面角P-BD-C 的大小.(4)求证:平面PAD平面PAB.47.如图,在正方体中,分别是,的中点.证明:;②求直线与所成的角;③证明:平面平面.48.(本小题满分12分)如图,PA矩形ABCD所在平面,PA=AD=a,M,N分别是线段AB,PC的中点.①求证:MN//平面PDA;②求直线AB到平面PDC的距离.49.(本小题满分14分)如图,已知直三棱柱ABCA1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且ACB=90,AC=2,D是AA1的中点.①求异面直线AB和C1D所成的角(用反三角函数表示);②若E为AB上一点,试确定点E在AB上的位置,使得A1E③在②成立的条件下,求点D到平面B1C1E的距离.50.如图,在四棱锥PABCD中,PD底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.(Ⅰ)求证:EF(Ⅱ)在平面PAD内求一点G,使GF平面PCB,并证明你的结论;(Ⅲ)求DB与平面DEF所成角的大小.51.如图,在长方体中,,点为上的点,且.(1)求证:平面;(2)求二面角的大小(结果用反余弦表示).52.在直角梯形P1DCB中,P1D//CB,CD//P1D且P1D=6,BC=3,DC=,A是P1D的中点,沿AB把平面P1AB折起到平面PAB的位置,使二面角P-CD-B成45角,设E,F分别是线段AB,PD的中点.(1)求证:AF//平面PEC;(2)求平面PEC和平面PAD所成的二面角的大小;(3)求点D到平面PEC的距离.53.已知在正方体ABCDA1B1C1D1中,E,F分别是D1D,BD的中点,G在棱CD上,且CG=.(1)求证:EF(2)求EF与C1G所成角的余弦值;(3)求二面角FEGC1的大小(用反三角函数表示).54.在正方体中,棱长.(Ⅰ)E为棱的中点,求证:;(Ⅱ)求二面角C-AE-B 的平面角的正切值;(III)求点到平面EAB的距离.55.如图,已知四棱锥PABCD中,底面ABCD为正方形,侧面PDC为正三角形,且平面PDC底面ABCD,E为PC的中点.(1)求证:PA//平面EDB;(2)求证:平面EDB平面PBC;(3)求二面角DPBC的大小.56.如图,四棱锥PABCD中,PB底面ABCD,CDPD.底面ABCD为直角梯形,AD‖BC,ABBC,AB=AD=PB=3.点E在棱PA上,且PE=2EA.求异面直线PA与CD所成的角;求证:PC‖平面EBD;求二面角ABED的大小(用反三角函数表示).57.如图,四棱锥的底面为菱形且ABC=120,PA底面ABCD,AB=1,PA=,E为PC的中点.(Ⅰ)求直线DE与平面PAC所成角的大小;(Ⅱ)求二面角平面角的正切值;(Ⅲ)在线段PC上是否存在一点M,使PC平面MBD成立.如果存在,求出MC的长;如果不存在,请说明理由.58.在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.(Ⅰ)求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O点在平面D1AP上的射影是H,求证:D1H(Ⅲ)求点P到平面ABD1的距离.59如图,在正三棱柱ABC=A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为,设这条最短路线与CC1的交点为N,求:(I)该三棱柱的侧面展开图的对角线长;(II)PC和NC的长;(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示).60.如图所示的几何体中,底面是边长为6的正方形,是以为顶点的等腰直角的三角形,且垂直于底面..若边上的中点,上的两个三等分.(1)求证:(2)求二面角的大小.(3)求该几何体体积.参考答案选择题:BCACB;ACCBA;BDCBB;DBAAC;BBCCA;D②④BCD.填空题31.32.33.134.2,335.536.37.838.2,339.a40.3:16。

高中数学练习题 2020-2021学年湖北省荆门市高二(下)期末数学复习练习试卷(8)

高中数学练习题 2020-2021学年湖北省荆门市高二(下)期末数学复习练习试卷(8)

2020-2021学年湖北省荆门市钟祥实验中学高二(下)期末数学复习练习试卷(8)一、选择题:本大题10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是满足题目要求的.A .12B .1C .32D .21.(5分)设m ∈R ,且2m 1−i+1-i 是实数,则m =( )A .{x |x ≤0}B .{x |2≤x ≤4}C .{x |0≤x <2或x >4}D .{x |0<x ≤2或x ≥4}2.(5分)已知全集为R ,集合A ={x |(12)x ≤1},B ={x |x 2-6x +8≤0},则A ∩(∁R B )=( )A .①②B .①③C .②③D .③④3.(5分)给出下列结论:①“a >b ”是“a 2>b 2”的充分条件;②若p :∀x ∈R ,x 2+2x +2>0,则¬p :∃x 0∈R ,x 02+2x 0+2≤0;③“若m >0,则方程x 2+x -m =0有实数根”的否命题是“若m ≤0,则方程x 2+x -m =0没有实数根”;④若p∧q 是假命题,则p 、q 均为假命题.则其中正确结论的序号是( )A .[-13,5]B .[-13,7]C .[0,7]D .[5,7]4.(5分)已知变量x ,y 满足约束条件V Y Y W Y Y X x −y +2≥0x +y −4≤0x −2y −1≤0,则目标函数z =2x +y 的取值范围是( )A .-10B .10C .-6D .65.(5分)执行如图所示的程序框图,输出的S 值为( )二、填空题:本大题共5小题,每小题5分,共25分.答错位置,书写不清,模棱两可均不得分.A .2B .2C .22D .306.(5分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若cosB =34,sinC =2sinA ,且S △ABC =74,则b =( )√√√√A .1B .2C .3D .47.(5分)对于非零向量a 、b ,给出以下结论:①若a ∥b ,则a 在b 方向上的投影为|a |;②若a ⊥b ,则a •b =(a •b )2;③若a •c =b •c ,则a =b ;④若|a |=|b |,且a ,b 同向,则a >b .其中所有正确结论的个数是( )→→→→→→→→→→→→→→→→→→→→→→→→→A .m ≥4或m ≤-2B .m ≥2或m ≤-4C .-2<m <4D .-4<m <28.(5分)已知x >0,y >0,若2y x +8x y>m 2+2m 恒成立,则实数m 的取值范围是( )A .相交B .内切C .外切D .相离9.(5分)(文科做)双曲线x 2a 2−y 2b 2=1的左焦点为F 1,顶点为A 1,A 2,P 是该双曲线右支上任意一点,则分别以线段PF 1,A 1A 2为直径的两圆一定是( )A .(0,6]B .(0,7]C .(6,7]D .(6,7)10.(5分)已知函数f (x )=V W X |lgx |,x >0x +7,x ≤0,若关于x 的方程f (x 2+2x )=a 有6个不相等的实根,则实数a 的取值范围是( )11.(5分)计算:sin 256π+cos 263π+tan (-274π)= .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.12.(5分)若一个几何体的三视图如图,则此几何体的体积为 .13.(5分)若a =21(x -1x 2)dx ,则(x -a x )10的展开式中常数项为 .∫14.(5分)在Rt △ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 外接圆半径r =a 2+b 22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a ,b ,c ,则其外接球的半径R = .√15.(5分)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染指数量Pmg /L 与时间th 间的关系为P =P 0e -kt .如果在前5个小时消除了10%的污染物,则10小时后还剩 %的污染物.16.(12分)已知函数f (x )=3sinωxcosωx +cos 2ωx +m (ω>0,x ∈R )的最小正周期为π,最大值为2.(Ⅰ)求ω和m 值;(Ⅱ)求函数f (x )在区间[0,π2]上的取值范围.√17.(12分)已知数列{a n }是公差不为0的等差数列,满足S 3=9,且a 1,a 2,a 5成等比数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b 1=a 1,b n +1-b n =2a n (n ∈N *),求数列{b n }的通项公式.18.(12分)某班有12名男生和18名女生参加综合素质测试,所得分数的茎叶图如图,若成绩在75分以上(包括75分)定义为“优秀”,成绩在75分以下(不包括75分)定义为“非优秀”.(Ⅰ)如果用分层抽样的方法从“优秀”和“非优秀”中共抽取5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?(Ⅱ)若从所有“优秀”中选3人参加综合素质展示活动,用ξ表示所选学生中女生的人数,写出ξ的分布列,并求ξ的数学期望.19.(12分)如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .(1)证明:PA ∥平面EDB ;(2)证明:PB⊥平面EFD;(3)求二面角C-PB-D的大小.(m≠-20.(13分)设点A、B的坐标分别为(0,1),(0,-1),直线AM、BM相交于点M,且它们的斜率之积是常数-1m+11).(Ⅰ)求点M的轨迹C的方程;交曲线C于点P,Q,是否存在m,使得以PQ为直径的圆恒过点A?若存在,求m的值;若不存在,请说明(Ⅱ)设直线l:y=kx-13理由.x2+ax-lnx(a∈R)21.(14分)设函数f(x)=1−a2(Ⅰ)当a=1时,求函数f(x)的极值;(Ⅱ)当a≥2时,讨论函数f(x)的单调性;(Ⅲ)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求实数m的取值范围.。

高二数学期末复习测试9

高二数学期末复习测试9

高二数学期末复习测试9一、填空题(3*12=36分)1、集合},|{Z n i i x x P n n ∈+==-,则用列举法表示集合=P 。

2、在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是 。

3、如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是 。

4、10)31(xx -的展开式中含x 的正整数指数幂的项数是_________。

5、若0≥a , 且0)(||=+++i z z a z z ,则复数z = 。

6、已知a 、b 、c 是直线,β是平面,给出下列命题,其中真命题的序号是 。

①若c a c b b a //,,则⊥⊥;②若c a c b b a ⊥⊥则,,//;③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交; ⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直。

7、若关于x 的方程22230x ax a a ++-=至少有一个模等于1的根,则实数a 的值为 。

8、8个人排成一排,A ,B ,C 三人中有二人相邻在一起,但是三人不同时相邻,则不同的排法有 种。

9、设地球半径为R ,在北纬60︒的纬度圈上有一点A ,当地球自转6小时后,则点A 转动前、后的球面距离为________。

10、将若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是________。

11、如图:一个底面半径为1cm ,母线与底面所成的角为22arctan 的圆锥,现用一根细丝 带从底面圆周上的点A 处绕圆锥面围一圈扣成丝带环,丝带最短需要的长度为 。

12、在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰..三角形的概率为_________。

二、填空题(3*5=15分)13、在长方体1111D C B A ABCD -中,直线1BD 与平面11B BCC 所成的角为( )A .BD D 1∠B .11C BD ∠ C .11BC D ∠ D .B DD 1∠14、设复数z 在复平面上所对应的点在实轴上方(包括实轴),且满足1||=z ,若i w +-=1,则||w z -的最大值是 ( )A .2+1B .5C .2D .215、如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1的中点,则E 到平面AB C 1D 1的距离为 ( ) A .23 B .22 C .21 D . 33 16、四面体的顶点和各棱中点共10个点, 在其中取4个不共面的点, 则不同的取法共有( ) A . 150种 B . 147种 C . 144种 D . 141种17、2010201120082011420112201102011C C C C C -+-+- 等于( )A .10052B .10052-C .10062D . 10062-三、解答题(7+8+10+12+12=49分)18、已知复数1z 满足1(2)(1)1z i i -+=-(i 为虚数单位),复数2z 的虚部为2,且12z z ⋅是实数,求2z .19、在二项式n x x )1(3-的展开式中,第三项与第二项的二项式系数之比为11∶2,其中*N n ∈;(1)求n ;(2)求展开式中的所有的有理项。

2022-2023学年北京市北京市海淀区高二年级上册学期数学期末复习试题【含答案】

2022-2023学年北京市北京市海淀区高二年级上册学期数学期末复习试题【含答案】

2022-2023学年北京市北京市海淀区高二上学期数学期末复习试题一、单选题1.已知复数满足,若为纯虚数,则的值为( )z (34i)4i()z b b -=+∈R z b A .B .C .4D .34-3-【答案】D【分析】首先变形求出的表达式,再根据纯虚数的定义求解即可.z 【详解】∵,,()()34i 4i z b b -=+∈R ()()()()4i 34i 124316i 4i 34i 2525b b b b z ++-+++∴===-因为为纯虚数,z 124033160b b b -=⎧⇒=⎨+≠⎩故选:D2.已知平面两两垂直,直线满足:,则直线不可能满足αβγ、、a b c 、、,,a b c αβγ⊆⊆⊆a b c 、、以下哪种关系A .两两垂直B .两两平行C .两两相交D .两两异面【答案】B【分析】通过假设,可得平行于的交线,由此可得与交线相交或异面,由此不可能//a b ,a b ,αβc 存在,可得正确结果.////a b c 【详解】设,且与均不重合l αβ= l ,a b 假设:,由可得:,////a b c //a b //a β//b α又,可知,l αβ= //a l //b l 又,可得:////a b c //c l因为两两互相垂直,可知与相交,即与相交或异面,,αβγl γl c 若与或重合,同理可得与相交或异面l a b l c 可知假设错误,由此可知三条直线不能两两平行本题正确选项:B【点睛】本题考查空间中的直线、平面之间的位置关系,关键在于能够通过线面关系得到第三条直线与前两条线之间的位置关系,从而得到正确结果.3.“m =0是“直线与直线之间的距离为2”的( )()12110mx m l y +-+=:()22110l mx m y +--=:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据平行线间的距离公式可得或,进而根据充分与不必要条件的定义判断即可.0m =45m =【详解】两条平行线间的距离,即,解得或,2d ==2540m m -=0m =45m =即“”是“两直线间距离为2”的充分不必要条件.0m =故选:A.4.如图所示,在平行四边形中,,沿将折起,使平面平面ABCD AB BD ⊥BD ABD △ABD ⊥,连接,则在四面体的四个面中,互相垂直的平面的对数为( )BCD AC ABCDA .1B .2C .3D .4【答案】C【分析】利用线面垂直得到平面平面,平面平面,平面平面,ABD ⊥BCD ABC ⊥BCD ACD ⊥ABD 得到答案.【详解】平面平面,平面平面,ABD ⊥BCD ABD ⋂BCD BD =,平面,故平面,平面,故平面平面;AB BD ⊥AB ⊂ABD AB ⊥BCD AB ⊂ABC ABC ⊥BCD ,平面,故平面,平面,故平面平面;CD BD ⊥CD ⊂BCD CD ⊥ABD CD ⊂ACD ACD ⊥ABD 综上所述:平面平面;平面平面;平面平面;ABD ⊥BCD ABC ⊥BCD ACD ⊥ABD 故选:C5.直线被圆截得的弦长的最小值为( ):310l ax y a --+=22:(1)(2)25C x y ++-=A .B .C .D .【答案】B【分析】确定直线过定点,当时,直线被圆截得的弦长最短,计算即可.()3,1P PC l ⊥l C 【详解】直线,即,直线过定点,:310l ax y a --+=()310a x y --+=l ()3,1P 圆的圆心为,,当时,直线被圆截得的弦长最短.C ()1,2C -=5r PC l ⊥l C因为,所以弦长的最小值为.PC ===故选:B6.在平面内,,是两个定点,是动点,若,则点的轨迹为( )A B C 1AC BC ⋅=C A .圆B .椭圆C .双曲线D .抛物线【答案】A【分析】设出、、的坐标,利用已知条件,转化求解的轨迹方程,推出结果即可.A B C C 【详解】解:在平面内,,是两个定点,是动点,A B C 不妨设,,设,(,0)A a -(,0)B a (,)C x y 所以,(),AC x a y =+(),BC x a y =-因为,1AC BC ⋅= 所以,即,()()21x a x a y +-+=2221x y a +=+所以点的轨迹为圆.C 故选:A .7.与双曲线有共同渐近线,且经过点的双曲线的虚轴的长为( )22148x y -=()2,4A .B .C .2D .4【答案】D【分析】依题意,设双曲线的方程为,将点的坐标代入可求.即可求解.()22048x y λλ-=≠()2,4λ【详解】设与双曲线有共同的渐近线的双曲线的方程为,22148x y -=()22048x y λλ-=≠该双曲线经过点,()2,4.416148λ∴=-=-所求的双曲线方程为:,即.∴22148x y -=-22184y x -=所以,2b =所以虚轴长为4.故选:D8.已知,,动点满足,则动点的轨迹与圆的位置()0,0O ()3,0A (),P x y 2PAPO=P ()2221x y -+=关系是( )A .相交B .外切C .内切D .相离【答案】B【分析】由题意求出动点的轨迹方程,再由两圆圆心距与半径的关系判断.P 【详解】设,由题意可知,(,)P x y ()222222||4||,(3)4PA PO x y x y =∴-+=+ 整理得,点的轨迹方程为,P 22(1)4x y ++=其图形是以为圆心,以2为半径的圆,(1,0)-而圆的圆心坐标为,半径为1,22(2)1x y -+=(2,0)可得两圆的圆心距为3,等于,213+=则动点的轨迹与圆的位置关系是外切.P 22(2)1x y -+=故选:B.9.已知点是抛物线上的动点,点A 的坐标为,则点到点A 的距离与到轴的距P 24x y =()12,6P x 离之和的最小值为( )A .13B .12C .11D 【答案】B【分析】作出辅助线,利用抛物线定义得到点到点A 的距离与到轴的距离之和P x ,由两点之间,线段最短,得到距离之和的最小值为,求出答案.1PA PH PA PF +=+-1AF -【详解】如图,⊥轴,连接,PH x PF 由抛物线定义得:抛物线的准线方程为,焦点坐标为,24x y =1y =-()0,1故,1PH PF =-则点到点A 的距离与到轴的距离之和,P x 1PA PH PA PF +=+-连接,与抛物线交于点,此时,AF P '11P A P F AF ''+-=-故点到点A 的距离与到轴的距离之和的最小值为,P x 1AF -其中,故最小值为.13AF ==112AF -=故选:B10.设,分别为双曲线:的左、右焦点,为双曲线的左顶点,以1F 2F C ()222210,0x y a b a b -=>>A 为直径的圆交双曲线的某条渐近线于,两点,且,(如图),则该双曲线的12F FM N 135MAN ∠=︒离心率为( )ABC .2D【答案】D【分析】联立与求出,进而的正切可求,得出的关系,从222x y c +=by xa =(),M a b MAO ∠a b 与而进一步解出答案.【详解】依题意得, 以线段为直径的圆的方程为 ,12F F 222x y c +=双曲线 的一条渐近线的方程为.C b y x a =由 以及222,,b y x a x y c ⎧=⎪⎨⎪+=⎩222,a b c +=解得 或,x a y b =⎧⎨=⎩,.x a y b =-⎧⎨=-⎩不妨取 , 则.(),M a b (),N a b --因为,(),0,135A a MAN ∠-=所以 ,45MAO ∠=又,tan 2b MAO a ∠=所以,12b a =所以 ,2b a =所以该双曲线的离心率 e ==故选:D.二、填空题11.在复数范围内分解因式:___________.44x +=【答案】()()()()1i 1i 1i 1i x x x x +--+++--【分析】因式分解第一步将,第二步()()2422i 4i 2x x x =+-+=()()2222i 1i xx +=-- 综合起来即可得到答案.()()2222i 1i xx -=-+【详解】由题意知()()()()22222242i 2i 14i 1i x x x x x ⎡⎤⎡⎤=+-=+---+⎣⎦⎣⎦故答案为:.()()()()1i 1i 1i 1i x x x x +--+++--12化简后为______.10=【答案】2212516y x +=【分析】运用方程的几何意义得出结果.【详解】解:,10+=故令,,(),M x y ()10,3F -()20,3F ∴,1212106MF MF F F +=>=∴方程表示的曲线是以,为焦点,长轴长的椭圆,()10,3F -()20,3F 210a =即,,,5a =3c =4b =∴方程为.2212516y x +=故答案为:.2212516y x +=13.已知集合,,若集合中有2个元素,则实数(){,A x y x ==(){},B x y y x b ==+A B ⋂b 的取值范围是______【答案】(1⎤-⎦【分析】首先分析集合、的元素特征,再数形结合求出参数的取值范围.A B b 【详解】解:由,所以,x =0x ≥221x y +=()0x ≥所以表示以为圆心,为半径的圆在轴及右侧部分的点集,(){,A x y x ==()0,01y 集合表示直线上的点集,(){},B x y y x b ==+y x b =+集合与集合都是点集,集合中有个元素,A B A B ⋂2由,解得1d ==b =由图可知,即.1b <≤-(1b ⎤∈-⎦故答案为:(1⎤-⎦14.已知实数满足,则的最大值为__________.,x y 2222x y x y+=+4yx -【答案】1【分析】由曲线方程画出曲线所表示的图形,将看作曲线上的点与坐标为的点连线的斜4y x -()4,0率,求出最大值.【详解】由“”和“”代入方程仍成立,所以曲线关于x 轴和y 轴对称,故只x -y -2222xy x y+=+需考虑,的情形,0x ≥0y ≥此时方程为,即,所以的轨迹如下图,2222x y x y +=+()()22112x y -+-=(),x y,表示点和连线的斜率,由图可知,当曲线第四象限部分半圆(圆心为044y y x x -=--(),x y ()4,0l l.()1,1-设:,解得或(舍去),l ()4y k x =-1k =17-所以的最大值为1.4yx -故答案为:1.15.在正方体中,N 为底面的中心,为线段上的动点(不包括两个1111ABCD A B C D -ABCD P 11A D 端点),为线段的中点,则下列说法中正确的序号是________________.M AP①与是异面直线;CM PN ②;CM PN >③平面平面;PAN ⊥11BD B ④过三点的正方体的截面一定是等腰梯形.,,P A C 【答案】②③④【分析】连接NC ,根据平面几何知识可得CN ,PM 交于点A ,可判断①;分别在△MAC 中,和在△PAN 中,运用余弦定理求得CM 2和PN 2,比较大小可判断②;证明与平面后可得面AN 11BDD B 面垂直,可判断③;作出过三点的截面后可判断④.,,P A C 【详解】解:连接NC ,因为共线,即交于点,共面,,,C N A ,CN PM A因此共面,①错误;,CM PN 记,则,PAC θ∠=2222212cos cos 4PN AP AN AP AN AP AC AP AC θθ=+-⋅=+-⋅,2222212cos cos 4CM AC AM AC AM AC AP AP AC θθ=+-⋅=+-⋅又,AP AC <,,即.②正确;22223()04CM PN AC AP -=->22CM PN >CM PN >由于正方体中,,平面,平面,AN BD ⊥1BB ⊥ABCD AN ⊂ABCD 所以,因为,平面,1BB AN ⊥1BB BD B ⋂=1,BB BD ⊂11BB D D 所以平面,AN ⊥11BB D D 因为平面,AN ⊂PAN 所以平面平面,即平面平面,③正确;PAN ⊥11BDD B PAN ⊥11BD B过点作交于点,连接,由正方体性质知,,P 11//PK A C 11C D K 11,KC A C 11//A C AC 所以,共面,且,//PK AC ,PK AC 11A P C K =故四边形就是过P ,A ,C 三点的正方体的截面,PKCA 因为,为线段上的动点(不包括两个端点),P 11A D 所以,,PK AC ≠2222221111AP A P A A C K C C CK =+=+=故四边形是等腰梯形,故④正确.PKCA 故答案为:②③④.三、解答题16.已知直线():10l x m y m +--=(1)若直线的倾斜角,求实数m 的取值范围;ππ,42α⎡⎤∈⎢⎥⎣⎦(2)若直线l 分别与x 轴,y 轴的正半轴交于A ,B 两点,O 是坐标原点,求面积的最小值及此AOB 时直线l 的方程.【答案】(1)01m ≤≤(2)最小值为2,直线l 方程为:.AOB S 20x y +-=【分析】(1)由直线的斜率和倾斜角的范围可得的不等式,解不等式可得;m (2)由题意可得点和点,可得,由基本不0,1m B m ⎛⎫ ⎪-⎝⎭(),0A m 111[(1)2]221S OA OB m m ==-++-等式求最值可得.【详解】(1)解:由题意可知当时,倾斜角为,符合题意1m =2π当时,直线l 的斜率1m ≠11k m =-∵倾斜角,∴.[)ππ,tan 1,42k αα∞⎡⎫∈⇒=∈+⎪⎢⎣⎭11011m m ≥⇒≤<-故m 的范围:.01m ≤≤(2)解:在直线l 中:令x =0时,即,令y =0时x =m ,即1m y m =-0,1m B m ⎛⎫ ⎪-⎝⎭(),0A m 由题意可知:得001x m m y m =>⎧⎪⎨=>⎪-⎩1m >即()()()2212111112212121AOBm m m m S OA OB mm m m -+-+=⋅=⋅==---△()1111222212m m ⎡⎤⎡⎤=-++≥+=⎢⎥⎢⎥-⎣⎦⎣⎦当且仅当时取等号,()2111121m m m m -=⇒-=⇒=-故最小值为2,此时直线l 方程为:.AOB S 20x y +-=17.已知圆经过点,,且______.从下列3个条件中选取一个,补充在上面的横E ()0,0A ()2,2B 线处,并解答.①与轴相切;②圆恒被直线平分;③过直线与直线y E ()20R mx y m m --=∈440x y +-=的交点C .240x y --=(1)求圆的方程;E (2)求过点的圆的切线方程.()4,3P E 【答案】(1)任选一条件,方程都为22(2)4x y -+=(2)或4x =512160x y -+=【分析】(1) 选①,设圆的方程为,根据题意列出方程组,求解即可;E 222()()x a y b r -+-=选②,由题意可得直线恒过为圆的圆心,代入A 点坐标即可求解;20mx y m --=(2,0)E 选③,求出两直线的交点为,根据圆过A ,B ,C 三点求解即可;(4,0)C E (2)先判断出点P 在圆外,再分切线的斜率存在与不存在分别求解即可.E 【详解】(1)解:选①,设圆的方程为,E 222()()x a y b r -+-=由题意可得,解得,则圆的方程为;222222(2)(2)a ra b ra b r ⎧=⎪+=⎨⎪-+-=⎩202a b r =⎧⎪=⎨⎪=⎩E 22(2)4x y -+=选②,直线恒过,20mx y m --=(2,0)而圆恒被直线平分,E 20(R)mx y m m --=∈所以恒过圆心,因为直线过定点,20mx y m --=20mx y m --=(2,0)所以圆心为,可设圆的标准方程为,(2,0)222(2)x y r -+=由圆经过点,得,E (0,0)A 24r =则圆的方程为.E 22(2)4x y -+=选③,由条件易知,(4,0)C 设圆的方程为,2222(4)00x y Dx Ey F D E F ++++=+->由题意可得,解得,082201640F D E F D F =⎧⎪+++=⎨⎪++=⎩400D E F =-⎧⎪=⎨⎪=⎩则圆的方程为,即.E 2240x y x +-=22(2)4x y -+=综上所述,圆的方程为;E 22(2)4x y -+=(2)解:因为,所以点P 在圆外,22(42)3134-+=>E 若直线斜率存在,设切线的斜率为,k 则切线方程为,即3(4)y k x -=-430.kx y k --+=,解得.2512k =所以切线方程为,512160x y -+=若直线斜率不存在,直线方程为,满足题意.4x =综上过点的圆的切线方程为或.(4,3)P E 4x =512160x y -+=18.如图,在三棱一中,为等腰直角三角形,.-P ABC ABC π,2BAC ∠=π3PAC PAB ∠=∠=(1)求证:;PA BC ⊥(2)若,求平面与平面的夹角的余弦值.24PA AC ==PAB PBC 【答案】(1)证明见解析【分析】(1)取中点,连接以及,先证明,再根据线面垂直的判定证BC D AD PD ACP ABP ≌△△明平面,进而根据线面垂直的性质证明即可;BC ⊥PAD (2)根据角度关系,结合线面垂直的判定可得平面,再根据线线垂直,以为原点,AC ⊥CPE A 为轴,为轴,建立空间直角坐标系,再分别计算平面与平面的法向量求解即AB x AC y PAB PBC 可.【详解】(1)证明:取中点,连接以及,如图2,BC D AD PD图2在和中,,,,ACP △ABP AB AC =AP AP =PAC PAB ∠=∠所以ACP ABP ≌△△所以,所以CP BP =PD BC⊥又因为,平面,平面,,AD BC ⊥AD ⊂PAD PD ⊂PAD AD PD D = 所以平面BC ⊥PAD又因为平面,所以AP ⊂ADP PA BC⊥(2)在平面中,过点作,垂足为,连接,,,如图3,PAD P PE AD ⊥E CE BE PE图3由(1)平面,则,则平面BC ⊥PAD BC PE ⊥PE ⊥ABC 在中,,,同理PCA π3PAC ∠=π22AP AC PCA =⇒∠=π2PBA ∠=∵,,且,平面,则平面.AC PE ⊥AC CP ⊥PE CP P ⋂=,PE CP ⊂CPE AC ⊥CPE 又∵平面,∴,同理可得,CE ⊂CPE A C CE ⊥AB BE ⊥则四边形为正方形,ABCE,则在中,可求出2AB AC BE CE ====Rt PBE △PB =PE =则以为原点,为轴,为轴,如图建立空间直角坐标系,A AB x AC y则,,,,()0,0,0A ()2,0,0B ()0,2,0C (2,2,P设平面的法向量为,,,PAB (),,m x y z =()2,0,0AB =(0,2,BP =则,令,则,2020x y =⎧⎪⎨+=⎪⎩1y =0x=0,1,z m ⎛=⇒= ⎝ 设平面的法向量为,,,PBC (),,n x y z =()2,2,0CB =-(0,2,BP =则,令,则,22020x y y -=⎧⎪⎨+=⎪⎩1x =1y=1,1,z n ⎛=⇒= ⎝ 记二面角的平面角为,A PBC --θ则cos m nm n θ⋅===⋅又因为为锐角,则θcos θ=19.已知椭圆C :与椭圆的离心率相同,为椭圆C 上()222210x y a b b a +=>>22184x y +=P ⎫⎪⎪⎭一点.(1)求椭圆C 的方程.(2)若过点的直线l 与椭圆C 相交于A ,B 两点,试问以AB 为直径的圆是否经过定点?若1,03Q ⎛⎫⎪⎝⎭T 存在,求出的坐标;若不存在,请说明理由.T 【答案】(1)2212y x +=(2)存在的坐标为,理由见解析T (1,0)-【分析】(1)先求出椭圆,由此得到,将点的坐标代入椭22184x y +=222a b =P 圆,得到,再代入,解得,,则可得结果;C 221112b a +=222a b =21b =22a =(2)先用两个特殊圆求出交点,再猜想以AB 为直径的圆经过定点,再证明猜想,(1,0)-(1,0)T -设直线,并与联立,利用韦达定理得到,,进一步得到,1:3l x my =+2212y x +=12y y +12y y 12x x +,利用,,,证明即可.12x x 12y y +12y y 12x x +12x x 0TA TB ⋅=【详解】(1)在椭圆中,,,离心率22184x y +=1a =12b=12c ==e =11c a ==在椭圆C :中,()222210x y a b b a +=>>c e a ===,=222a b =因为在椭圆C :上,P ()222210x y a b b a +=>>所以,所以,所以,,221112b a +=2211122b b +=21b =22a =所以椭圆.22:12y C x +=(2)当直线的斜率为0时,线段是椭圆的短轴,以AB 为直径的圆的方程为,l AB 221x y +=当直线的斜率不存在时,直线的方程为,代入,得,以AB 为直径的圆的l l 13x =2212y x +=43y =±方程为,22116()39x y -+=联立,解得,2222111639x y x y ⎧+=⎪⎨⎛⎫-+=⎪ ⎪⎝⎭⎩10x y =-⎧⎨=⎩由此猜想存在,使得以AB 为直径的圆是经过定点,(1,0)T -(1,0)T -证明如下:当直线的斜率不为0且斜率存在时,设直线,l 1:3l x my =+联立,消去并整理得,221312x my y x ⎧=+⎪⎪⎨⎪+=⎪⎩x 22128(0239m y my ++-=,224184()0929m m ∆=++⋅>设、,11(,)A x y 22(,)B x y 则,,122213()2m y y m +=-+122819()2y y m =-+则,121212112()333x x my my m y y +=+++=++2222133()2m m =-++121211()()33x x my my =++2121211()39m y y m y y =+++22228211199()9()22m m m m =--+++,22101199()2m m =-++因为TA TB⋅1122(1,)(1,)x y x y =+⋅+1212(1)(1)x x y y =+++1212121x x x x y y =++++222221012281111939()3()9()222m m m m m =-+-++-+++2216816199()2m m +=-++,0=所以,所以点在以为直径的圆上,TA TB ⊥(1,0)T -AB 综上所述:以AB 为直径的圆是经过定点.(1,0)T -【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为;()()1122,,,x y x y (2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;x y ∆(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;12x x +12x x 12y y +12y y (5)代入韦达定理求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
A C D E
F 高二期末复习测试
一.选择题(每小题只有唯一选项是正确的,每小题5分,共计40分)
1. 三对夫妇去上海世博会参观,在中国馆前拍照留念,6人排成一排,每对夫妇必须相邻,不同的排法种数为( ) A.6
B. 24
C. 48
D.72
2. 已知随机变量~(,)B n p ξ,且12,8E V ξξ==,则p 和n 的值依次为( )
A.31,36
B.32,18
C.61,72
D.21
,24
3. 从5男4女中选4位代表,其中至少有2位男同志,且至少有1位女同志,分别到4个不同的工厂调查,不同的分派方法有( )
A.100种
B.400种
C.480种
D.2400种
4.
若423401234(2x a a x a x a x a x =++++,则2202413()()a a a a a ++-+的值为( )
A.1 B .1- C .0 D .2
5. 已知随机变量ξ服从正态分布()22N ,a ,且P(ξ<4)=0.8,则P(0<ξ<2)=
A.0.6
B .0.4
C .0.3
D .0.2
6. 若实数a,b 满足0,0,a b ≥≥且0ab =,则称a 与b 互补,
记(,),a b a b ϕ=-,那么(),0
a b ϕ=是a 与b 互补的 ( ) A .必要而不充分的条件 B .充分而不必要的条件
C .充要条件
D .即不充分也不必要的条件
7. 观察下列各式:5
5=3125,6
5=15625,7
5=78125,…,则2011
5
的末四位数字为( )
A .3125
B .5625
C .0625
D .8125
8. 从1,2,3,4,5中任取2各不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2
个数均为偶数”,则P (B ︱A )= ( )
(A )18 (B )14 (C )25 (D )12
二、填空题:本大题共6小题,每小题5分,满分30分. 9. 观察下列等式
1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49
……
照此规律,第n 个等式为 。

10. 接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为_____________.(精确到0.01) 11. 12
3
1

(x
x -
展开式中的常数项为_____________ 12. 计算:4
1i i -⎛⎫
= ⎪⎝⎭
__________
13. 古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有 种
14.(1)(极坐标与参数方程选做题)已知曲线C 的极坐标方程是4cos ρθ=. 以极点为平面直角坐标系
的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l
的参数方程是:12x y ⎧=
+⎪⎪⎨⎪=⎪⎩(t 为参数),则直线l 与曲线C 相交所成的弦的弦长为 .
(2)如图,在梯形ABCD 中,AB ∥CD ,
4AB =,2CD =,,E F 分别为,AD BC 上的点,且3EF =,
EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为________.
三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 15. 已知复数,)32()1(2i m m m m z -++-=当实数m 取什么值时,复数z 是: (1)零;(2)纯虚数; (3).52i z +=
16.数列}{n a 的前n 项和n S 满足)(2*N n a n S n n ∈-=. (1)计算4321,,,a a a a 的值;
(2)猜想数列}{n a 的通项公式并证明.
17. 6个人坐在一排10个座位上,问(1)空位不相邻的坐法有多少种?(2) 4个空位只有3个相邻的坐法有多少种?(3) 4个空位至多有2个相邻的坐法有多少种?
18.一机器可以按各种不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用x 表示转速(单位:转/秒),用y 表示每小时生产的有缺点物件个数,现观测得到()x y ,的4组观测值为(8,5),(12,8),(14,9),(16,11). (1)假定y 与x 之间有线性相关关系,求y 对x 的回归直线方程;
(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少 转/秒.(精确到1转/秒)(线性回归方程y bx a =+中系数计算公式
其中,x y 表示样本均值。


19.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在1次游戏中,
(i )摸出3个白球的概率; (ii )获奖的概率; (Ⅱ)求在2次游戏中获奖次数X 的分布列及数学期望()E X .
20.已知函数
)(ln )(2
R a x ax x x f ∈-+= (1)若函数)(x f 在区间[]2,1上是减函数,求实数a 的取值范围;
(2)令2
)()(x x f x g -=,是否存在实数a ,当(]e x ,0∈时,函数)(x g 最小值为3.若存在,求出a 的
值;若不存在,说明理由.。

相关文档
最新文档