高中数学 综合质量评估 新人教A版必修4

合集下载

综合质量评估--(人教A版)数学选修1 课时作业本(有答案)-(高二)

综合质量评估--(人教A版)数学选修1 课时作业本(有答案)-(高二)

综合质量评估--(人教A 版)数学选修1 课时作业本(有答案)-(高二)综合质量评估 第一至第三章 (120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.“x>3”是“不等式x 2-2x>0”的 ( ) A.充分不必要条件 B.充分必要条件 C.必要不充分条件 D.非充分必要条件【解析】选A.解不等式x 2-2x>0得x<0或x>2,故“x>3”是“不等式x 2-2x>0”的充分不必要条件.2.命题:“∀x ∈R,都有x 2-x+1>0”的否定是 ( ) A.∀x ∈R,都有x 2-x+1≤0B.∃x 0∈R,使-x 0+1>0C.∃x 0∈R,使-x 0+1≤0D.∃x 0∈R,使x 2-x 0+1<0【解析】选C.全称命题的否定是特称命题.3.函数y=f(x)的图象如图1所示,则y=f ′(x)的图象可能是 ( )【解析】选D.由函数y=f(x)的图象可知当x<0时,函数单调递增,故f ′(x)>0,当x>0时,函数单调递减,故f ′(x)<0.4.南南阳高二期末)若函数f(x)=x 3+ax 2+3x-9在x=-1时取得极值,则a 等于 ( ) A.1B.2C.3D.4【解析】选C.f ′(x)=3x 2+2ax+3.由题意知f ′(-1)=0,解得a=3.5.设曲线y=ax 2在点(1,a)处的切线与直线2x-y-6=0平行,则a 的值为 ( )A.1B.C.-D.-1【解析】选A.y ′=2ax,于是曲线y=ax 2在点(1,a)处切线的斜率为2a,由题意得2a=2,解得a=1.6.已知点P 是双曲线-=1(a>0)上一点,双曲线的一条渐近线方程为3x-2y=0,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=3,则|PF 2|等于 ( ) A.7B.6C.5D.3【解题指南】先根据渐近线方程求出a,再根据双曲线的定义求|PF 2|. 【解析】选A.由双曲线方程得渐近线方程为3x ±ay=0,则a=2,双曲线中c=,b=3,由|PF 1|=3知P 为双曲线左支上一点, 则|PF 2|=|PF 1|+4=7.7.椭圆+=1(a>b>0)的离心率为,则双曲线-=1(a>0,b>0)的离心率 为 ( )A.B.C.D.【解析】选B.由题意知=,得a 2=4b 2,又a>b>0,所以a=2b.所以双曲线的离心率e===.【补偿训练】设双曲线-=1的一条渐近线与抛物线y=x 2+1只有一个公共点,则双曲线的离心率为 ( )A.B.5C.D.【解析】选D.设双曲线的渐近线方程为y=kx,这条直线与抛物线y=x 2+1相切,联立方程得整理得x2-kx+1=0,则Δ=k2-4=0,解得k=±2,即=2,故双曲线的离心率e====.8.设函数f(x)=x2-9lnx在区间[a-1,a+1]上单调递减,则实数a的取值范围是( )A.(1,2]B.[4,+∞)C.(-∞,2]D.(0,3]【解析】选A.f′(x)=x-=(x>0),令f′(x)≤0得0<x≤3.所以f(x)在(0,3]上单调递减,所以解得1<a≤2.9.已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为( )A.-=1B.-=1C.-=1D.-=1【解析】选B.因为双曲线-=1(a>0,b>0)的一个焦点在抛物线y2=24x的准线上,所以F(-6,0)是双曲线的左焦点,即a2+b2=36,又双曲线的一条渐近线方程是y=x,所以=,解得a2=9,b2=27,所以双曲线的方程为-=1.10.抛物线C:y2=2px(p>0)的焦点为F,M是抛物线C上的点,若三角形OFM的外接圆与抛物线C的准线相切,且该圆的面积为36π,则p的值为( )A.2B.4C.6D.8【解析】选D.因为△OFM的外接圆与抛物线C:y2=2px(p>0)的准线相切,所以△OFM的外接圆的圆心到准线的距离等于圆的半径.因为圆的面积为36π,所以圆的半径为6,又因为圆心在OF 的垂直平分线上,|OF|=,所以+=6,p=8.11.南二模)已知函数f(x)=x 3+ax 2+bx+c 在x 1处取得极大值,在x 2处取得极小值,满足x 1∈(-1,0),x 2∈(0,1),则的取值范围是 ( ) A.(0,2) B.(1,3) C.[0,3]D.[1,3]【解析】选B.因为f(x)=x 3+ax 2+bx+c, 所以f ′(x)=x 2+ax+b.因为函数f(x)在区间(-1,0)内取得极大值,在区间(0,1)内取得极小值, 所以f ′(x)=x 2+ax+b=0在(-1,0)和(0,1)内各有一个根, f ′(0)<0,f ′(-1)>0,f ′(1)>0,即在aOb 坐标系中画出其表示的区域,如图,=1+2×,令m=,其几何意义为区域中任意一点与点(-2,-1)连线的斜率,分析可得0<<1,则1<<3,所以的取值范围是(1,3).12.门模拟)若点O 和点F(-2,0)分别是双曲线-y 2=1(a>0)的中心和左焦点,点P 为双曲线右支上的任意一点,则·的取值范围为 ( )A.[3-2,+∞)B.[3+2,+∞)C.D.【解析】选B.因为F(-2,0)是已知双曲线的左焦点,所以a 2+1=4,即a 2=3,所以双曲线方程为-y 2=1,设点P(x 0,y 0)(x 0≥),则有-=1(x 0≥),解得=-1(x 0≥),因为=(x 0+2,y 0),=(x 0,y 0),所以·=x 0(x 0+2)+=x 0(x 0+2)+-1=+2x 0-1,此二次函数对应的抛物线的对称轴为x 0=-,因为x 0≥,所以当x 0=时,·取得最小值×3+2-1=3+2,故·的取值范围是[3+2,+∞).二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.函数f(x)=lnx 的图象在点(e,f(e))处的切线方程是 .【解析】因为f ′(x)=,所以f ′(e)=,又f(e)=1,所以切线方程为y-1=(x-e),即y=x.答案:y=x14.若命题“∃x 0∈R,a+x 0+1<0”是假命题,则a 的取值范围是 .【解析】因为∃x0∈R,a+x0+1<0是假命题,所以∀x∈R,ax2+x+1≥0恒成立,当a=0时,1≥0,命题成立.当a≠0时,即所以a≥,所以a的取值范围为a≥或a=0.答案:a≥或a=015.若直线y=kx是y=f(x)=lnx的一条切线,则k= . 【解析】设切点坐标为(x0,y0).因为y=lnx,所以y′=.所以f′(x0)==k.因为点(x0,y0)既在直线y=kx上,也在曲线y=lnx上,所以把k=代入①式得y0=1,再把y0=1代入②式求出x0=e.所以k==.答案:16.已知双曲线-=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),则a= ,b= .【解题指南】焦点在x 轴的双曲线的渐近线为y=±x,焦点(±c,0).【解析】因为渐近线方程y=-2x,所以=2①.焦点(,0),所以c=.所以a 2+b 2=c 2=5②.由①②联立解得a=1,b=2. 答案:1 2三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)命题p:关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立,q:函数f(x)=(3-2a)x 是增函数,若p 或q 为真,p 且q 为假,求实数a 的取值范围. 【解析】设g(x)=x 2+2ax+4,若p 真,由于关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立, 所以函数g(x)的图象开口向上且与x 轴没有交点, 故Δ=4a 2-16<0, 所以-2<a<2.若q 真,即函数f(x)=(3-2a)x 是增函数, 则3-2a>1,所以a<1.又由于p 或q 为真,p 且q 为假,所以p 和q 一真一假,(1)若p 真q 假,则所以1≤a<2. (2)若p 假q 真,则所以a≤-2.综上可知,所求实数a的取值范围为(-∞,-2]∪[1,2).【补偿训练】已知p:f(x)=x+在区间 [1,+∞)上是增函数;q:f(x)=x3+ax2+3x+1在R上有极值.若“p∨q”为真,求实数a的取值范围.【解析】若p真,f′(x)=1-.因为f(x)=x+在区间[1,+∞)上是增函数,则f′(x)=1-≥0在[1,+∞)上恒成立,即a≤x2在[1,+∞)上恒成立,所以a≤(x2)min,所以a≤1.p:A={a|a≤1}.若q真,f′(x)=3x2+2ax+3.要使得f(x)=x3+ax2+3x+1在R上有极值,则f′(x)=3x2+2ax+3=0有两个不相等的实数解,Δ=4a2-4×3×3>0,解得a<-3或a>3.q:B={a|a<-3或a>3}.因为“p∨q”为真,所以A∪B={a|a≤1或a>3}.所以所求实数a的取值范围为(-∞,1]∪(3,+∞).18.(12分)已知函数f(x)=x3-x2+bx+c.(1)若f(x)的图象有与x轴平行的切线,求b的取值范围.(2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)<c2恒成立,求c的取值范围.【解析】(1)f ′(x)=3x 2-x+b,f(x)的图象上有与x 轴平行的切线,则f ′(x)=0有实数解. 即方程3x 2-x+b=0有实数解. 所以Δ=1-12b ≥0,解得b ≤.(2)由题意,得x=1是方程3x 2-x+b=0的一个根,设另一个根为x 0,则解得所以f(x)=x 3-x 2-2x+c, f ′(x)=3x 2-x-2.当x ∈时,f ′(x)<0;当x ∈(1,2]∪时,f ′(x)>0.所以当x=-时,f(x)有极大值+c,又f(-1)=+c,f(2)=2+c,所以当x ∈[-1,2]时,f(x)的最大值为f(2)=2+c. 因为当x ∈[-1,2]时,f(x)<c 2恒成立. 所以c 2>2+c,解得c<-1或c>2, 所以c 的取值范围是(-∞,-1)∪(2,+∞).19.(12分)已知椭圆的两焦点为F 1(-,0),F 2(,0),离心率e=.(1)求此椭圆的方程.(2)设直线l:y=x+m,若l与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值.【解析】(1)设椭圆方程为+=1(a>b>0),则c=,=,所以a=2,b2=a2-c2=1.所以所求椭圆方程为+y2=1.(2)由消去y,得5x2+8mx+4(m2-1)=0,则Δ=64m2-80(m2-1)>0,得m2<5(*).设P(x1,y1),Q(x2,y2),则x1+x2=-,x1x2=,y1-y2=x1-x2,|PQ|===2.解得m2=,满足(*),所以m=±.20.(12分)已知函数f(x)=-x3+2ax2-3a2x+b(a>0).(1)当f(x)的极小值为-,极大值为-1时,求函数f(x)的解析式.(2)若f(x)在区间[1,2]上为增函数,在区间[6,+∞)上为减函数,求实数a的取值范围. 【解析】(1)f′(x)=-x2+4ax-3a2=-(x-a)(x-3a),令f′(x)≥0,得a≤x≤3a,令f′(x)≤0,得x≥3a或x≤a,所以f(x)在(-∞,a]上是减函数,在[a,3a]上是增函数,在[3a,+∞)上是减函数,所以f(x)在x=a处取得极小值,在x=3a处取得极大值.由已知有即解得所以函数f(x)的解析式为f(x)=-x3+2x2-3x-1.(2)由(1)知f(x)在(-∞,a]上是减函数,在[a,3a]上是增函数,在[3a,+∞)上是减函数,所以要使f(x)在区间[1,2]上为增函数,在区间[6,+∞)上是减函数,则必须有解得实数a的取值范围为.21.(12分)如图,已知抛物线C:y2=4x的焦点为F,过点F的直线l与抛物线C交于A(x1,y1)(y1>0),B(x2,y2)两点,T为抛物线的准线与x轴的交点.(1)若·=1,求直线l的斜率.(2)求∠ATF的最大值.【解析】(1)由题意得F(1,0),T(-1,0),当直线l与x轴垂直时,A(1,2),B(1,-2),此时·=(2,2)·(2,-2)=0,这与·=1矛盾. 故直线l与x轴不垂直.设A(x1,y1),B(x2,y2),直线l的方程为y=k(x-1).①将①代入y2=4x整理得k2x2-(2k2+4)x+k2=0.所以x1+x2=,x1x2=1.所以y1y2=k2(x1-1)(x2-1)=k2[x1x2-(x1+x2)+1]=-4,所以·=(x1+1,y1)·(x2+1,y2)=x1x2+(x1+x2)+1+y1y2=1++1-4==1.解得k=±2.(2)因为y1>0,所以tan∠ATF===≤1.当且仅当y1=即y1=2时取等号.故∠ATF的最大值为.22.(12分)已知函数f(x)=-x3+x2-2x(a∈R).(1)当a=3时,求函数f(x)的单调区间.(2)若对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求实数a的取值范围.【解析】(1)当a=3时,函数f(x)=-x3+x2-2x,得f′(x)=-x2+3x-2=-(x-1)(x-2).所以当1<x<2时,f′(x)>0,函数f(x)单调递增;当x<1或x>2时,f′(x)<0,函数f(x)单调递减;所以函数f(x)的单调递增区间为(1,2),单调递减区间为(-∞,1)和(2,+∞).(2)由f(x)=-x3+x2-2x,得f′(x)=-x2+ax-2,因为对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,所以问题转化为对于任意x∈[1,+∞)都有f′(x)max<2(a-1).因为f′(x)=-+-2,其图象开口向下,对称轴为x=.①当≤1即a≤2时,f′(x)在[1,+∞)上单调递减,所以f′(x)max=f′(1)=a-3,由a-3<2(a-1),得a>-1,此时-1<a≤2.②当>1即a>2时,f′(x)在上单调减增,在上单调递减,所以f′(x)max=f′=-2,由-2<2(a-1),得0<a<8,此时2<a<8,综上可得,实数a的取值范围为(-1,8).关闭Word文档返回原板块。

高中数学必修4第三章三角恒等变换综合检测题(人教A版)

高中数学必修4第三章三角恒等变换综合检测题(人教A版)

第三章三角恒等变换综合检测题本试卷分第I 卷选择题和第U 卷非选择题两部分,满分150分,时间120 分钟。

第I 卷(选择题共60分)一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )n 3 41 .已知 0v av 2v 3<n 又 sin a= 5, cos (a+ ®= — 5,贝V sin ()B . 0 或 2424 C.25 24 D . ±25 [答案]Cn 3 4[解析]•/ 0v av 2 v 3v n 且 sin a= 5, COS ( a+ 3 = — 54 n3 3• cos a= 5 , 2< a+ 3v ㊁ n, • sin( a+ 3 = ±5,=sin( a+ 3cos a — cos( a+ 3)sin a才< 3v n ••• sin 3> 0•故排除 A , B , D.4 3 4⑵由 cos( a+ 3)= — 5及 Sin a= 3可得 sin 3= §(1 + cos 3)代入 sin 2 3+ cos 2 3= 1 中可解得 cos37 n=—1或一25,再结合2<仟n 可求sin 32.若sin Bv 0, cos2 0v 0,则在(0,2 内)B 的取值范围是()3 n3=0.sin3=- 5x 4-又氏才,n j, • sin 3> 0,故 sin 3= 24当 sin( a+ 3 =,sin 3= sin [( a+ a[点评](1)可用排除法求解,T=器53 245 = 25;A . n< 0< 25 nB.5T <e< ¥3 nC.y <e< 2 nD.严< 0<孕4 4[答案]B[解析]2 2 2•/ cos2 e< 0, • 1 —2sin < 0,即sin e>2或sin < —"2,又已知sin < 0, •— 1 < sin e<—亠2,2由正弦曲线得满足条件的e取值为54n<e< ¥3. 函数y= sin2x+ cos2x的图象,可由函数y= sin2x —cos2x的图象()A .向左平移f个单位得到B .向右平移f个单位得到8c.向左平移n个单位得到4D .向右平移4个单位得到[答案]C[解析]y= sin2x+ cos2x= , 2sin(2x+J=2si n2(x +》_ n _ ny= sin2x—cos2x= 2sin(2x—4)= . 2sin2(x—§)n n n其中x+8=(x+ 4)—8n•••将y= sin2x—cos2x的图象向左平移:个单位可得y= sin2x+ cos2x的图象.44. 下列各式中,值为~2的是()A . 2sin 15 cos15 °2 2B. cos 15。

高中数学 第二章 平面向量 2.1向量的加法 新人教A版必修4-新人教A版高一必修4数学试题

高中数学 第二章 平面向量 2.1向量的加法 新人教A版必修4-新人教A版高一必修4数学试题

§2 从位移的合成到向量的加法2.1 向量的加法,)1.问题导航(1)任意两个向量都可以应用向量加法的三角形法则吗?(2)向量加法的三角形法则与平行四边形法则的使用条件有何不同?2.例题导读教材P77例1,例2,P78例3.通过此三例的学习,熟悉向量加法运算,学会利用向量加法解决实际生活问题.试一试:教材P81习题2-2 B组T1,T2,T3你会吗?1.向量加法的定义及运算法则定义求两个向量和的运算,叫做向量的加法法则三角形法则前提已知向量a,b,在平面内任取一点A 作法作AB→=a,BC→=b,再作向量AC→结论向量AC→叫做a与b的和,记作a+b,即a+b=AB→+BC→=AC→图形平行四边形法则前提已知不共线的两个向量a,b,在平面内任取一点O 作法以同一点O为起点的两个已知向量a,b为邻边作▱OACB 结论对角线OC→就是a与b的和图形规定零向量与任一向量a的和都有a+0=0+a=a. 2.向量加法的运算律运算律交换律 a +b =b +a结合律 (a +b )+c =a +(b +c )1.判断正误.(正确的打“√”,错误的打“×”) (1)任意两个向量的和仍然是一个向量.( )(2)|a +b |≤|a |+|b |等号成立的条件是a ∥b .( )(3)任意两个向量的和向量不可能与这两个向量共线.( ) 解析:(1)正确.根据向量和的定义知该说法正确. (2)错误.条件应为a ∥b ,且a ,b 的方向相同.(3)错误.当两个向量共线时,两向量的和向量与这两个向量中的任意一个都共线. 答案:(1)√ (2)× (3)×2.若a ,b 为非零向量,则下列说法中不正确的是( )A .若向量a 与b 方向相反,且|a |>|b |,则向量a +b 与a 的方向相同B .若向量a 与b 方向相反,且|a |<|b |,则向量a +b 与a 的方向相同C .若向量a 与b 方向相同,则向量a +b 与a 的方向相同D .若向量a 与b 方向相同,则向量a +b 与b 的方向相同解析:选B.因为a 与b 方向相反,|a |<|b |,所以a +b 与a 的方向相反,故B 不正确. 3.化简下列各向量: (1)AB →+BC →=________. (2)PQ →+OM →+QO →=________.解析:根据向量加法的三角形法则及运算律得: (1)AB →+BC →=AC →.(2)PQ →+OM →+QO →=PQ →+QO →+OM →=PO →+OM →=PM →.答案:(1)AC → (2)PM →4.在△ABC 中,AB →=a ,BC →=b ,CA →=c ,则a +b +c =________.解析:由向量加法的三角形法则,得AB →+BC →=AC →,即a +b +c =AB →+BC →+CA →=0. 答案:01.对向量加法的三角形法则的四点说明 (1)适用X 围:任意向量.(2)注意事项:①两个向量一定首尾相连;②和向量的起点是第一个向量的起点,终点是第二个向量的终点. (3)方法与步骤:第一步,将b (或a )平移,使一个向量的起点与另一个向量的终点相连; 第二步:将剩下的起点与终点用有向线段相连,且有向线段的方向指向终点,则该有向线段表示的向量即为向量的和.也称“首尾相连,连首尾”.(4)图示:如图所示2.对向量加法的平行四边形法则的四点说明 (1)适用X 围:任意两个非零向量,且不共线.(2)注意事项:①两个非零向量一定要有相同的起点; ②平行四边形中的一条对角线所对应的向量为和向量.(3)方法与步骤:第一步:先把两个已知向量a 与b 的起点平移到同一点; 第二步:以这两个已知向量为邻边作平行四边形,则两邻边所夹的对角线所表示的向量即为a 与b 的和.(4)图示:如图所示已知向量作和向量如图,已知向量a ,b ,c 不共线,求作向量a +b +c .(教材P 81习题2-2 A 组T 3)[解] 法一:如图(1),在平面内作OA →=a ,AB →=b ,则OB →=a +b ;再作BC →=c ,则OC →=a +b +c .法二:如图(2),在平面内作OA →=a ,OB →=b ,以OA 与OB 为邻边作平行四边形OADB ,则OD →=a +b ;再作OC →=c ,以OD 与OC 为邻边作平行四边形ODEC ,则OE →=a +b +c .方法归纳已知向量求作和向量的方法(1)用三角形法则,在平面内任取一点,顺次作两个向量等于已知向量,从起点到终点的向量就是两个向量的和.(2)用平行四边形法则,在平面内任取一点,从此点出发分别作两个向量等于已知向量,以它们为邻边作平行四边形,共起点的对角线对应的向量就是这两个向量的和.1.(1)如图所示,已知向量a 和b ,求作a +b .(2)如图,已知a ,b ,c 三个向量,试求作和向量a +b +c .解:(1)法一:(三角形法则)如图所示.①在平面上任取一点O ,作OA →=a ,AB →=b ;②连接OB ,则OB →=a +b .法二:(平行四边形法则)如图所示.①在平面上任取一点O ,作OA →=a ,OB →=b ;②以OA ,OB 为邻边作平行四边形OACB ,则OC →=a +b .(2)作出来的和向量如图,首先在平面内任取一点O ,作向量OA →=a ,再作向量AB →=b ,则得向量OB →=a +b ,然后作向量BC →=c ,则向量OC →即为所求.向量的加法运算(1)下列等式不正确的是( )①a +(b +c )=(a +c )+b ;②AB →+BA →=0;③AC →=DC →+AB →+BD →. A .②③ B .② C .① D .③(2)设A ,B ,C ,D 是平面上任意四点,试化简: ①AB →+CD →+BC →; ②DB →+AC →+BD →+CA →.(教材P 81习题2-2A 组T 5(1)(2))[解] (1)选B.由向量的加法满足结合律知①正确;因为AB →+BA →=0,故②不正确;DC →+AB →+BD →=AB →+BD →+DC →=AC →成立,故③正确.(2)①AB →+CD →+BC →=(AB →+BC →)+CD →=AC →+CD →=AD →. ②DB →+AC →+BD →+CA →=(DB →+BD →)+(AC →+CA →)=0+0=0.方法归纳向量加法运算律的意义和应用原则 (1)意义向量加法的运算律为向量加法提供了变形的依据,实现恰当利用向量加法法则运算的目的.实际上,由于向量的加法满足交换律和结合律,故多个向量的加法运算可以按照任意的次序、任意的组合来进行.(2)应用原则利用代数方法通过向量加法的交换律,使各向量“首尾相连”,通过向量加法的结合律调整向量相加的顺序.2.(1)在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( ) A.AB →=CD →,BC →=AD → B.AD →+OD →=DA → C.AO →+OD →=AC →+CD → D.AB →+BC →+CD →=DA → (2)化简下列各式: ①(AD →+MB →)+(BC →+CM →)=________. ②AB →+DF →+CD →+BC →+FA →=________.解析:(1)因为AO →+OD →=AD →,AC →+CD →=AD →,所以AO →+OD →=AC →+CD →.(2)①(AD →+MB →)+(BC →+CM →)=AD →+MB →+BM →=AD →+0=AD →. ②AB →+DF →+CD →+BC →+FA →=(AB →+BC →)+(DF →+FA →)+CD →=AC →+DA →+CD →=(AC →+CD →)+DA →=AD →+DA →=0.答案:(1)C (2)①AD →②0向量加法的应用(1)已知图中电线AO 与天花板的夹角为60°,电线AO 所受拉力|F 1|=24 N ;绳BO 与墙壁垂直,所受拉力|F 2|=12 N ,则F 1与F 2的合力大小为________N ;方向为________.(2)如图是中国象棋的部分棋盘,“马走日”是象棋中“马”的走法,如果不从原路返回,那么“马”从A 经过B 再走回到A 最少需几步?(教材P 77例1,例2,P 78例3) [解](1)如图,根据向量加法的平行四边形法则,得合力F 1+F 2=OC →.在△OAC 中,|F 1|=24,|AC →|=12,∠OAC =60°,所以∠OCA =90°,|OC →|=123, 所以F 1与F 2的合力大小为12 3 N ,方向为竖直向上.故填123和竖直向上.(2)如图,如果不从原路返回,那么所走路线为A →B →C →D →A ,即AB →+BC →+CD →+DA →=0,所以最少需四步.本例(2)条件不变,若不限步数,那么“马”从A 经过B 再走回A 时,所走的步数有什么特点?解:若不限步数,则“马”从A 经过B 再走回A 时,不论如何走,均需走偶数步,且不少于四步.方法归纳向量加法应用的关键及技巧(1)三个关键:一是搞清构成平面图形的向量间的相互关系;二是熟练找出图形中的相等向量;三是能根据三角形法则或平行四边形法则作出向量的和向量.(2)应用技巧:①准确画出几何图形,将几何图形中的边转化为向量;②将所求问题转化为向量的加法运算,进而利用向量加法的几何意义进行求解.3.(1)若a 表示向东走8 km ,b 表示向北走8 km ,则|a +b |=________km ,a +b 的方向是________.(2)如图所示,在某次抗震救灾中,一架飞机从A 地按北偏东35°的方向飞行800 km 到达B 地接到受伤人员,然后又从B 地按南偏东55°的方向飞行800 km 送往C 地医院,求这架飞机飞行的路程及两次位移的和.解:(1)设OA →=a ,OB →=b ,则OC →=a +b .又因为|OA →|=8,|OB →|=8,所以|OC →|=|a +b |=8 2. 又因为∠AOC =45°,所以a +b 的方向是北偏东45°.故填82和北偏东45°.(2)设AB →,BC →分别表示飞机从A 地按北偏东35°的方向飞行800 km ,从B 地按南偏东55°的方向飞行800 km ,则飞机飞行的路程指的是|AB →|+|BC →|;两次飞行的位移的和指的是AB →+BC →=AC →.依题意有|AB →|+|BC →|=800+800=1 600(km),又α=35°,β=55°,∠ABC =35°+55°=90°,所以|AC →|=|AB →|2+|BC →|2 =8002+8002=8002(km).易错警示未能正确理解向量加法致误小船以10 3 km/h 的静水速度按垂直于对岸的方向行驶,同时河水的流速为10km/h ,则小船实际航行速度的大小为________km/h.[解析] 如图,设船在静水中的速度为|v 1|=10 3 km/h ,河水的流速为|v 2|=10 km/h ,小船实际航行速度为v 0,则由|v 1|2+|v 2|2=|v 0|2,得(103)2+102=|v 0|2,所以|v 0|=20 km/h ,即小船实际航行速度的大小为20 km/h.[答案] 20[错因与防X] (1)解答本题,易将船的实际速度当成河水的流速与静水速度之和,导致得不到正确的实际航速关系式而出错.(2)①向量的和一般不能直接用模作和;要注意向量的方向的合成,如本例中用两个速度不能直接作和;②船在静水中的航行速度,水流的速度,船实际的航行速度三者间当航行方向与水流方向不共线时不能直接某某际航行速度,如本例中两个方向垂直,利用勾股定理求速度的大小.4.(1)一艘船以4 km/h 的速度沿着与水流方向成120°的方向航行,已知河水流速为2 km/h ,若船的实际航行方向与水流方向垂直,则经过3 h ,该船的实际航程为________km.(2)在静水中船的速度为20 m/min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.解:(1)由题意,如图,OA →表示水流速度,OB →表示船在静水中的速度,则OC →表示船的实际速度.因为|OA →|=2,|OB →|=4,∠AOB =120°,则∠CBO =60°, 又因为∠AOC =∠BCO =90°,所以|OC →|=23,所以船的实际航行速度为2 3 km/h ,则实际航程为23×3=63(km).故填6 3. (2)作出图形,如图.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形,在Rt △ACD 中, |CD →|=|AB →|=|v 水|=10 m/min , |AD →|=|v 船|=20 m/min ,所以cos α=|CD →||AD →|=1020=12,所以α=60°,从而船与水流方向成120°的角. 故船行进的方向是与水流的方向成120°角的方向.1.已知下面的说法:①如果非零向量a 与b 的方向相同或相反,那么a +b 的方向与a 或b 的方向相同;②在△ABC 中,必有AB →+BC →+CA →=0;③若AB →+BC →+CA →=0,则A ,B ,C 为一个三角形的三个顶点; ④若a ,b 均为非零向量,则|a +b |与|a |+|b |一定相等. 其中正确的个数为( ) A .0 B .1 C .2 D .3解析:选B.①当a +b =0时,不成立;②说法正确;③当A ,B ,C 三点共线时,也可以有AB →+BC →+CA →=0,故此说法不正确;④当a ,b 共线时,若a ,b 同向,则|a +b |=|a |+|b |;若a ,b 反向,则|a +b |=||a |-|b ||;当a ,b 不共线时,|a +b |<|a |+|b |,故此说法不正确.2.如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则下列等式中正确的是( )A.FD →+DA →=FA →B.FD →+DE →+FE →=0C.DE →+DA →=EB →D.DA →+DE →=FD →解析:选A.如题图,可知FD →+DA →=FA →, FD →+DE →+FE →=FE →+FE →≠0, DE →+DA →=DF →,故A 正确.3.化简(AB →+MB →)+(BO →+BC →)+OM →=________.解析:原式=(AB →+BO →)+(OM →+MB →)+BC →=AO →+OB →+BC →=AB →+BC →=AC →.答案:AC →, [学生用书单独成册])[A.基础达标]1.在四边形ABCD 中,若AC →=AB →+AD →,则( ) A .四边形ABCD 是矩形 B .四边形ABCD 是菱形 C .四边形ABCD 是正方形 D .四边形ABCD 是平行四边形解析:选D.由向量加法的平行四边形法则知四边形ABCD 是平行四边形.故选D.2.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →=( )A.BD →B .DB → C.BC →D .CB →解析:选C.BC →+DC →+BA →=BC →+(DC →+BA →)=BC →+0=BC →.3.已知a ,b ,c 是非零向量,则(a +c )+b ,b +(a +c ),b +(c +a ),c +(a +b ),c +(b +a )中,与向量a +b +c 相等的个数为( )A .5B .4C .3D .2解析:选A.依据向量加法的交换律及结合律,每个向量式均与a +b +c 相等,故选A.4.如图所示的方格中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH → B .OG →C.FO →D .EO →解析:选C.设a =OP →+OQ →,以OP ,OQ 为邻边作平行四边形,则夹在OP ,OQ 之间的对角线对应的向量即为向量a =OP →+OQ →,则a 与FO →长度相等,方向相同,所以a =FO →.5.设a =(AB →+CD →)+(BC →+DA →),b 是任一非零向量,则在下列结论中,正确的为( ) ①a∥b ;②a +b =a ;③a +b =b ;④|a +b |<|a |+|b |; ⑤|a +b |=|a |+|b |. A .①② B .①③ C .①③⑤ D .③④⑤解析:选C.因为(AB →+CD →)+(BC →+DA →) =AB →+BC →+CD →+DA →=a =0. 所以a∥b ,a +b =b ,即①③正确,②错误,而a =0时,|a +b |=|b |=|a |+|b |,故④错误,⑤正确. 6.当非零向量a ,b 满足________时,a +b 平分以a 与b 为邻边的平行四边形的内角. 解析:由平面几何知识知,在平行四边形中,菱形的对角线平分其内角. 答案:|a |=|b |7.矩形ABCD 中,|AB |=3,|BC →|=1,则向量AB →+AD →+AC →的长度等于________. 解析:因为ABCD 为矩形,所以AB →+AD →=AC →,所以AB →+AD →+AC →=AC →+AC →,如图,过点C 作CE →=AC →,则AC →+AC →=AE →,所以|AB →+AD →+AC →|=|AE →|=2|AC →|=2|AB →|2+|BC →|2=4. 答案:48.在平行四边形ABCD 中,若|BC →+BA →|=|BC →+AB →|,则四边形ABCD 是________(图形).解析:如图所示,BC →+BA →=BD →,BC →+AB →=AC →, 又|BC →+BA →|=|BC →+AB →|,所以|BD →|=|AC →|,则四边形ABCD 是矩形. 答案:矩形9.如图所示,P ,Q 是三角形ABC 的边BC 上两点,且BP =QC .求证:AB →+AC →=AP →+AQ →.证明:AB →=AP →+PB →,AC →=AQ →+QC →,所以AB →+AC →=AP →+PB →+AQ →+QC →.因为PB →与QC →大小相等,方向相反,所以PB →+QC →=0, 故AB →+AC →=AP →+AQ →+0=AP →+AQ →. 10.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.解:如图,在平行四边形OACB 中,∠AOC =30°,∠BOC =60°,则在△OAC 中,∠ACO=∠BOC =60°,∠OAC =90°,设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体的重力,|CO →|=300 N ,所以|OA →|=|CO →|cos 30°=150 3 N ,|OB →|=|CO →|cos 60°=150 N.所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.[B.能力提升] 1.设A 1,A 2,A 3,A 4是平面上给定的4个不同的点,则使MA 1→+MA 2→+MA 3→+MA 4→=0成立的点M 的个数为( )A .0B .1C .2D .4解析:选B.根据所给的四个向量的和是一个零向量,即MA 1→+MA 2→+MA 3→+MA 4→=0.当A 1,A 2,A 3,A 4是平面上给定的4个不同点确定以后,在平面上有且只有一个点满足使得四个向量的和等于零向量,故选B.2.已知|OA →|=3,|OB →|=3,∠AOB =60°,则|OA →+OB →|=( )A.3B .3C .23D .3 3解析:选D.在平面内任取一点O ,作向量OA →,OB →,以OA →,OB →为邻边作▱OACB ,则OC →=OA →+OB →.由题意知四边形OACB 为菱形,又∠AOB =60°,所以|OC →|=2×3×sin 60°=3 3.3.已知G 是△ABC 的重心,则GA →+GB →+GC →=________.解析:如图,连接AG 并延长交BC 于E ,点E 为BC 中点,延长AE 到D ,使GE =ED ,则GB →+GC→=GD →,GD →+GA →=0,所以GA →+GB →+GC →=0.答案:04.若|AB →|=10,|AC →|=8,则|BC →|的取值X 围是________.解析:如图,固定AB →,以A 为起点作AC →,则AC →的终点C 在以A 为圆心,|AC →|为半径的圆上,由图可见,当C 在C 1处时,|BC →|取最小值2,当C 在C 2处时,|BC →|取最大值18.答案:[2,18]5.一艘船在水中航行,水流速度与船在静水中航行的速度均为5 km/h.如果此船实际向南偏西30°方向行驶2 km ,然后又向西行驶2 km ,你知道此船在整个过程中的位移吗?解:如图,用AC →表示船的第一次位移,用CD →表示船的第二次位移,根据向量加法的三角形法则知AD →=AC →+CD →,所以AD →可表示两次位移的和位移.由题意知,在Rt △ABC 中,∠BAC =30°,所以BC =12AC =1,AB = 3. 在等腰△ACD 中,AC =CD =2, 所以∠D =∠DAC =12∠ACB =30°, 所以∠BAD =60°,AD =2AB =23,所以两次位移的和位移的方向是南偏西60°,位移的大小为2 3 km.6.(选做题)在四边形ABCD 中,对角线AC ,BD 交于点O ,且|AB →|=|AD →|=1,OA →+OC →=OB →+OD →=0,cos ∠DAB =12.求|DC →+BC →|与|CD →+BC →|.解:因为OA →+OC →=OB →+OD →=0,所以OA →=CO →,OB →=DO →,所以四边形ABCD 为平行四边形,又|AB →|=|AD →|=1,知四边形ABCD 为菱形.因为cos ∠DAB =12,∠DAB ∈(0,π), 所以∠DAB =π3,所以△ABD 为正三角形, 所以|DC →+BC →|=|AB →+AD →|=|AC →|=2|AO →|= 3.|CD →+BC →|=|BD →|=|AB →|=1.。

高中数学 1.1.1任意角 新人教A版必修4(2)

高中数学 1.1.1任意角 新人教A版必修4(2)

【解】 终边在30°角的终边所在直线上的角的集合为 S1={α|α=30°+k·180°,k∈Z},终边在180°-75°=105°角 的终边所在直线上的角的集合为S2={α|α=105°+k·180°,k ∈Z},因此,终边在图中阴影部分内的角α的取值范围为 {α|α=30°+k·180°≤α<105°+k·180°,k∈Z}.
终边相同的角
所有与角α终边相同的角,连同角α在内,可构成一 个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边 相同的角,都可以表示成角α与 整数个周角 的和.
5.终边相同的角相等吗?相等的角终边相同吗? 答:终边相同的角不一定相等,它们相差360°的整数 倍;相等的角,终边相同.
1.解读任意角的概念 (1)用运动的观点来定义角,就可以把角的概念推广到 任意角,包括任意大小的正角、负角和零角. (2)对角的概念的认识关键是抓住“旋转”二字. ①要明确旋转的方向; ②要明确旋转的大小; ③要明确射线未作任何旋转时的位置.
2.终边相同的角的关注点 所有与角α终边相同的角,连同角α在内可以用式子 k·360°+α,k∈Z表示,在运用时需注意以下四点: (1)k是整数,这个条件不能漏掉. (2)α是任意角. (3)k·360°与α之间用“+”连接,如k·360°-30°应看成 k·360°+(-30°),k∈Z. (4)终边相同的角不一定相等,终边相同的角有无数 个,它们相差周角的整数倍.相等的角终边一定相同.
课堂篇02
合作探究
终边相同的角及象限角
【例1】 将下列各角表示为k·360°+α(k∈ Z,0°≤α<360°)的形式,并指出是第几象限角.
(1)420°;(2)-510°;(3)1 020°.
【解】 (1)420°=360°+60°, 而60°角是第一象限角,故420°是第一象限角. (2)-510°=-2×360°+210°, 而210°是第三象限角,故-510°是第三象限角. (3)用1 020°除以360°的商为2,余数为300°, 即1 020°=2×360°+300°, 而300°是第四象限角,故1 020°是第四象限角.

高中数学 第一章 三角函数 5.1正弦函数的图像 新人教A版必修4-新人教A版高一必修4数学试题

高中数学 第一章 三角函数 5.1正弦函数的图像 新人教A版必修4-新人教A版高一必修4数学试题

§5 正弦函数的性质与图像 5.1 正弦函数的图像1.问题导航(1)用“五点法”作正弦函数图像的关键是什么?(2)利用“五点法”作y =sin x 的图像时,x 依次取-π,-π2,0,π2,π可以吗?(3)作正弦函数图像时应注意哪些问题? 2.例题导读P 27例1.通过本例学习,学会用五点法画函数y =a sin x +b 在[0,2π]上的简图. 试一试:教材P 28练习题你会吗?1.正弦函数的图像与五点法(1)图像:正弦函数y =sin x 的图像叫作正弦曲线,如图所示.(2)五点法:在平面直角坐标系中常常描出五个关键点(它们是正弦曲线与x 轴的交点和函数取最大值、最小值时的点):(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0),用光滑的曲线顺次将它们连接起来,得到函数y =sin x 在[0,2π]上的简图,这种画正弦曲线的方法为“五点法”.(3)利用五点法作函数y =A sin x (A >0)的图像时,选取的五个关键点依次是:(0,0),⎝ ⎛⎭⎪⎫π2,A ,(π,0),⎝ ⎛⎭⎪⎫32π,-A ,(2π,0). 2.正弦曲线的简单变换函数y =sin x 与y =sin x +k 图像间的关系.当k >0时,把y =sin x 的图像向上平移k 个单位长度得到函数y =sin x +k 的图像; 当k <0时,把y =sin x 的图像向下平移|k |个单位长度得到函数y =sin x +k 的图像.1.判断正误.(正确的打“√”,错误的打“×”) (1)函数y =sin x 的图像与y 轴只有一个交点.( )(2)函数y =sin x 的图像介于直线y =1与y =-1之间.( )(3)用五点法作函数y =-2sin x 在[0,2π]上的图像时,应选取的五个点是(0,0),⎝ ⎛⎭⎪⎫π2,-2,(π,0),⎝ ⎛⎭⎪⎫32π,2,(2π,0).( ) (4)将函数y =sin x ,x ∈[-π,π]位于x 轴上方的图像保持不变,把x 轴下方的图像沿x 轴翻折到x 轴上方即可得到函数y =|sin x |,x ∈[-π,π]的图像.( )解析:(1)正确.观察正弦函数的图像知y =sin x 的图像与y 轴只有一个交点.(2)正确.观察正弦曲线可知正弦函数的图像介于直线y =1与y =-1之间.(3)正确.在函数y =-2sin x ,x ∈[0,2π]的图像上起关键作用的五个点是(0,0),⎝ ⎛⎭⎪⎫π2,-2,(π,0),⎝ ⎛⎭⎪⎫32π,2,(2π,0). (4)正确.当x ∈[-π,π]时,y =|sin x |=⎩⎪⎨⎪⎧sin x ,sin x ≥0,-sin x ,sin x <0,于是,将函数y =sin x ,x ∈[-π,π]位于x 轴上方的图像保持不变,把x 轴下方的图像翻折到x 轴上方即可得函数y =|sin x |,x ∈[-π,π]的图像.答案:(1)√ (2)√ (3)√ (4)√2.用五点法画y =sin x ,x ∈[0,2π]的图像时,下列点不是关键点的是( ) A.⎝ ⎛⎭⎪⎫π6,12 B.⎝ ⎛⎭⎪⎫π2,1 C .(π,0) D .(2π,0)解析:选A.用五点法画y =sin x ,x ∈[0,2π]的图像,五个关键点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1,(2π,0). 3.用五点法画y =sin x ,x ∈[0,2π]的简图时,所描的五个点的横坐标的和是________.解析:0+π2+π+3π2+2π=5π.答案:5π4.(1)正弦曲线在(0,2π]内最高点坐标为________,最低点坐标为________. (2)在同一坐标系中函数y =sin x ,x ∈(0,2π]与y =sin x ,x ∈(2π,4π]的图像形状________,位置________.(填“相同”或“不同”)解析:(1)由正弦曲线知,正弦曲线在(0,2π]内最高点为⎝ ⎛⎭⎪⎫π2,1,最低点为⎝ ⎛⎭⎪⎫3π2,-1.(2)在同一坐标系中函数y =sin x ,x ∈(0,2π]与y =sin x ,x ∈(2π,4π]的图像,形状相同,位置不同.答案:(1)⎝ ⎛⎭⎪⎫π2,1⎝ ⎛⎭⎪⎫3π2,-1 (2)相同 不同1.y =sin x ,x ∈[0,2π]与y =sin x ,x ∈R 的图像间的关系(1)函数y =sin x ,x ∈[0,2π]的图像是函数y =sin x ,x ∈R 的图像的一部分. (2)因为终边相同的角有相同的三角函数值,所以函数y =sin x ,x ∈[2k π,2(k +1)π],k ∈Z 且k ≠0的图像与函数y =sin x ,x ∈[0,2π]的图像形状完全一致,因此将y =sin x ,x ∈[0,2π]的图像向左、向右平行移动(每次移动2π个单位长度)就可得到函数y =sin x ,x ∈R 的图像.2.“几何法”和“五点法”画正弦函数图像的优缺点(1)“几何法”的实质是利用正弦线进行的尺规作图,这样作图较精确,但较为烦琐. (2)“五点法”的实质是在函数y =sin x 的一个周期内,选取5个分点,也是函数图像上的5个关键点:最高点、最低点及平衡点,这五个点大致确定了函数一个周期内图像的形状.(3)“五点法”是画三角函数图像的基本方法,在要求精确度不高的情况下常用此法,要切实掌握好.另外与“五点法”作图有关的问题经常出现在高考试题中.3.关于“五点法”画正弦函数图像的要点 (1)应用的前提条件是精确度要求不是太高. (2)五个点必须是确定的五点.(3)用光滑的曲线顺次连接时,要注意线的走向,一般在最高(低)点的附近要平滑,不要出现“拐角”现象.(4)“五点法”作出的是一个周期上的正弦函数图像,要得到整个正弦函数图像,还要“平移”.用五点法作正弦型函数的图像用五点法画函数y =2sin x -1,x ∈[0,2π]的简图. (教材P 27例1)[解] 步骤:①列表:x 0 π2 π 3π22π sin x 0 1 0 -1 0 y -1 1 -1 -3 -1②描点:在平面直角坐标系中描出下列五个点:(0,-1),⎝ ⎛⎭⎪⎫π2,1,(π,-1),⎝ ⎛⎭⎪⎫3π2,-3,(2π,-1). ③连线:用光滑曲线将描出的五个点连接起来,得函数y =2sin x -1,x ∈[0,2π]的简图,如图所示.方法归纳作形如函数y =a sin x +b ,x ∈[0,2π]的图像的步骤1.(1)函数f (x )=a sin x +b ,(x ∈[0,2π])的图像如图所示,则f (x )的解析式为( )A .f (x )=12sin x +1,x ∈[0,2π]B .f (x )=sin x +12,x ∈[0,2π]C .f (x )=32sin x +1,x ∈[0,2π]D .f (x )=32sin x +12,x ∈[0,2π](2)用五点法作出下列函数的简图. ①y =2sin x ,x ∈[0,2π]; ②y =2-sin x ,x ∈[0,2π].解:(1)选A.将图像中的特殊点代入f (x )=a sin x +b ,x ∈[0,2π],不妨将(0,1)与⎝ ⎛⎭⎪⎫π2,1.5代入得⎩⎪⎨⎪⎧a sin 0+b =1,a sin π2+b =1.5,解得b =1,a =0.5,故f (x )=12sin x +1,x ∈[0,2π].(2)①列表:x 0 π2 π 3π22π y =sin x 0 1 0 -1 0 y =2sin x 0 2 0 -2 0描点并将它们用光滑的曲线连接起来,如图所示.②列表:x 0 π2π 3π2 2π y =sin x 0 1 0 -1 0 y =2-sin x 2 1232描点并将它们用光滑的曲线连接,如图:利用正弦函数的图像求函数的定义域求函数f (x )=lg (sin x )+16-x 2的定义域. (教材P 30习题1-5 A 组T 4)[解] 由题意,x 满足不等式组⎩⎪⎨⎪⎧sin x >0,16-x 2≥0, 即⎩⎪⎨⎪⎧-4≤x ≤4,sin x >0,作出y =sin x 的图像,如图所示.结合图像可得:该函数的定义域为[-4,-π)∪(0,π).方法归纳一些三角函数的定义域可以借助函数图像直观地观察得到,同时要注意区间端点的取舍.有时利用图像先写出在一个周期区间上的解集,再推广到一般情况.2.求函数y =log 21sin x-1的定义域.解:为使函数有意义,需⎩⎪⎨⎪⎧log 21sin x -1≥0,sin x >0⇔0<sin x ≤12.根据正弦曲线得,函数定义域为⎝ ⎛⎦⎥⎤2k π,2k π+π6∪⎣⎢⎡⎭⎪⎫2k π+5π6,2k π+π,k ∈Z .利用正弦函数的图像确定方程解的个数在同一坐标系中,作函数y =sin x 和y =lg x 的图像,根据图像判断出方程sinx =lg x 的解的个数.(教材P 30习题1-5 A 组T 1(1))[解] 建立坐标系xOy ,先用五点法画出函数y =sin x ,x ∈[0,2π]的图像,再依次向右连续平移2π个单位,得到y =sin x 的图像.作出y =lg x 的图像,如图所示.由图像可知方程sin x =lg x 的解有3个.若本例中的函数y =lg x 换为y =x 2,则结果如何?解:在同一直角坐标系中画出函数y =x 2和y =sin x 的图像,如图所示.由图知函数y =x 2和y =sin x 和图像有两个交点,则方程x 2-sin x =0有两个根.方法归纳方程根(或个数)的两种判断方法(1)代数法:直接求出方程的根,得到根的个数.(2)几何法:①方程两边直接作差构造一个函数,作出函数的图像,利用对应函数的图像,观察与x 轴的交点个数,有几个交点原方程就有几个根.②转化为两个函数,分别作这两个函数的图像,观察交点个数,有几个交点原方程就有几个根.3.(1)函数y =2sin x 与函数y =x 的图像的交点有( ) A .2个 B .3个 C .4个 D .5个 (2)研究方程10sin x =x (x ∈R )根的个数.解:(1)选B.在同一直角坐标系中作出函数y =2sin x 与y =x 的图像,由图像可以看出有3个交点.(2)如图所示,当x ≥4π时,x 10≥4π10>1≥sin x ;当x =52π时,sin x =sin 52π=1,x10=5π20,1>5π20,从而x >0时,有3个交点,由对称性知x <0时,有3个交点,加上x =0时的交点为原点,共有7个交点.即方程有7个根.思想方法数形结合思想的应用求满足下列条件的角的X 围.(1)sin x ≥12;(2)sin x ≤-22.[解] (1)利用“五点法”作出y =sin x 的简图,过点⎝ ⎛⎭⎪⎫0,12作x 轴的平行线,在[0,2π]上,直线y =12与正弦曲线交于⎝ ⎛⎭⎪⎫π6,12,⎝ ⎛⎭⎪⎫5π6,12两点.结合图形可知,在[0,2π]内,满足y ≥12时x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π6≤x ≤5π6.因此,当x ∈R 时,若y ≥12,则x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π6≤x ≤2k π+56π,k ∈Z .(2)同理,满足sin x ≤-22的角的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪5π4+2k π≤x ≤74π+2k π,k ∈Z .[感悟提高] 形如sin x >a (<a )的不等式,求角x 的X 围,一般采用数形结合的思想来解题,具体步骤:(1)画出y =sin x 的图像,画直线y =a . (2)若解sin x >a ,则观察y =sin x 在直线y =a 上方的图像.这部分图像对应的x 的X围,就是所求的X 围.若解sin x <a ,则观察y =sin x 在直线y =a 下方的图像.这部分图像对应的x 的X 围,就是所求的X 围.1.函数y =1-sin x ,x ∈[0,2π]的大致图像是( )解析:选B.利用五点法画图,函数y =1-sin x ,x ∈[0,2π]的图像一定过点(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,1),⎝ ⎛⎭⎪⎫32π,2,(2π,1),故B 项正确. 2.已知点M ⎝ ⎛⎭⎪⎫π4,b 在函数f (x )=2sin x +1的图像上,则b =________. 解析:b =f ⎝ ⎛⎭⎪⎫π4=2sin π4+1=2. 答案:23.若函数f (x )=2sin x -1-a 在⎣⎢⎡⎦⎥⎤π3,π上有两个零点,则实数a 的取值X 围是________.解析:令f (x )=0得2sin x =1+a .作出y =2sin x 在x ∈⎣⎢⎡⎦⎥⎤π3,π上的图像,如图所示. 要使函数f (x )在⎣⎢⎡⎦⎥⎤π3,π上有两个零点,需满足3≤1+a <2,所以3-1≤a <1. 答案:[3-1,1),[学生用书单独成册])[A.基础达标]1.关于正弦函数y =sin x 的图像,下列说法错误的是( ) A .关于原点对称 B .有最大值1C .与y 轴有一个交点D .关于y 轴对称解析:选D.正弦函数y =sin x 的图像如图所示.根据y =sin x ,x ∈R 的图像可知A ,B ,C 均正确,D 错误. 2.函数y =sin x 的图像与函数y =-sin x 的图像关于( ) A .x 轴对称 B .y 轴对称 C .原点对称D .直线y =x 对称解析:选A.在同一直角坐标系中画出函数y =sin x 与函数y =-sin x 在[0,2π]上的图像,可知两函数的图像关于x 轴对称.3.下列函数图像相同的是( ) A .y =sin x 与y =sin(x +π)B .y =sin ⎝ ⎛⎭⎪⎫x -π2与y =sin ⎝ ⎛⎭⎪⎫π2-xC .y =sin x 与y =sin(-x )D .y =sin(2π+x )与y =sin x解析:选D.对A ,由于y =sin(x +π)=-sin x ,故排除A ;对B ,由于y =sin ⎝⎛⎭⎪⎫π2-x =-sin ⎝⎛⎭⎪⎫x -π2,故排除B ;对C ,由于y =sin(-x )=-sin x ,故排除C ;对D ,由于y=sin(2π+x )=sin x ,故选D.4.函数y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图是( )解析:选D .当x =-π2时,y =-sin ⎝ ⎛⎭⎪⎫-π2=1,故排除A 、B 、C ,选D . 5.函数y =x sin x 的部分图像是( )解析:选A .函数y =x sin x 的定义域为R ,令f (x )=x sin x ,则f (-x )=(-x )sin(-x )=x sin x =f (x ),知f (x )为偶函数,排除B 、D ;当x ∈⎝⎛⎭⎪⎫0,π2时,f (x )>0,故排除C ,故选A.6.在[0,2π]上,满足sin x ≥22的x 的取值X 围为________.解析:在同一直角坐标系内作出y =sin x 和y =22的图像如图,观察图像并求出交点横坐标,可得到x 的取值X 围为⎣⎢⎡⎦⎥⎤π4,34π.答案:⎣⎢⎡⎦⎥⎤π4,34π7.函数y =sin x 的图像和y =x2π的图像交点个数是________. 解析:在同一直角坐标系内作出两个函数的图像如图所示:由图可知交点个数是3. 答案:38.已知sin x =m -1且x ∈R ,则m 的取值X 围是________. 解析:由y =sin x ,x ∈R 的图像知,-1≤sin x ≤1, 即-1≤m -1≤1,所以0≤m ≤2. 答案:0≤m ≤29.用“五点法”画出函数y =3-sin x (x ∈[0,2π])的图像. 解:(1)x 0 π2 π 32π2π y =sin x 0 1 0 -1 0 y =3-sin x 3 2 3 4 3(2)10.若函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且只有两个不同的交点,求k 的取值X 围.解:f (x )=⎩⎪⎨⎪⎧3sin x ,0≤x ≤π,-sin x ,π<x ≤2π,作出函数的图像如图:由图可知当1<k <3时函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且只有两个不同的交点.[B.能力提升]1.若y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,2π3,则函数的值域为( )A.⎝⎛⎭⎪⎫22,1 B.⎣⎢⎡⎦⎥⎤22,1 C .(1,2]D .[1,2]解析:选B.画出函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,2π3的图像如图所示,可知y ∈⎣⎢⎡⎦⎥⎤22,1.2.设a >0,对于函数f (x )=sin x +asin x(0<x <π),下列结论正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值也无最小值解析:选B.f (x )=sin x +a sin x =1+asin x.因为0<x <π,所以0<sin x ≤1.所以1sin x≥1.所以1+asin x≥a +1.所以f (x )有最小值而无最大值. 故选B.3.已知f (sin x )=x 且x ∈⎣⎢⎡⎦⎥⎤0,π2,则f ⎝ ⎛⎭⎪⎫12=________.解析:因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以sin x =12时,x =π6, 所以f ⎝ ⎛⎭⎪⎫12=f ⎝⎛⎭⎪⎫sin π6=π6. 答案:π64.若x 是三角形的最小角,则y =sin x 的值域是________.解析:不妨设△ABC 中,0<A ≤B ≤C ,得0<A ≤B ,且0<A ≤C ,所以0<3A ≤A +B +C ,而A +B +C =π,所以0<3A ≤π,即0<A ≤π3. 若x 为三角形中的最小角,则0<x ≤π3, 由y =sin x 图像知y ∈⎝ ⎛⎦⎥⎤0,32. 答案:⎝⎛⎦⎥⎤0,32 5.用“五点法”作出函数y =1-2sin x ,x ∈[-π,π]的简图,并回答下列问题:(1)观察函数图像,写出满足下列条件的x 的区间.①y >1;②y <1.(2)若直线y =a 与y =1-2sin x ,x ∈[-π,π]有两个交点,求a 的取值X 围. 解:列表如下:x -π -π2 0 π2π sin x 0 -1 0 1 01-2sin x 1 3 1 -1 1描点连线得:(1)由图像可知图像在y =1上方部分时y >1,在y =1下方部分时y <1,所以当x ∈(-π,0)时,y >1;当x ∈(0,π)时,y <1.(2)如图所示,当直线y =a 与y =1-2sin x 有两个交点时,1<a <3或-1<a <1. 所以a 的取值X 围是{a |1<a <3或-1<a <1}.6.(选做题)已知函数y =f (x )为奇函数,且是⎝ ⎛⎭⎪⎫-12,12上的减函数,f (1-sin α)+f (1-sin 2α)<0,求α的取值X 围.解:由题意可知f (1-sin α)<-f (1-sin 2α).因为f (x )是奇函数,所以-f (1-sin 2α)=f (sin 2α-1),所以f (1-sin α)<f (sin 2α-1).又由f (x )是⎝ ⎛⎭⎪⎫-12,12上的减函数, 所以⎩⎪⎨⎪⎧-12<1-sin α<12,-12<sin 2α-1<12,1-sin α>sin 2α-1,所以⎩⎪⎨⎪⎧12<sin α<32,12<sin 2α<32,sin 2α+sin α-2<0, 解得22<sin α<1, 所以2k π+π4<α<2k π+π2(k ∈Z )或2k π+π2<α<2k π+3π4(k ∈Z ), 所以α的取值X 围为⎝⎛⎭⎪⎫2k π+π4,2k π+π2∪⎝ ⎛⎭⎪⎫2k π+π2,2k π+3π4(k ∈Z ).。

2019-2020学年高中数学人教A版必修4同步作业与测评:学期综合测评

2019-2020学年高中数学人教A版必修4同步作业与测评:学期综合测评

学期综合测评对应学生用书P 101 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知角α的终边经过点P(4,-3),则2sin α+cos α的值等于( ) A .-35 B .45 C .25 D .-25 答案 D解析 据三角函数的定义可知sin α=-35,cos α=45,∴2sin α+cos α=-65+45=-25.2.若一个圆的半径变为原来的一半,而弧长变为原来的32倍,则该弧所对的圆心角是原来的( )A .12B .2倍C .13 D .3倍 答案 D解析 设圆弧的半径为r ,弧长为l ,其弧度数为lr ,将半径变为原来的一半,弧长变为原来的32倍,则弧度数变为32l 12r=3·lr ,即弧度数变为原来的3倍,故选D .3.已知sin (π+α)=13,则cos 2α=( ) A .79 B .-89 C .-79 D .429 答案 A解析 因为sin (π+α)=13,所以sin α=-13,所以cos 2α=1-2sin 2α=1-2×-132=79.4.若|a |=2sin15°,|b |=4cos15°,且a 与b 的夹角为30°,则a ·b 的值为( ) A .12 B .32 C .3 D .23 答案 C解析 a·b =|a ||b |cos30°=2sin15°·4cos15°·cos30°=2sin60°=3. 5.已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ·(b +c )=( ) A .0 B .-35 C .35 D .-45 答案 B解析 由3a +4b +5c =0,得向量3a ,4b ,5c 能组成三角形,又|a |=|b |=|c |=1,所以三角形的三边长分别是3,4,5,故三角形为直角三角形,且a ⊥b ,所以a ·(b +c )=a ·c =-35.6.函数y =tan ⎝ ⎛⎭⎪⎫π4x -π2的部分图象如图,则(OA →+OB →)·AB→=( )A .6B .4C .-4D .-6答案 A解析 ∵点B 的纵坐标为1, ∴tan ⎝ ⎛⎭⎪⎫π4x -π2=1,∴π4x -π2=π4,∴x =3,即B (3,1). 令tan ⎝ ⎛⎭⎪⎫π4x -π2=0,则π4x -π2=0,解得x =2,∴A (2,0),∴OA →+OB →=(5,1),AB →=(1,1). ∴(OA →+OB →)·AB→=6. 7.已知函数f (x )=43sin ωx +π3(ω>0)在平面直角坐标系中的部分图象如图所示,若∠ABC =90°,则ω=( )A .π4B .π8C .π6D .π12 答案 B解析 由三角函数图象的对称性知P 为AC 的中点,又∠ABC =90°,故|P A |=|PB |=|PC |=T 2,则|AC |=T .由勾股定理,得T 2=(83)2+T22,解得T =16,所以ω=2πT =π8.8.为了得到函数y =sin3x +cos3x 的图象,可以将函数y =2cos3x 的图象( )A .向右平移π12个单位长度B .向右平移π4个单位长度 C .向左平移π12个单位长度 D .向左平移π4个单位长度 答案 A解析 因为y =sin3x +cos3x =2cos ⎝ ⎛⎭⎪⎫3x -π4,所以将y =2cos3x 的图象向右平移π12个单位后可得到y =2cos ⎝ ⎛⎭⎪⎫3x -π4的图象. 9.已知函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,其图象与直线y =2的交点的横坐标为x 1,x 2,若|x 1-x 2|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2 C .ω=12,θ=π4 D .ω=2,θ=π4 答案 A解析 因为函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,所以θ=π2,所以y =2cos ωx ,排除C ,D ;y =2cos ωx ∈[-2,2],结合题意可知T =π,所以2πω=π,所以ω=2,排除B .故选A .10.已知|a |=22,|b |=3,a ,b 的夹角为π4,如图所示,若AB →=5a +2b ,AC →=a -3b ,且D 为BC 中点,则AD→的长度为( )答案 A解析 AD→=12(AB →+AC →)=12(5a +2b +a -3b ) =12(6a -b ),∴|AD→|2=14(36a 2-12ab +b 2)=2254, ∴|AD→|=152.故选A .11.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0),若f (x )在区间⎣⎢⎡⎦⎥⎤π4,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π4,则f (x )的最小正周期为( )A .π3B .π2C .5π6 D .π 答案 C解析 由f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3,可得函数f (x )的一条对称轴为x =π2+2π32=7π12,则x =π2离最近一条对称轴的距离为7π12-π2=π12.又f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π4,且f (x )在区间⎣⎢⎡⎦⎥⎤π4,π2上具有单调性,故x =π4离最近一条对称轴的距离也为π12,所以T 2=2×π12+⎝ ⎛⎭⎪⎫π2-π4=5π12,所以T =5π6.故选C .12.已知不等式f (x )=32sin x 4·cos x 4+6cos 2x 4-62+m ≤0,对于任意的-5π6≤x ≤π6恒成立,则实数m 的取值范围是( )A .m ≥ 3B .m ≤3C .m ≤- 3D .-3≤m ≤3 答案 C解析 f (x )=32sin x 4·cos x 4+6cos 2x 4-62+m =322sin x 2+62⎝ ⎛⎭⎪⎫1+cos x 2-62+m=322sin x 2+62cos x2+m =6⎝ ⎛⎭⎪⎫32sin x 2+12cos x 2+m=6sin ⎝ ⎛⎭⎪⎫x 2+π6+m ,故要使f (x )≤0对任意的-5π6≤x ≤π6恒成立, 只需m ≤-6sin ⎝ ⎛⎭⎪⎫x 2+π6在-5π6≤x ≤π6上恒成立.∵-5π6≤x ≤π6,-π4≤x 2+π6≤π4, ∴⎣⎢⎡⎦⎥⎤-6sin ⎝ ⎛⎭⎪⎫x 2+π6min =-3, ∴m ≤-3.第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.函数f(x)=sin 23x+π2+sin23x的图象相邻的两条对称轴之间的距离是________.答案3π2解析f(x)=cos 23x+sin23x=2sin23x+π4,相邻的两条对称轴之间的距离是半个周期,T=2π23=3π,∴T2=3π2.14.已知向量a=(1,2),b=(-2,-4),|c|=5,若(a+b)·c=52,则a与c的夹角的大小为________.答案120°解析a+b=(-1,-2),|a|=5,设c=(x,y),∵(a+b)·c=52,∴x+2y=-52.设a与c的夹角为θ,∵a·c=x+2y,∴cosθ=a·c|a||c|=-525=-12.又∵θ∈[0°,180°],∴θ=120°.15.已知函数f(x)=2sin2π4+x-3cos2x-1,x∈π4,π2,则f(x)的最小值为________.答案1解析f(x)=2sin2π4+x-3cos2x-1=1-cos2π4+x-3cos2x-1=-cos π2+2x -3cos2x =sin2x -3cos2x =2sin2x -π3, 因为π4≤x ≤π2, 所以π6≤2x -π3≤2π3. 所以12≤sin2x -π3≤1. 所以1≤2sin2x -π3≤2.即1≤f (x )≤2,则f (x )的最小值为1.16.关于函数f (x )=sin2x -cos2x ,有下列命题:①函数f (x )的最小正周期为π;②直线x =π4是函数f (x )的一条对称轴;③点⎝ ⎛⎭⎪⎫π8,0是函数f (x )的图象的一个对称中心;④将函数f (x )的图象向左平移π4个单位长度,可得到函数y =2sin2x 的图象.其中正确的命题为________(填序号). 答案 ①③解析 f (x )=sin2x -cos2x =2sin ⎝ ⎛⎭⎪⎫2x -π4,所以最小正周期T =π,①正确;当x =π4时,f ⎝ ⎛⎭⎪⎫π4=2sin2×π4-π4=2sin π4,不是最值,所以②错误;f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫2×π8-π4=0,所以③正确;将f (x )的图象向左平移π4个单位长度,得到y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4的图象,所以④错误.综上,正确的命题为①③. 三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知3π4<α<π,tanα+1tanα=-103.(1)求tanα的值;(2)求5sin2α2+8sinα2cosα2+11cos2α2-82sinα-π4的值.解(1)由tanα+1tanα=-103,整理,得3tan2α+10tanα+3=0,即(3tanα+1)(tanα+3)=0.∵3π4<α<π,∴-1<tanα<0,∴tanα=-13.(2)5sin2α2+8sinα2cosα2+11cos2α2-82sinα-π4=5sin2α2+cos2α2+4sinα+6cos2α2-82sinα-π4=5sin2α2+cos2α2+4sinα+6×1+cosα2-82sinα-π4=4sinα+3cosαsinα-cosα=4tanα+3tanα-1=4×-13+3-13-1=-5 4.18.(本小题满分12分)已知向量m=(1,1),向量n与向量m的夹角为3π4,且m ·n =-1.(1)求向量n ;(2)在△ABC 中,B =π3,若向量n =(0,-1),p =⎝ ⎛⎭⎪⎫cos A ,2cos 2C 2,求|n +p |的取值范围.解 (1)设n =(x ,y ),由m ·n =-1,得x +y =-1.① 又∵m 与n 的夹角为3π4, ∴m ·n =|m ||n |·cos 3π4, ∴x 2+y 2=1.②由①②解得⎩⎨⎧ x =-1,y =0或⎩⎨⎧x =0,y =-1, ∴n =(-1,0)或n =(0,-1). (2)∵B =π3,∴A +C =2π3,0<A <2π3.若n =(0,-1),则n +p =⎝ ⎛⎭⎪⎫cos A ,2cos 2C 2-1=(cos A ,cos C ).∴|n +p |2=cos 2A +cos 2C =1+cos2A 2+1+cos2C2=1+12·⎣⎢⎡⎦⎥⎤cos2A +cos ⎝ ⎛⎭⎪⎫4π3-2A =1+12cos ⎝ ⎛⎭⎪⎫2A +π3.∵0<A <2π3,∴π3<2A +π3<5π3,∴-1≤cos ⎝ ⎛⎭⎪⎫2A +π3<12,12≤1+12cos⎝ ⎛⎭⎪⎫2A +π3<54, 即|n +p |2∈⎣⎢⎡⎭⎪⎫12,54,∴|n +p |∈⎣⎢⎡⎭⎪⎫22,52.19.(本小题满分12分)已知函数f (x )=2cos x sin x +π3-3sin 2x +sin x cos x . (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求f (x )的值域;(2)用五点法在下图中作出y =f (x )在闭区间⎣⎢⎡⎦⎥⎤-π6,5π6上的简图;(3)说明f (x )的图象可由y =sin x 的图象经过怎样的变化得到?解 f (x )=2cos x sin ⎝ ⎛⎭⎪⎫x +π3-3sin 2x +sin x cos x=2cos x ⎝ ⎛⎭⎪⎫sin x cos π3+cos x sin π3-3sin 2x +sin x cos x=sin2x +3cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π3. (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴π3≤2x +π3≤4π3,∴-32≤sin ⎝ ⎛⎭⎪⎫2x +π3≤1, ∴当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的值域为[-3,2].(2)由T =2π2,得T =π,列表:图象如下图.(3)解法一:由以下变换可得f (x )的图象:先将y =sin x 的图象向左平移π3个单位,再将图象上各点的横坐标缩短到原来的12,最后将纵坐标伸长为原来的2倍.解法二:由以下变换可得f (x )的图象:先将y =sin x 的图象上各点的横坐标缩短到原来的12,再将图象向左平移π6个单位,最后将纵坐标伸长为原来的2倍.20.(本小题满分12分)某房地产开发商为吸引更多消费者购房,决定在一块闲置的扇形空地中修建一个花园.如图,已知扇形AOB 的圆心角∠AOB =π4,半径为R .现欲修建的花园为▱OMNH ,其中M ,H 分别在OA ,OB 上,N 在AB 上.设∠MON =θ,▱OMNH 的面积为S .(1)将S 表示为关于θ的函数; (2)求S 的最大值及相应的θ值.解 (1)如图,过N 作NP ⊥OA 于点P ,过H 作HE ⊥OA 于点E ,∵∠AOB =π4,∴OE =EH =NP =R sin θ,OP =R cos θ, ∴HN =EP =OP -OE =R (cos θ-sin θ), ∴S =HN ·NP =R 2(cos θ-sin θ)sin θ,θ∈⎝ ⎛⎭⎪⎫0,π4. (2)S =R 2(cos θsin θ-sin 2θ) =R 2⎝ ⎛⎭⎪⎫12sin2θ-1-cos2θ2 =12R 2(sin2θ+cos2θ-1) =12R 2⎣⎢⎡⎦⎥⎤2sin ⎝ ⎛⎭⎪⎫2θ+π4-1,∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴2θ+π4∈⎝ ⎛⎭⎪⎫π4,3π4,∴当2θ+π4=π2,即θ=π8时,S 取得最大值,且最大值为2-12R 2.21.(本小题满分12分)将射线y =17x (x ≥0)绕着原点逆时针旋转π4后所得的射线经过点A (cos θ,sin θ).(1)求点A 的坐标;(2)若向量m =(sin2x ,2cos θ),n =(3sin θ,2cos2x ),求函数f (x )=m ·n x ∈0,π2的值域.解 (1)设射线y =17x (x ≥0)与x 轴的非负半轴所成的锐角为α, 则tan α=17,α∈0,π2.所以tan α<tan π4,所以α∈0,π4.所以tan θ=tan α+π4=17+11-17×1=43,θ∈π4,π2.所以由⎩⎪⎨⎪⎧sin 2θ+cos 2θ=1,sin θcos θ=43,得⎩⎪⎨⎪⎧sin θ=45,cos θ=35.所以点A 的坐标为35,45. (2)f (x )=3sin θ·sin2x +2cos θ·2cos2x =125sin2x +125cos2x =1225sin2x +π4.由x ∈0,π2,得2x +π4∈π4,5π4, 所以sin2x +π4∈-22,1,所以函数f (x )的值域为-125,1225.22.(本小题满分12分)已知向量a =(3sin2x ,cos2x ),b =(cos2x ,-cos2x ). (1)若x ∈⎝ ⎛⎭⎪⎫7π24,5π12时,a ·b +12=-35,求cos4x 的值;(2)cos x ≥12,x ∈(0,π),若关于x 的方程a ·b +12=m 有且仅有一个实根,求实数m 的值.解 (1)∵a =(3sin2x ,cos2x ),b =(cos2x ,-cos2x ),∴a ·b +12=3sin2x cos2x -cos 22x +12 =32sin4x -1+cos4x 2+12=-12+32sin4x -12cos4x +12=sin ⎝ ⎛⎭⎪⎫4x -π6.由a ·b +12=-35,得sin ⎝ ⎛⎭⎪⎫4x -π6=-35.∵x ∈⎝ ⎛⎭⎪⎫7π24,5π12,∴4x -π6∈⎝ ⎛⎭⎪⎫π,3π2. ∴cos ⎝ ⎛⎭⎪⎫4x -π6=-45.∴cos4x =cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫4x -π6+π6 =cos ⎝ ⎛⎭⎪⎫4x -π6cos π6-sin ⎝ ⎛⎭⎪⎫4x -π6sin π6=3-4310.(2)∵cos x ≥12,又因为余弦函数在(0,π)上是减函数, ∴0<x ≤π3.令f (x )=a ·b +12=sin ⎝ ⎛⎭⎪⎫4x -π6,g (x )=m ,在同一坐标系中作出两个函数的图象, 由图可知:m =1或m =-12.。

人教A版高中数学必修四测试题及答案全套

人教A版高中数学必修四测试题及答案全套

人教A版高中数学必修四测试题及答案全套人教A版高中数学必修四测试题及答案全套阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.在0°~360°的范围内,与-510°终边相同的角是()A。

330° B。

210° C。

150° D。

30°2.若sinα = 3/3,π/2 < α < π,则sin(α+π/2) = ()A。

-6/3 B。

-1/2 C。

16/2 D。

33.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A。

2 B。

2sin1 C。

2sin1 D。

sin24.函数f(x) = sin(x-π/4)的图象的一条对称轴是()A。

x = π/4 B。

x = π/2 C。

x = -π/4 D。

x = -π/25.化简1+2sin(π-2)·cos(π-2)得()A。

sin2+cos2 B。

cos2-sin2 C。

sin2-cos2 D。

±cos2-sin26.函数f(x) = tan(x+π/4)的单调增区间为()A。

(kπ-π/2.kπ+π/2),k∈Z B。

(kπ。

(k+1)π),k∈ZC。

(kπ-4π/4.kπ+4π/4),k∈Z D。

(kπ-3π/4.kπ+3π/4),k∈Z7.已知sin(π/4+α) = 1/√2,则sin(π/4-α)的值为()A。

1/3 B。

-1/3 C。

1/2 D。

-1/28.设α是第三象限的角,且|cosα| = α/2,则α的终边所在的象限是()A。

第一象限 B。

第二象限 C。

第三象限 D。

第四象限9.函数y = cos2x+sinx在[-π/6.π/6]的最大值与最小值之和为()A。

3/4 B。

2 C。

1/3 D。

4/310.将函数y = sin(x-π/3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移一个单位,得到的图象对应的解析式为()A。

人教A版高中数学必修四测试题及答案全套

人教A版高中数学必修四测试题及答案全套

人教A 版高中数学必修四测试题及答案全套阶段质量检测(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在0°~360°的范围内,与-510°终边相同的角是( ) A .330° B .210° C .150° D .30° 2.若sin α=33,π2<α<π,则sin ⎝⎛⎭⎫α+π2=( ) A .-63B .-12C.12D.633.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( ) A .2 B.2sin 1C .2sin 1D .sin 24.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π25.化简1+2sin (π-2)·cos (π-2)得( ) A .sin 2+cos 2 B .cos 2-sin 2 C .sin 2-cos 2 D .±cos 2-sin 26.函数f (x )=tan ⎝⎛⎭⎫x +π4的单调增区间为( )A.⎝⎛⎫k π-π2,k π+π2,k ∈ZB .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎫k π-3π4,k π+π4,k ∈ZD.⎝⎛⎭⎫k π-π4,k π+3π4,k ∈Z7.已知sin ⎝⎛⎭⎫π4+α=32,则sin ⎝⎛⎭⎫3π4-α的值为( )A.12B .-12 C.32 D .-32 8.设α是第三象限的角,且⎪⎪⎪⎪cosα2=-cos α2,则α2的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.函数y =cos 2x +sin x ⎝⎛⎭⎫-π6≤x ≤π6的最大值与最小值之和为( )A.32B .2 C .0 D.3410.将函数y =sin ⎝⎛⎭⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A .y =sin 12xB .y =sin ⎝⎛⎭⎫12x -π2C .y =sin ⎝⎛⎭⎫12x -π6 D .y =sin ⎝⎛⎭⎫2x -π611.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝⎛⎭⎫2x -π4B .y =2sin ⎝⎛⎭⎫2x -π4或y =2sin ⎝⎛⎭⎫2x +3π4C .y =2sin ⎝⎛⎭⎫2x +3π4D .y =2sin ⎝⎛⎭⎫2x -3π412.函数f (x )=A sin ωx (ω>0),对任意x 有f ⎝⎛⎭⎫x -12=f ⎝⎛⎭⎫x +12,且f ⎝⎛⎭⎫-14=-a ,那么f ⎝⎛⎭⎫94等于( ) A .a B .2a C .3a D .4a二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan α=-3,π2<α<π,那么cos α-sin α的值是________. 14.设f (n )=cos ⎝⎛⎫n π2+π4,则f (1)+f (2)+f (3)+…+f (2 015)等于________.15.定义运算a *b 为a *b =⎩⎪⎨⎪⎧a (a ≤b ),b (a >b ),例如1*2=1,则函数f (x )=sin x *cos x 的值域为________.16.给出下列4个命题:①函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝⎛⎭⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝⎛⎭⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号).三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. 18.(12分)已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的单调递增区间. 19.(12分)已知函数f (x )=3sin ⎝⎛⎭⎫x +π4.(1)用五点法画出它在一个周期内的闭区间上的图象;(2)写出f (x )的值域、最小正周期、对称轴,单调区间.20.(12分)如图,函数y =2sin(πx +φ),x ∈R ⎝⎛⎭⎫其中0≤φ≤π2的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =2sin(πx +φ)的单调递增区间; (3)求使y ≥1的x 的集合.21.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),在同一周期内,当x =π12时,f (x )取得最大值3;当x =7π12时,f (x )取得最小值-3.(1)求函数f (x )的解析式; (2)求函数f (x )的单调递减区间;(3)若x ∈⎣⎡⎦⎤-π3,π6时,函数h (x )=2f (x )+1-m 的图象与x 轴有两个交点,求实数m 的取值范围.22.(12分)如图,函数y =2cos(ωx +θ)(x ∈R ,ω>0,0≤θ⎭⎫≤π2的图象与y 轴交于点(0,3),且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点A ⎝⎛⎭⎫π2,0,点P 是该函数图象上一点,点Q (x 0,y 0)是P A 的中点,当y 0=32,x 0∈⎣⎡⎦⎤π2,π时,求x 0的值.答 案1. 解析:选B 因为-510°=-360°³2+210°,因此与-510°终边相同的角是210°.2. 解析:选A ∵sin ⎝⎛⎭⎫π2+α=cos α,又π2<α<π,sin α=33,∴cos α=-63. 3. 解析:选B 如图,由题意知θ=1,BC =1,圆的半径r 满足sin θ=sin 1=1r ,所以r =1sin 1,弧长AB =2θ·r =2sin 1.4. 解析:选C f (x )=sin ⎝⎛⎭⎫x -π4的图象的对称轴为x -π4=k π+π2,k ∈Z ,得x =k π+3π4,当k =-1时,则其中一条对称轴为x =-π4.5. 解析:选C1+2sin (π-2)·cos (π-2)=1+2sin 2·(-cos 2) =(sin 2-cos 2)2, ∵π2<2<π,∴sin 2-cos 2>0. ∴原式=sin 2-cos 2.6. 解析:选C 令k π-π2<x +π4<k π+π2,k ∈Z ,解得k π-3π4<x <k π+π4,k ∈Z ,选C.7. 解析:选C ∵⎝⎛⎭⎫π4+α+⎝⎛⎭⎫3π4-α=π, ∴3π4-α=π-⎝⎛⎭⎫π4+α,∴sin ⎝⎛⎭⎫3π4-α=sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4+α=32. 8. 解析:选B ∵α是第三象限的角, ∴π+2k π<α<3π2+2k π,k ∈Z .∴π2+k π<α2<3π4+k π,k ∈Z . ∴α2在第二或第四象限. 又∵⎪⎪⎪⎪cosα2=-cos α2,∴cos α2<0.∴α2是第二象限的角. 9. 解析:选A f (x )=1-sin 2x +sin x =-⎝⎛⎭⎫sin x -122+54,∵-π6≤x ≤π6, ∴-12≤sin x ≤12.当sin x =-12时,f (x )min =14;当sin x =12时,f (x )max =54,∴f (x )min +f (x )max =14+54=32.10. 解析:选C 将函数y =sin ⎝⎛⎭⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即将x 变为12x ,即可得y =sin ⎝⎛⎭⎫12x -π3,然后将其图象向左平移π3个单位,即将x 变为x +π3.∴y =sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +π3-π3=sin ⎝⎛⎭⎫12x -π6.11. 解析:选C 由图象可知A =2,因为π8-⎝⎛⎭⎫-π8=π4,所以T =π,ω=2.当x =-π8时,2sin ⎝⎛⎭⎫-π8·2+φ=2,即sin ⎝⎛⎭⎫φ-π4=1,又|φ|<π,解得φ=3π4.故函数的解析式为y =2sin ⎝⎛⎭⎫2x +3π4.12. 解析:选A 由f ⎝⎛⎭⎫x -12=f ⎝⎛⎭⎫x +12,得f (x +1)=f ⎝⎛⎭⎫⎝⎛⎭⎫x +12+12=f ⎝⎛⎭⎫x +12-12=f (x ), 即1是f (x )的周期.而f (x )为奇函数, 则f ⎝⎛⎭⎫94=f ⎝⎛⎭⎫14=-f ⎝⎛⎭⎫-14=a . 13. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以cos α=-cos 2α=-cos 2αcos 2α+sin 2α=-11+tan 2α=-11+3=-12.sin α=32, 所以cos α-sin α=-1+32.答案:-1+3214. 解析:f (n )=cos ⎝⎛⎭⎫n π2+π4的周期T =4,且f (1)=cos ⎝⎛⎭⎫π2+π4=cos 3π4=-22,f (2)=cos ⎝⎛⎭⎫π+π4=-22,f (3)=cos ⎝⎛⎭⎫3π2+π4=22, f (4)=cos ⎝⎛⎭⎫2π+π4=22.所以f (1)+f (2)+f (3)+f (4)=0, 所以f (1)+f (2)+f (3)+…+f (2 015) =f (1)+f (2)+f (3)=-22. 答案:-2215. 解析:由题意可知,这实际上是一个取小的自定义函数,结合函数的图象可得其值域为⎣⎡⎦⎤-1,22. 答案:⎣⎡⎦⎤-1,22 16. 解析:函数y =sin ⎝⎛⎭⎫2x -π12的最小正周期是π,则y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π12的最小正周期为π2,故①正确.对于②,当x =7π12时,2sin ⎝⎛⎭⎫3³7π12-π4=2sin 3π2=-2,故②正确.对于③,由(sin α+cos α)2=125得2sin αcos α=-2425,α为第二象限角,所以sin α-cos α=1-2sin αcos α=75,所以sin α=35,cos α=-45,所以tan α=-34,故③正确.对于④,函数y =cos(2-3x )的最小正周期为2π3,而区间⎝⎛⎭⎫23,3长度73>2π3,显然④错误. 答案:①②③17. 解:由tan αtan α-1=-1,得tan α=12.(1)sin α-3cos αsin α+cos α=tan α-3tan α+1=12-312+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos α+2(cos 2α+sin 2α) =3sin 2α+sin αcos α+2cos 2αsin 2α+cos 2α=3tan 2α+tan α+2tan 2α+1=3⎝⎛⎭⎫122+12+2⎝⎛⎭⎫122+1=135.18. 解:(1)f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫13³5π4-π6=2sin π4=2(2)令2k π-π2≤13x -π6≤π2+2k π,k ∈Z ,所以2k π-π3≤13x ≤2π3+2k π,k ∈Z ,解得6k π-π≤x ≤2π+6k π,k ∈Z ,所以函数f (x )=2sin ⎝⎛⎭⎫13x -π6的单调递增区间为[6k π-π,2π+6k π],k ∈Z .19. 解:(1)列表如下:描点画图如图所示.(2)由图可知,值域为[-3,3],最小正周期为2π, 对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎡⎦⎤-3π4+2k π,π4+2k π(k ∈Z ),单调递减区间为⎣⎡⎦⎤π4+2k π,5π4+2k π(k ∈Z ).20. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin ⎝⎛⎭⎫πx +π6,所以当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z ,即-23+2k ≤x ≤13+2k ,k ∈Z 时,y =2sin ⎝⎛⎭⎫πx +π6是增函数,故y =2sin ⎝⎛⎭⎫πx +π6的单调递增区间为⎣⎡⎦⎤-23+2k ,13+2k ,k ∈Z . (3)由y ≥1,得sin ⎝⎛⎭⎫πx +π6≥12,所以π6+2k π≤πx +π6≤5π6+2k π,k ∈Z ,即2k ≤x ≤23+2k ,k ∈Z ,所以y ≥1时,x 的集合为⎩⎨⎧⎭⎬⎫x |2k ≤x ≤23+2k ,k ∈Z .21. 解:(1)由题意,A =3,T =2⎝⎛⎭⎫7π12-π12=π,ω=2πT =2. 由2³π12+φ=π2+2k π,k ∈Z ,得φ=π3+2k π,k ∈Z ,又因为-π<φ<π,所以φ=π3.所以f (x )=3sin ⎝⎛⎭⎫2x +π3.(2)由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π6+2k π≤2x ≤7π6+2k π,k ∈Z , 则π12+k π≤x ≤7π12+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎡⎦⎤π12+k π,7π12+k π(k ∈Z ).(3)由题意知,方程sin ⎝⎛⎫2x +π3=m -16在⎣⎡⎤-π3,π6上有两个根.因为x ∈⎣⎡⎦⎤-π3,π6,所以2x +π3∈⎣⎡⎦⎤-π3,2π3.所以m -16∈⎣⎡⎭⎫32,1.所以m ∈[33+1,7).22. 解:(1)把(0,3)代入y =2cos(ωx +θ)中, 得cos θ=32. ∵0≤θ≤π2,∴θ=π6.∵T =π,且ω>0,∴ω=2πT =2ππ=2.(2)∵点A ⎝⎛⎭⎫π2,0,Q (x 0,y 0)是P A 的中点,y 0=32,∴点P 的坐标为⎝⎛⎭⎫2x 0-π2,3.∵点P 在y =2cos ⎝⎛⎭⎫2x +π6的图象上,且π2≤x 0≤π,∴cos ⎝⎛⎭⎫4x 0-5π6=32,且7π6≤4x 0-5π6≤19π6. ∴4x 0-5π6=11π6或4x 0-5π6=13π6.∴x 0=2π3或x 0=3π4.阶段质量检测(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在五边形ABCDE 中(如图),=( )2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-5,-10) B .(-4,-8) C .(-3,-6) D .(-2,-4)3.已知平面向量a =(1,-3),b =(4,-2),若λa +b 与a 垂直,则λ的值是( ) A .-1 B .1 C .-2 D .24.若|a |=2,|b |=2,且(a -b )⊥a ,则a 与b 的夹角是( ) A.π6 B.π4 C.π3 D.π2A.12 B .-12 C.32 D .-326.已知向量满足:|a |=2,|b |=3,|a -b |=4,则|a +b |=( ) A. 6 B.7 C.10 D.11A .内心B .外心C .垂心D .重心8.平面向量a =(x ,-3),b =(-2,1),c =(1,y ),若a ⊥(b -c ),b ∥(a +c ),则b 与c 的夹角为( ) A .0 B.π4 C.π2 D.3π49.已知AD ,BE 分别为△ABC 的边BC ,AC 上的中线,设=a ,=b ,则等于( )A.43a +23b B.23a +43b C.23a -43b D .-23a +43bA.⎝⎛⎭⎫0,π3B.⎝⎛⎭⎫π3,5π6C.⎝⎛⎭⎫π2,2π3D.⎝⎛⎭⎫2π3,5π611.已知a =(-1,3),=a -b ,=a +b ,若△AOB 是以O 为直角顶点的等腰直角三角形,则△AOB 的面积是( )A. 3 B .2 C .2 2 D .412.已知向量m =(a ,b ),n =(c ,d ),p =(x ,y ),定义新运算m ⊗n =(ac +bd ,ad +bc ),其中等式右边是通常的加法和乘法运算.如果对于任意向量m 都有m ⊗p =m 成立,则向量p 为( )A .(1,0)B .(-1,0)C .(0,1)D .(0,-1) 二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a =(2x +3,2-x ),b =(-3-x ,2x )(x ∈R ).则|a +b |的取值范围为________. 14.设e 1,e 2为两个不共线的向量,若a =e 1+λe 2与b =-(2e 1-3e 2)共线,则实数λ等于________. 15.在边长为2的菱形ABCD 中,∠BAD =60°,E 为CD 的中点,则=________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.18.(12分)设向量a =(cos α,sin α)(0≤α<2π),b =⎝⎛⎭⎫-12,32,且a 与b 不共线.(1)求证:(a +b )⊥(a -b );(2)若向量3a +b 与a -3b 的模相等,求角α. 19.(12分)如图,平行四边形ABCD 中,=a ,=b ,H ,M 是AD ,DC 的中点,BF =13BC ,(1)以a ,b 为基底表示向量(2)若|a |=3,|b |=4,a 与b 的夹角为120°,求20.(12分)在边长为1的正△ABC 中,AD 与BE 相交于点F .21.(12分)在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝⎛⎭⎫0≤θ≤π2.22.(12分)已知e 1,e 2是平面内两个不共线的非零向量,且A ,E ,C 三点共线.(1)求实数λ的值;(2)若e 1=(2,1),e 2=(2,-2),求的坐标;(3)已知D (3,5),在(2)的条件下,若A ,B ,C ,D 四点按逆时针顺序构成平行四边形,求点A 的坐标.答 案1. 解析:选B ∵==.2. 解析:选B ∵a ∥b ,∴-21=m2,∴m =-4,∴b =(-2,-4),∴2a +3b =2(1,2)+3(-2,-4)=(-4,-8). 3. 解析:选A 由题意可知(λa +b )·a =λa 2+b ·a =0. ∵|a |=10,a ·b =1³4+(-3)³(-2)=10, ∴10λ+10=0,λ=-1.4. 解析:选B 由于(a -b )⊥a ,所以(a -b )·a =0,即|a|2-a ·b =0,所以a ·b =|a|2=2,所以 cos 〈a ,b 〉=a ·b |a||b|=222=22,即a 与b 的夹角是π4. 5.6. 解析:选C 由题意|a -b |2=a 2+b 2-2a ·b =16, ∴a ·b =-32.∴|a +b |2=a 2+b 2+2a ·b =10, ∴|a +b |=10. 7.∴P 是△ABC 的垂心.8. 解析:选C 由题意知b -c =(-3,1-y ),a +c =(x +1,y -3),依题意得⎩⎪⎨⎪⎧-3x -3(1-y )=0,x +1+2(y -3)=0,解得⎩⎪⎨⎪⎧x =1,y =2,∴c =(1,2),而b ·c =-2³1+1³2=0, ∴b ⊥c . 9.10.11. 解析:选D 由题意||=||且⊥,所以(a -b )2=(a +b )2且(a -b )·(a +b )=0, 所以a ·b =0,且a 2=b 2, 所以|a |=|b |=2,所以S △AOB =12||·||=12(a -b )2(a +b )2=12(a 2+b 2)2=4. 12. 解析:选A 因为m ⊗p =m ,即(a ,b )⊗(x ,y )=(ax +by ,ay +bx )=(a ,b ),所以⎩⎪⎨⎪⎧ax +by =a ,ay +bx =b ,即⎩⎪⎨⎪⎧a (x -1)+by =0,ay +b (x -1)=0. 由于对任意m =(a ,b ), 都有(a ,b )⊗(x ,y )=(a ,b )成立.所以⎩⎪⎨⎪⎧x -1=0,y =0,解得⎩⎪⎨⎪⎧x =1,y =0. 所以p =(1,0).故选A.13. 解析:因为a +b =(x ,x +2), 所以|a +b |=x 2+(x +2)2=2x 2+4x +4 =2(x +1)2+2≥2, 所以|a +b |∈[2,+∞). 答案:[2,+∞)14. 解析:因为a ,b 共线,所以由向量共线定理知,存在实数k ,使得a =k b , 即e 1+λe 2=-k (2e 1-3e 2)=-2k e 1+3k e 2 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧1=-2k ,λ=3k ,解得λ=-32.答案:-3215. 解析:以A 为原点,AB 所在的直线为x 轴,过A 且垂直于AB 的直线为y 轴建立平面直角坐标系.则由A (0,0),B (2,0),E (2,3),D (1,3,可得=1.答案:1 16.答案:[1,4]17. 解:(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x ) =1³(2x +3)+x (-x )=0.整理得x 2-2x -3=0,解得x =-1或x =3. (2)若a ∥b ,则有1³(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2. 当x =0时,a =(1,0),b =(3,0), ∴a -b =(-2,0),|a -b |=2;当x =-2时,a =(1,-2),b =(-1,2), ∴a -b =(2,-4),∴|a -b |=4+16=2 5. 综上所述,|a -b |为2或2 5.18. 解:(1)证明:由题意,得a +b =⎝⎛⎭⎫cos α-12,sin α+32,a -b =⎝⎛⎭⎫cos α+12,sin α-32,因为(a +b )·(a -b )=cos 2α-14+sin 2α-34=1-1=0,所以(a +b )⊥(a -b ).(2)因为向量3a +b 与a -3b 的模相等, 所以(3a +b )2=(a -3b )2,所以|a |2-|b |2+23a ·b =0,因为|a |=1,|b |=⎝⎛⎭⎫-122+⎝⎛⎭⎫322=1,所以|a |2=|b |2,所以a ·b =0, 所以-12cos α+32sin α=0,所以tan α=33, 又因为0≤α<2π, 所以α=π6或α=7π6.19. 解:(1)∵M 为DC 的中点,(2)由已知得a ·b =3³4³cos 120°=-6,=12a 2+⎝⎛⎭⎫1-112a ·b -16b 2 =12³32+1112³(-6)-16³42 =-113.20. 解:(1)由题意,D 为BC 边的中点,而△ABC 是正三角形,所以AD ⊥BC ,=12(a +b )·⎝⎛⎭⎫23b -a =13b 2-12a 2-16a ·b =13-12-16³1³1³12=-14.根据平面向量的基本定理有⎩⎪⎨⎪⎧-λ-22(λ+1)=-μ,λ2(λ+1)=2μ3,解得λ=4. 21.∴t =-2k sin θ+16.∵t sin θ=(-2k sin θ+16)sin θ =-2k ⎝⎛⎭⎫sin θ-4k 2+32k , ∵k >4,∴1>4k>0,当sin θ=4k 时,t sin θ取最大值为32k .由32k =4,得k =8,此时θ=π6,=(4,8),∴·=(8,0)·(4,8)=32.22. 解:(1)=(2e 1+e 2)+(-e 1+λe 2)=e 1+(1+λ)e 2.∵A ,E ,C 三点共线, ∴存在实数k ,使得,即e 1+(1+λ)e 2=k (-2e 1+e 2),得(1+2k )e 1=(k -1-λ)e 2.∵e 1,e 2是平面内两个不共线的非零向量,∴⎩⎪⎨⎪⎧1+2k =0,λ=k -1,解得k =-12,λ=-32.(2)=-3e 1-12e 2=(-6,-3)+(-1,1)=(-7,-2).(3)∵A ,B ,C ,D 四点按逆时针顺序构成平行四边形,即点A 的坐标为(10,7).阶段质量检测(三)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2cos 2x2+1的最小正周期是( )A .4πB .2πC .π D.π22.sin 45°²cos 15°+cos 225°²sin 15°的值为( ) A .-32B .-12C.12D.323.已知α是第二象限角,且cos α=-35,则cos ⎝⎛⎭⎫π4-α的值是( )A.210B .-210C.7210D .-72104.若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α等于( ) A .-79B .-13C.13D.795.已知tan(α+β)=14,tan α=322,那么tan(2α+β)等于( )A.25B.14C.1318D.1322 6.1-3tan 75°3+tan 75°的值等于( )A .2+3B .2-3C .1D .-17.在△ABC 中,已知tan A +B2=sin C ,则△ABC 的形状为( )A .正三角形B .等腰三角形C .直角三角形D .等腰直角三角形8.若θ∈⎝⎛⎭⎫0,π2,sin θ-cos θ=22,则cos 2θ等于( )A.32B .-32C .±32D .±129.若函数g (x )=a sin x cos x (a >0)的最大值为12,则函数f (x )=sin x +a cos x 的图象的一条对称轴方程为( )A .x =0B .x =-3π4C .x =-π4D .x =-5π410.已知tan α,tan β是方程x 2+33x +4=0的两个根,且-π2<α<π2,-π2<β<π2,则α+β为( )A.π6 B .-2π3C.π6或-5π6 D .-π3或2π311.设a =22(sin 17°+cos 17°),b =2cos 213°-1,c =sin 37°²sin 67°+sin 53°sin 23°,则( ) A .c <a <b B .b <c <aC .a <b <cD .b <a <c12.在△ABC 中,A ,B ,C 是其三个内角,设f (B )=4sin B ²cos 2⎝⎛⎭⎫π4-B 2+cos 2B ,当f (B )-m <2恒成立时,实数m 的取值范围是( )A .m <1B .m >-3C .m <3D .m >1二、填空题(本大题共4小题,每小题5分,共20分)13.已知α∈⎝⎛⎭⎫π2,π,sin α=55,则tan 2α=________. 14.已知等腰△ABC 的腰为底的2倍,则顶角A 的正切值是________.15.已知θ∈⎝⎛⎭⎫π2,π,1sin θ+1cos θ=22,则sin ⎝⎛⎭⎫2θ+π3的值为________. 16.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分 )已知cos θ=1213,θ∈(π,2π),求sin ⎝⎛⎭⎫θ-π6以及tan ⎝⎛⎭⎫θ+π4的值. 18.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. 19.(12分)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.20.(12分)已知f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2.(1)若f (α)=22,α∈⎝⎛⎭⎫-π2,0,求α的值; (2)若sin x 2=45,x ∈⎝⎛⎭⎫π2,π,求f (x )的值. 21.(12分)已知函数f (x )=cos 2x 2-sin x 2cos x 2-12. (1)求函数f (x )的最小正周期和值域;(2)若f (α)=3210,求sin 2α的值. 22.(12分)已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R ).(1)求函数f (x )的最小正周期及在区间⎣⎡⎦⎤0,π2上的最大值和最小值; (2)若f (x 0)=65,x 0∈⎣⎡⎦⎤π4,π2,求cos 2x 0的值.答 案1. 解析:选B ∵y =2cos 2x 2+1=⎝⎛⎭⎫2cos 2 x 2-1+2=cos x +2, ∴函数的最小正周期T =2π.2. 解析:选C sin 45°cos 15°+cos 225°sin 15°=sin 45°cos 15°-cos 45°sin 15°=sin(45°-15°)=sin 30°=12. 3. 解析:选A 由题意,sin α=45, cos ⎝⎛⎭⎫π4-α=cos π4cos α+sin π4sin α=210. 4. 解析:选A cos(2π3+2α)=cos[π-2(π6-α)]=-cos[2(π6-α)]=2sin 2⎝⎛⎭⎫π6-α-1=-79. 5. 解析:选A tan(2α+β)=tan (α+β)+tan α1-tan (α+β)tan α=25. 6. 解析:选D 1-3tan 75°3+tan 75°=33-tan 75°1+33tan 75° =tan 30°-tan 75°1+tan 30°·tan 75°=tan(30°-75°) =tan(-45°)=-1.7. 解析:选C 在△ABC 中,tan A +B 2=sin C =sin(A +B )=2sin A +B 2cos A +B 2,∴2cos 2A +B 2=1,∴cos(A +B )=0,从而A +B =π2,即△ABC 为直角三角形.8. 解析:选B 由sin θ-cos θ=22两边平方得,sin 2θ=12,又θ∈⎝⎛⎭⎫0,π2,且sin θ>cos θ,所以π4<θ<π2,所以π2<2θ<π,因此,cos 2θ=-32,故选B. 9. 解析:选B g (x )=a 2sin 2x (a >0)的最大值为12, 所以a =1,f (x )=sin x +cos x =2sin ⎝⎛⎭⎫x +π4, 令x +π4=π2+k π,k ∈Z 得x =π4+k π,k ∈Z .故选B. 10. 解析:选B 由题意得⎩⎨⎧tan α+tan β=-33,tan α·tan β=4>0, 所以tan α<0,tan β<0, 所以-π2<α<0,-π2<β<0,-π<α+β<0. 又tan(α+β)=tan α+tan β1-tan αtan β=-331-4= 3. 所以α+β=-2π3.故选B. 11. 解析:选A a =cos 45°sin 17°+sin 45°cos 17°=sin 62°,b =cos 26°=sin 64°,c =sin 37°cos 23°+cos 37°sin 23°=sin 60°,故c <a <b .12. 解析:选D f (B )=4sin B cos 2⎝⎛⎭⎫π4-B 2+cos 2B =4sin B ·1+cos ⎝⎛⎭⎫π2-B 2+cos 2B =2sin B (1+sin B )+(1-2sin 2B )=2sin B +1.∵f (B )-m <2恒成立,∴2sin B +1-m <2恒成立,即m >2sin B -1恒成立.∵0<B <π,∴0<sin B ≤1.∴-1<2sin B -1≤1,故m >1.13. 解析:因为sin α=55,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-255. 所以tan α=sin αcos α=-12,所以tan 2α=2tan α1-tan 2α=-11-14=-43. 答案:-4314. 解析:由题意,sin A 2=14,∴cos A 2=154, ∴tan A 2=1515.∴tan A =2tan A 21-tan 2A 2=157. 答案:157 15. 解析:由已知条件可得sin ⎝⎛⎭⎫θ+π4=sin 2θ, 又θ∈⎝⎛⎭⎫π2,π,由三角函数图象可知θ+π4+2θ=3π, 即θ=11π12,sin ⎝⎛⎭⎫2θ+π3=sin 13π6=12. 答案:1216. 解析:因为α为锐角,cos ⎝⎛⎭⎫α+π6=45,所以sin(α+π6)=35,sin 2⎝⎛⎭⎫α+π6=2425,cos 2⎝⎛⎭⎫α+π6=725,所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4=22³1725=17250. 答案:1725017. 解:因为cos θ=1213,θ∈(π,2π), 所以sin θ=-513,tan θ=-512, 所以sin ⎝⎛⎭⎫θ-π6=sin θcos π6-cos θsin π6 =-513³32-1213³12=-53+1226, tan ⎝⎛⎭⎫θ+π4=tan θ+tanπ41-tan θtan π4=-512+11-⎝⎛⎭⎫-512³1=717. 18. 解:(1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45. 两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2. ∴[f (β)]2-2=4sin 2π4-2=0. 19. 解:(1)由|a|2=(3sin x )2+(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1,及|a |=|b |,得4sin 2x =1.又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎫2x -π6+12, 当x =π3∈⎣⎡⎦⎤0,π2时,sin ⎝⎛⎭⎫2x -π6取最大值1,此时f (x )取得最大值,最大值为32. 20. 解:(1)f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2 =sin x +sin ⎝⎛⎭⎫x +π2=sin x +cos x =2sin ⎝⎛⎭⎫x +π4. 由f (α)=22,得2sin ⎝⎛⎭⎫α+π4=22,∴sin ⎝⎛⎭⎫α+π4=12. ∵α∈⎝⎛⎭⎫-π2,0,∴α+π4∈⎝⎛⎭⎫-π4,π4. ∴α+π4=π6,∴α=-π12. (2)∵x ∈⎝⎛⎭⎫π2,π,∴x 2∈⎝⎛⎭⎫π4,π2. 又∵sin x 2=45,∴cos x 2=35. ∴sin x =2sin x 2cos x 2=2425, cos x =-1-sin 2x =-725. ∴f (x )=sin x +cos x =2425-725=1725. 21. 解:(1)f (x )=cos 2x 2-sin x 2cos x 2-12=12(1+cos x )-12sin x -12=22cos ⎝⎛⎭⎫x +π4.所以f (x )的最小正周期为2π,值域为⎣⎡⎦⎤-22,22. (2)由(1)知f (α)=22cos ⎝⎛⎭⎫α+π4=3210, 所以cos ⎝⎛⎭⎫α+π4=35. 所以sin 2α=-cos ⎝⎛⎭⎫π2+2α=-cos 2⎝⎛⎭⎫α+π4 =1-2cos 2⎝⎛⎭⎫α+π4=1-1825=725. 22. 解:(1)由f (x )=23sin x cos x +2cos 2x -1,得f (x )=3(2sin x cos x )+(2cos 2x -1)=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. ∴函数f (x )的最小正周期为π.∵f (x )=2sin ⎝⎛⎭⎫2x +π6在区间⎣⎡⎦⎤0,π6上为增函数,在区间⎝⎛⎦⎤π6,π2上为减函数,又f (0)=1,f ⎝⎛⎭⎫π6=2, f ⎝⎛⎭⎫π2=-1,∴函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值为2,最小值为-1. (2)由(1)可知f (x 0)=2sin ⎝⎛⎭⎫2x 0+π6. 又∵f (x 0)=65,∴sin ⎝⎛⎭⎫2x 0+π6=35. 由x 0∈⎣⎡⎦⎤π4,π2,得2x 0+π6∈⎣⎡⎦⎤2π3,7π6. 从而cos ⎝⎛⎭⎫2x 0+π6=- 1-sin 2⎝⎛⎭⎫2x 0+π6=-45. ∴cos 2x 0=cos ⎣⎡⎦⎤⎝⎛⎭⎫2x 0+π6-π6 =cos ⎝⎛⎭⎫2x 0+π6cos π6+sin ⎝⎛⎭⎫2x 0+π6sin π6 =3-4310.。

高中数学新课标人教A版必修4:向量的数量积与向量投影 课件

高中数学新课标人教A版必修4:向量的数量积与向量投影 课件

教学目标
类比加法运算
确定研究路径
创设物理情境
抽象数量积概念
引入投影向量
挖掘几何意义
设置开放问题
探究几何性质
反思学习过程
提升理性思维
环节一 类比加法运算,明确研究路径.
问题1:你能以加法为例,总结一
下我们是如何研究向量运算的吗?
设计意图
前面的学习
经验为研究新的
运算提供了研究
方法,体现了单
元教学内容的整
教学过程
教学反思
目 录
教学重点
教学难点
内容解析
目标设置
重点难点
数量积的
概念及其
物理意义
投影向量
的表示及
数量积的
几何意义
教学策略
教学过程
教学反思
目 录
独立
思考
主动
探究
合作
交流
教学内容
目标设置
重点难点
教学策略
设置问题序列
教学过程
教学反思
目 录
内容解析
目标设置
重点难点
教学策略
教学过程
教学反思
教学流程
桥梁,引入投影
向量将不共线的
向量的数量积转
化为共线向量的
数量积,体会一
般和特殊的转化.
环节四 设置开放问题,探究几何性质
正六边形 的边长为1,在边上取点,形成向量 ,
,求出你所选取的向量 , 的数量积.并在此过程中,探究
数量积的几何性质.
A
B
F
C
E
D
这个图形为探究
性质提供很好的素材.
会计算两个向量的数量积 ,提升数学抽
象核心素养.

人教A版数学必修四习题:第三章 三角恒等变换 单元质量评估 Word版含答案

人教A版数学必修四习题:第三章 三角恒等变换 单元质量评估 Word版含答案

单元质量评估(12019 150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设sin(π-θ)=,则cos 2θ= ( B )A.±B.C.-D.-2.已知sin=,-<α<0,则cos的值是( C )A. B. C.- D.13.sin 14°cos16°+sin76°cos74°的值是 ( B )A. B. C.- D.-4.-= ( D )A.4B.2C.-2D.-45.若sin(π-α)=-且α∈,则sin= ( A )A.-B.-C.D.6.若将函数f(x)=sin 2x+cos 2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是( C )A. B. C. D.7.(2018·中原名校高三检测)cos 375°+sin 375°的值为( A )A. B. C.- D.-8.(2018·淮南高三检测)为了得到函数y=2cos2的图象,只需把函数y=-sin 2x的图象上所有的点( C )A.向右平移个单位B.向左平移个单位C.向上平移1个单位D.向下平移1个单位9.已知cos 2α=,则tan2α= ( D )A. B.2 C. D.10.在△ABC中,若cos A=,cos B=,则cos C= ( C )A. B. C. D.11.cos ·cos ·cos= ( A )A.-B.-C.D.12.(2018·洛阳高三检测)设a=cos 50°cos127°+cos40°·cos 37°,b=(sin 56°-cos 56°),c=,则a,b,c的大小关系是( D )A.a>b>cB.b>a>cC.c>a>bD.a>c>b二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知tan α=3,则cos 2α=-.14.函数f(x)=sin-2sin2x的最小正周期是π.15.(2018·广东珠海六校联考)已知tan(α+β)=,tan β=,则tan的值为.16.已知cos4α-sin4α=,且α∈,则cos=.三、解答题(本大题共6小题,共70分.解答时应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设向量a=(sin x,sin x),b=(cos x,sin x),x∈.(1)若|a|=|b|,求x的值.(2)设函数f(x)=a·b,求f(x)的最大值.【解析】(1)由|a|2=(sin x)2+(sin x)2=4sin2x,|b|2=(cos x)2+(sin x)2=1,|a|=|b|,得4sin2x=1,又x∈,从而sin x=,所以x=.(2)f(x)=a·b=sin x·cos x+sin2x=sin 2x-cos 2x+=sin+,当x=∈时,sin取最大值1.所以f(x)的最大值为.18.(本小题满分12分)(2017·北京高考)已知函数f(x)=cos-2sin xcos x.(1)求f(x)的最小正周期.(2)求证:当x∈时,f(x)≥-.【解析】(1)f(x)=cos 2x+sin 2x-sin 2x=sin 2x+cos 2x=sin,所以f(x)的最小正周期T==π.(2)因为-≤x≤,所以-≤2x+≤,所以sin≥sin=-,所以当x∈时,f(x)≥-.19.(本小题满分12分)已知cos α=-,α∈.(1)求cos的值.(2)求tan 2α的值.【解析】(1)因为cos α=-,α∈,所以sin α==,所以cos=cos αcos +sin αsin=-×+×=.(2)因为tan α===-,所以tan 2α===.20.(本小题满分12分)已知α∈,且sin +cos =.(1)求cos α的值.(2)若sin(α-β)=-,β∈,求cos β的值.【解析】(1)将sin +cos =两边同时平方,得1+sin α=,则sin α=.又<α<π,所以cos α=-=-.(2)因为<α<π,<β<π,所以-<α-β<.所以由sin(α-β)=-得cos(α-β)=,所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=-×+×=-.21.(本小题满分12分)(2018·济南高三检测)已知函数f(x)=-2cos2+.(1)求f(x)的单调区间.(2)求f(x)在[0,π]上的值域.【解析】(1)f(x)=1+sin x-cos x=1+2sin.由2kπ-≤x-≤2kπ+,k∈Z,得f(x)的单调递增区间为,k∈Z,由2kπ+≤x-≤2kπ+,k∈Z,得f(x)的单调递减区间为,k∈Z.(2)x∈[0,π],则x-∈,sin∈,2sin∈[-,2],所以f(x)在[0,π]上的值域为[1-,3].22.(本小题满分12分)已知向量m=,n=,其中α∈,且m⊥n.(1)求sin 2α和cos 2α的值.(2)若sin=,且β∈,求角β.【解析】(1)因为m⊥n,所以2cos α-sin α=0,即sin α=2cos α.代入cos2α+sin2α=1,得5cos2α=1,又α∈,则cos α=,sin α=.则sin 2α=2sin αcos α=2××=.cos 2α=2cos2α-1=2×-1=-.(2)因为α∈,β∈,所以α-β∈.又sin(α-β)=,所以cos(α-β)=.所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=×-×=.由β∈,得β=.关闭Word文档返回原板块。

高中数学 第二章 综合检测题 新人教A版必修4

高中数学 第二章 综合检测题 新人教A版必修4

第二章综合检测题本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(08²湖北文)设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )²c =( ) A .(-15,12) B .0 C .-3 D .-11 [答案] C[解析] ∵a +2b =(-5,6),c =(3,2), ∴(a +2b )²c =-5³3+6³2=-3.2.已知a =(1,-1),b =(λ,1),a 与b 的夹角为钝角,则λ的取值范围是( ) A .λ>1 B .λ<1 C .λ<-1D .λ<-1或-1<λ<1 [答案] D[解析] 由条件知,a ²b =λ-1<0,∴λ<1, 当a 与b 反向时,假设存在负数k ,使b =k a ,∴⎩⎪⎨⎪⎧λ=k 1=-k,∴⎩⎪⎨⎪⎧k =-1λ=-1.∴λ<1且λ≠-1.3.在四边形ABCD 中,若AB →²CD →=-|AB →|²|CD →|,且BC →²AD →=|AD →|²|BC →|,则该四边形一定是( )A .平行四边形B .矩形C .菱形D .正方形 [答案] A[解析] 由AB →²CD →=-|AB →|²|CD →|可知AB →与CD →的夹角为180°,∴AB ∥CD .又由BC →²AD →=|AD →|²|BC →|知BC →与AD →的夹角为0°, ∴BC ∥AD ,∴四边形ABCD 是平行四边形.4.如果两个非零向量a 和b 满足等式|a |+|b |=|a +b |,则a ,b 应满足( ) A .a ²b =0 B .a ²b =|a |²|b | C .a ²b =-|a |²|b | D .a ∥b [答案] B[解析] 由|a |+|b |=|a +b |知,a 与b 同向,故夹角为0°,∴a ²b =|a |²|b |cos0°=|a |²|b |.5.(08²湖南理)设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直 [答案] A[解析] AD →+BE →+CF →=AB →+BD →+BC →+CE →+BF →-BC →=AB →+13BC →+BC→-23AC →-13AB →-BC →=23(AB →-AC →)+13BC →=23CB →+13BC →=-13BC →,故选A. 6.在▱ABCD 中,已知AC →=(-4,2),BD →=(2,-6),那么|2AB →+AD →|=( )A .5 5B .2 5C .210 D.85 [答案] D[解析] 设AB →=a ,AD →=b ,则a +b =AC →=(-4,2),b -a =BD →=(2,-6), ∴b =(-1,-2),a =(-3,4), ∴2AB →+AD →=2a +b =(-7,6),∴|2AB →+AD →|=(-7)2+62=85.7.如右图,在梯形ABCD 中,AD ∥BC ,OA →=a ,OB →=b ,OC →=c ,OD →=d ,且E 、F 分别为AB 、CD 的中点,则( )A.EF →=12(a +b +c +d )B.EF →=12(a -b +c -d )C.EF →=12(c +d -a -b )D.EF →=12(a +b -c -d )[答案] C[解析] ∵EF →=OF →-OE →=12(OC →+OD →)-12(OA →+OB →)=12(c +d )-12(a +b ), ∴EF →=12(c +d -a -b ).8.在矩形ABCD 中,AE →=12AB →,BF →=12BC →,设AB →=(a,0),AD →=(0,b ),当EF →⊥DE →时,求得|a ||b |的值为( ) A .3 B .2 C. 3 D. 2 [答案] D[解析] 如图,∵EF →=EB →+BF →=12AB →+12AD →=⎝ ⎛⎭⎪⎫a 2,0+⎝ ⎛⎭⎪⎫0,b 2=⎝ ⎛⎭⎪⎫a 2,b2.又∵DE →=DA →+AE →=-AD →+12AB →=(0,-b )+⎝ ⎛⎭⎪⎫a 2,0=⎝ ⎛⎭⎪⎫a2,-b , ∵EF →⊥DE →,∴a 24-b 22=0,∴|a ||b |= 2.9.已知向量OA →=(2,2),OB →=(4,1),在x 轴上求一点P ,使AP →²BP →取最小值,则P 点的坐标是( )A .(3,0)B .(-3,0)C .(2,0)D .(4,0) [答案] A[解析] 设P (x 0,0),且AP →=(x 0-2,-2),BP →=(x 0-4,-1), ∴AP →²BP →=(x 0-2)(x 0-4)+2 =x 20-6x 0+10=(x 0-3)2+1, ∴x 0=3时,AP →²BP →取最小值.10.(08²浙江理)已知a 、b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )²(b -c )=0,则|c |的最大值是( )A .1B .2 C. 2 D.22[答案] C[解析] 由(a -c )(b -c )=0得a ²b -(a +b )²c +c 2=0,即c 2=(a +b )c , 故|c |²|c |≤|a +b |²|c |,即|c |≤|a +b |=2,故选C.11.(09²辽宁文)平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=( ) A. 3 B .2 3 C .4 D .12 [答案] B[解析] ∵a =(2,0),∴|a |=2,|a +2b |2=|a |2+4|b |2+4a ²b =4+4+4³2³1³cos60°=12, ∴|a +2b |=23,∴选B.12.设e 1与e 2为两不共线向量,AB →=2e 1-3e 2,BC →=-5e 1+4e 2,CD →=e 1+2e 2,则( ) A .A 、B 、D 三点共线 B .A 、C 、D 三点共线 C .B 、C 、D 三点共线 D .A 、B 、C 三点共线 [答案] A[解析] ∵BD →=BC →+CD →=-4e 1+6e 2 =-2(2e 1-3e 2)=-2AB →,∴AB →∥BD →, ∵AB →与BD →有公共点B ,∴A 、B 、D 三点共线.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.与向量a =(-5,12)共线的单位向量为________. [答案] ⎝ ⎛⎭⎪⎫-513,1213和⎝ ⎛⎭⎪⎫513,-1213[解析] ∵|a |=13,∴与a 共线的单位向量为 ±a |a |=±⎝ ⎛⎭⎪⎫-513,1213.14.在△ABC 中,AB =2,AC =3,D 是边BC 的中点,则AD →²BC →=________. [答案] 52[解析] 由已知得AD →=12(AB →+AC →),BC →=AC →-AB →,∴AD →²BC →=12(AB →²AC →)²(AC →-AB →)=12(|AC →|2-|AB →|2)=12(9-4)=52. 15.已知a +b =2e 1-8e 2,a -b =-8e 1+16e 2,其中|e 1|=|e 2|=1,e 1⊥e 2,则a ²b =________.[答案] -63[解析] 解方程组⎩⎪⎨⎪⎧a +b =2e 1-8e 2a -b =-8e 1+16e 2得,⎩⎪⎨⎪⎧a =-3e 1+4e 2b =5e 1-12e 2,∴a ²b =(-3e 1+4e 2)²(5e 1-12e 2) =-15|e 1|2+56e 1²e 2-48|e 2|2=-63.16.已知OA →=(k,2),OB →=(1,2k ),OC →=(1-k ,-1),且相异三点A 、B 、C 共线,则实数k =________.[答案] -14[解析] AB →=OB →-OA →=(1-k,2k -2), AC →=OC →-OA →=(1-2k ,-3),∵A 、B 、C 三点共线,∴AB →∥AC →,∴(1-k )²(-3)-(2k -2)²(1-2k )=0,∴k =1或-14. ∵A 、B 、C 是不同三点,∴k ≠1,∴k =-14.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)已知a =(1,1),且a 与a +2b 的方向相同,求a ²b 的取值范围. [解析] ∵a 与a +2b 方向相同,且a ≠0, ∴存在正数λ,使a +2b =λa ,∴b =12(λ-1)a .∴a ²b =a ²⎣⎢⎡⎦⎥⎤12(λ-1)a =12(λ-1)|a |2=λ-1>-1.即a ²b 的取值范围是(-1,+∞).18.(本题满分12分)已知a =(1,2),b =(-3,2),当k 为何值时, (1)k a +b 与a -3b 垂直?(2)k a +b 与a -3b 平行?平行时它们是同向还是反向? [解析] (1)k a +b =k ³(1,2)+(-3,2) =(k -3,2k +2),a -3b =(1,2)-3³(-3,2)=(10,-4).当(k a +b )²(a -3b )=0时,这两个向量垂直. 由10(k -3)+(2k +2)(-4)=0, 解得k =19.即当k =19时,k a +b 与a -3b 垂直.(2)当k a +b 与a -3b 平行时,存在唯一的实数λ使k a +b =λ(a -3b ). 由(k -3,2k +2)=λ(10,-4)得,⎩⎪⎨⎪⎧k -3=10λ,2k +2=-4λ,解得⎩⎪⎨⎪⎧k =-13,λ=-13.即当k =-13时,两向量平行.∵λ=-13,∴-13a +b 与a -3b 反向.19.(本题满分12分)已知a =3i -4j ,a +b =4i -3j , (1)求向量a 、b 的夹角的余弦值;(2)对非零向量p ,q ,如果存在不为零的常数α,β使αp +βq =0,那么称向量p ,q 是线性相关的,否则称向量p ,q 是线性无关的.向量a ,b 是线性相关还是线性无关的?为什么?[解析] (1)b =(a +b )-a =i +j ,设a 与b 夹角为θ,根据两向量夹角公式:cos θ=a ²b |a ||b |=3-452=-210. (2)设存在不为零的常数α,β使得αa +βb =0,那么⎩⎪⎨⎪⎧3α+β=0-4α+β=0⇒⎩⎪⎨⎪⎧α=0β=0,所以不存在非零常数α,β,使得αa +βb =0成立.故a 和b 线性无关.20.(本题满分12分)已知正方形ABCD ,P 为对角线AC 上任一点,PE ⊥AB 于点E ,PF ⊥BC 于点F .求证:DP ⊥EF .[证明] 以A 为原点,AB 、AD 分别为x 轴、y 轴建立直角坐标系,设正方形边长为1,则AB →=(1,0),AD →=(0,1).由已知,可设AP →=(a ,a ),并可得EB →=(1-a,0),BF →=(0,a ),EF →=(1-a ,a ),DP →=AP →-AD →=(a ,a -1),∵DP →²EF →=(1-a ,a )²(a ,a -1) =(1-a )a +a (a -1)=0. ∴DP →⊥EF →,因此DP ⊥EF .21.(本题满分12分)设直线l :mx +y +2=0与线段AB 有公共点P ,其中A (-2,3),B (3,2),试用向量的方法求实数m 的取值范围.[解析] (1)P 与A 重合时,m ³(-2)+3+2=0, ∴m =52.P 与B 重合时,3m +2+2=0,∴m =-43.(2)P 与A 、B 不重合时,设AP →=λPB →,则λ>0. 设P (x ,y ),则AP →=(x +2,y -3),PB →=(3-x,2-y ).∴⎩⎪⎨⎪⎧x +2=λ(3-x )y -3=λ(2-y ),∴⎩⎪⎨⎪⎧x =3λ-2λ+1y =2λ+3λ+1,把x ,y 代入mx +y +2=0可解得λ=2m -53m +4,又∵λ>0,∴2m -53m +4>0.∴m <-43或m >52.由(1)(2)知,所求实数m 的取值范围是-∞,-43∪⎣⎢⎡⎭⎪⎫52,+∞.22.(本题满分14分)已知a ,b 是两个非零向量,夹角为θ,当a +t b (t ∈R )的模取最小值时.(1)求t 的值;(2)求b 与a +t b 的夹角.[解析] (1)|a +t b |2=a 2+2t a ²b +t 2b 2=|b |2t 2+2|a ||b |cos θ²t +|a |2. ∴当t =-|a |cos θ|b |时,|a +t b |有最小值.(2)当t =-|a |cos θ|b |时,b ²(a +t b )=a ²b +t |b |2=|a |²|b |cos θ-|a |cos θ|b |²|b |2=0.∴b ⊥(a +t b ),即b 与a +t b 的夹角为90°.。

高中数学 阶段质量检测(一)(含解析)新人教A版必修4-新人教A版高一必修4数学试题

高中数学 阶段质量检测(一)(含解析)新人教A版必修4-新人教A版高一必修4数学试题

阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若角α的终边经过点P (-1,3),则tan α的值为( ) A .-13 B .-3C .-1010 D.31010解析:选B 由定义,若角α的终边经过点P (-1,3),∴tan α=-3.故选B. 2.若sin α=33,π2<α<π,则sin ⎝⎛⎭⎪⎫α+π2=( )A .-63 B .-12C.12 D.63解析:选A ∵sin ⎝ ⎛⎭⎪⎫π2+α=cos α,又π2<α<π,sin α=33,∴cos α=-63. 3.已知扇形的半径为r ,周长为3r ,则扇形的圆心角等于( ) A.π3 B .1C.2π3D .3 解析:选B 弧长l =3r -2r =r ,则圆心角α=lr=1.4.函数f (x )=sin ⎝⎛⎭⎪⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2解析:选C f (x )=sin ⎝ ⎛⎭⎪⎫x -π4的图象的对称轴为x -π4=k π+π2,k ∈Z ,得x =k π+3π4, 当k =-1时,则其中一条对称轴为x =-π4.5.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( )A .y =sin ⎝ ⎛⎭⎪⎫x +π2B .y =cos ⎝⎛⎭⎪⎫x +π2C .y =cos ⎝ ⎛⎭⎪⎫2x +π2D .y =sin ⎝⎛⎭⎪⎫2x +π2 解析:选D 周期为π,排除A ,B ;y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为增函数,y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为减函数,所以选D.6.函数f (x )=tan ⎝⎛⎭⎪⎫x +π4的单调增区间为( )A.⎝⎛⎭⎪⎫k π-π2,k π+π2,k ∈ZB .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z D.⎝⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z 解析:选C 令k π-π2<x +π4<k π+π2,k ∈Z ,解得k π-3π4<x <k π+π4,k ∈Z ,选C.7.已知sin ⎝ ⎛⎭⎪⎫π4+α=32,则sin ⎝ ⎛⎭⎪⎫3π4-α的值为( )A.12 B .-12C.32 D .-32 解析:选C ∵⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫3π4-α=π,∴3π4-α=π-⎝ ⎛⎭⎪⎫π4+α,∴sin ⎝⎛⎭⎪⎫3π4-α=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4+α=32.8.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的图象,可以将函数y =cos 2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度解析:选B 函数y =sin ⎝ ⎛⎭⎪⎫2x -π6=cos π2-2x -π6=cos ⎝ ⎛⎭⎪⎫2π3-2x =cos ⎝ ⎛⎭⎪⎫2x -2π3=cos2x -π3.故选B.9.函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫-π6≤x ≤π6的最大值与最小值之和为( )A.32 B .2C .0 D.34解析:选A f (x )=1-sin 2x +sin x =-⎝ ⎛⎭⎪⎫sin x -122+54,∵-π6≤x ≤π6,∴-12≤sin x ≤12.当sin x =-12时,f (x )min =14;当sin x =12时,f (x )max =54,∴f (x )min +f (x )max =14+54=32.10.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称;③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数. A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6 B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6 C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3 D .f (x )=cos ⎝⎛⎭⎪⎫2x -π6解析:选B 依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.11.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝⎛⎭⎪⎫2x -π4 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 D .y =2sin ⎝⎛⎭⎪⎫2x -3π4 解析:选C 由图象可知A =2,因为π8-⎝ ⎛⎭⎪⎫-π8=π4,所以T =π,ω=2.当x =-π8时,2sin ⎝ ⎛⎭⎪⎫-π8·2+φ=2,即sin ⎝⎛⎭⎪⎫φ-π4=1,又|φ|<π,解得φ=3π4.故函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x +3π4. 12.函数f (x )=A sin ωx (ω>0),对任意x 有f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,且f ⎝ ⎛⎭⎪⎫-14=-a ,那么f ⎝ ⎛⎭⎪⎫94等于( )A .aB .2aC .3aD .4a解析:选A 由f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,得f (x +1)=f ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫x +12+12=f ⎝ ⎛⎭⎪⎫x +12-12=f (x ),即1是f (x )的周期.而f (x )为奇函数,则f ⎝ ⎛⎭⎪⎫94=f ⎝ ⎛⎭⎪⎫14=-f ⎝ ⎛⎭⎪⎫-14=a .二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan α=-3,π2<α<π,那么cos α-sin α的值是________. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以cos α=-cos 2α=-cos 2αcos 2α+sin 2α=-11+tan 2α=-11+3=-12.sin α=32,所以cos α-sin α=-1+32.答案:-1+3214.函数f (sin x )=cos 2x ,那么f ⎝ ⎛⎭⎪⎫12的值为________. 解析:令sin x =12,得x =2k π+π6或x =2k π+5π6,k ∈Z ,所以f ⎝ ⎛⎭⎪⎫12=cos π3=12. 答案:1215.定义运算a *b 为a *b =⎩⎪⎨⎪⎧aa ≤b ,b a >b ,例如1*2=1,则函数f (x )=sin x *cos x的值域为________.解析:由题意可知,这实际上是一个取小的自定义函数,结合函数的图象可得其值域为⎣⎢⎡⎦⎥⎤-1,22.答案:⎣⎢⎡⎦⎥⎤-1,22 16.给出下列4个命题:①函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝ ⎛⎭⎪⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝ ⎛⎭⎪⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号).解析:函数y =sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π,则y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期为π2,故①正确. 对于②,当x =7π12时,2sin ⎝⎛⎭⎪⎫3×7π12-π4=2sin 3π2=-2,故②正确.对于③,由(sin α+cos α)2=125得2sin αcos α=-2425,α为第二象限角,所以sin α-cos α=1-2sin αcos α=75,所以sin α=35,cos α=-45,所以tan α=-34,故③正确. 对于④,函数y =cos(2-3x )的最小正周期为2π3,而区间⎝ ⎛⎭⎪⎫23,3长度73>2π3,显然④错误.答案:①②③三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知tan α+1tan α=52,求2sin 2(3π-α)-3cos π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2的值.解:tan α+1tan α=52,即2tan 2α-5tan α+2=0,解得tan α=12或tan α=2.2sin 2(3π-α)-3cos ⎝ ⎛⎭⎪⎫π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2 =2sin 2α-3sin αcos α+2 =2sin 2α-3sin αcos αsin 2α+cos 2α+2 =2tan 2α-3tan αtan 2α+1+2. 当tan α=12时,原式=2×⎝ ⎛⎭⎪⎫122-3×12⎝ ⎛⎭⎪⎫122+1+2=-45+2=65;当tan α=2时,原式=2×22-3×222+1+2=25+2=125. 18.(12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的单调递增区间. 解:(1)f ⎝⎛⎭⎪⎫5π4=2sin ⎝⎛⎭⎪⎫13×5π4-π6=2sin π4= 2(2)令2k π-π2≤13x -π6≤π2+2k π,k ∈Z ,所以2k π-π3≤13x ≤2π3+2k π,k ∈Z ,解得6k π-π≤x ≤2π+6k π,k ∈Z ,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6的单调递增区间为[6k π-π,2π+6k π],k ∈Z .19.(12分)已知函数f (x )=3sin ⎝⎛⎭⎪⎫x +π4.(1)用五点法画出它在一个周期内的闭区间上的图象; (2)写出f (x )的值域、最小正周期、对称轴,单调区间.解:(1)列表如下:x -π4 π4 3π4 5π4 7π4 x +π4π2 π3π2 2πsin ⎝ ⎛⎭⎪⎫x +π40 10 -13sin ⎝⎛⎭⎪⎫x +π4 0 3 0 -3 0描点画图如图所示.(2)由图可知,值域为[-3,3],最小正周期为2π, 对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π(k ∈Z ),单调递减区间为⎣⎢⎡⎦⎥⎤π4+2k π,5π4+2k π(k ∈Z ).20.(12分)如图,函数y =2sin(πx +φ),x ∈R ⎝ ⎛⎭⎪⎫其中0≤φ≤π2的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =2sin(πx +φ)的单调递增区间; (3)求使y ≥1的x 的集合. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin ⎝⎛⎭⎪⎫πx +π6,所以当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z ,即-23+2k ≤x ≤13+2k ,k ∈Z 时,y =2sin ⎝⎛⎭⎪⎫πx +π6是增函数,故y =2sin ⎝⎛⎭⎪⎫πx +π6的单调递增区间为⎣⎢⎡⎦⎥⎤-23+2k ,13+2k ,k ∈Z . (3)由y ≥1,得sin ⎝⎛⎭⎪⎫πx +π6≥12,所以π6+2k π≤πx +π6≤5π6+2k π,k ∈Z ,即2k ≤x ≤23+2k ,k ∈Z ,所以y ≥1时,x 的集合为⎩⎨⎧⎭⎬⎫x |2k ≤x ≤23+2k ,k ∈Z .21.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),在同一周期内,当x =π12时,f (x )取得最大值3;当x =7π12时,f (x )取得最小值-3. (1)求函数f (x )的解析式;(2)求函数f (x )的单调递减区间;(3)若x ∈⎣⎢⎡⎦⎥⎤-π3,π6时,函数h (x )=2f (x )+1-m 的图象与x 轴有两个交点,某某数m 的取值X 围.解:(1)由题意,A =3,T =2⎝⎛⎭⎪⎫7π12-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π,k ∈Z ,得φ=π3+2k π,k ∈Z ,又因为-π<φ<π,所以φ=π3.所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π3.(2)由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π6+2k π≤2x ≤7π6+2k π,k ∈Z , 则π12+k π≤x ≤7π12+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π(k ∈Z ).(3)由题意知,方程sin ⎝ ⎛⎭⎪⎫2x +π3=m -16在⎣⎢⎡⎦⎥⎤-π3,π6上有两个根.因为x ∈⎣⎢⎡⎦⎥⎤-π3,π6,所以2x +π3∈⎣⎢⎡⎦⎥⎤-π3,2π3.所以m -16∈⎣⎢⎡⎭⎪⎫32,1.所以m ∈[33+1,7).22.(12分)已知函数f (x )=sin(ωx +φ)-b (ω>0,0<φ<π)的图象两相邻对称轴之间的距离是π2.若将f (x )的图象先向右平移π6个单位长度,再向上平移3个单位长度,所得图象对应的函数g (x )为奇函数.(1)求f (x )的解析式;(2)求f (x )的对称轴及单调区间;(3)若对任意x ∈⎣⎢⎡⎦⎥⎤0,π3,f 2(x )-(2+m )f (x )+2+m ≤0恒成立,某某数m 的取值X 围.解:(1)因为2πω=2×π2,所以ω=2,所以f (x )=sin(2x +φ)-b .又因为函数g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ-b +3为奇函数,且0<φ<π,所以φ=π3,b =3,故f (x )=sin ⎝⎛⎭⎪⎫2x +π3- 3. (2)令2x +π3=π2+k π,k ∈Z ,得对称轴为直线x =π12+k π2,k ∈Z .令2x +π3∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,得单调递增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π,k ∈Z ,令2x +π3∈⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π,k ∈Z ,得单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z .(3)因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以-3≤f (x )≤1-3,所以-1-3≤f (x )-1≤- 3.因为f 2(x )-(2+m )f (x )+2+m ≤0恒成立, 整理可得m ≤1f x -1+f (x )-1.由-1-3≤f (x )-1≤-3,得-1-332≤1f x -1+f (x )-1≤-433, 故m ≤-1-332,即实数m 的取值X 围是⎝ ⎛⎦⎥⎤-∞,-1-332.。

人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)

人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)

第一章《三角函数》综合练习一、选择题1.已知角α的终边经过点0p (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-2.半径为πcm ,圆心角为120︒所对的弧长为()A .3πcmB .23πcmC .23πcm D .223πcm 3.函数12sin[()]34y x π=+的周期、振幅、初相分别是( )A .3π,2-,4πB .3π,2,12πC .6π,2,12πD .6π,2,4π4.sin y x =的图象上各点纵坐标不变,横坐标变为原来的12,然后把图象沿x 轴向右平移3π个单位,则表达式为( ) A .1sin()26y x π=-B .2sin(2)3y x π=-C .sin(2)3y x π=-D .1sin()23y x π=-5.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数图像( )A .关于直线x =π4对称B .关于点(π3,0)对称C .关于点(π4,0)对称D .关于直线x =π3对称6.如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |7.函数y=cos 2x –3cosx+2的最小值是()A .2B .0C .41 D .68.函数y =3sin ⎝⎛⎭⎪⎫-2x -π6(x ∈[0,π])的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤0,5π12B.⎣⎢⎡⎦⎥⎤π6,2π3C.⎣⎢⎡⎦⎥⎤π6,11π12D.⎣⎢⎡⎦⎥⎤2π3,11π12 9.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ= D.4=B10.已知1cos()63πα+=-,则sin()3πα-的值为()A .13B .13-C .233D .233-11.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对12.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )A. 1B.22C. 0D.22-二、填空题13.函数x x f cos 21)(-=的定义域是______________ 14.若sin α+cos αsin α-cos α=2,则sin αcos α的值是_____________.15、函数])32,6[)(6cos(πππ∈+=x x y 的值域是 . 16.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是__________.三、解答题17.已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1)化简()f α; (2)若31sin()23πα-=-,求()f α的值.18.已知tan 3α=,求下列各式的值: (1)4sin cos 3sin 5cos αααα-+ ;(2)212sin cos cos ααα+.19.(1)画出函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 在一个周期的函数图像;(2)求出函数的对称中心和对称轴方程.20.已知y =a -b cos3x (b >0)的最大值为32,最小值为-12.(1)判断其奇偶性.(2)求函数y =-4a sin(3bx )的周期、最大值,并求取得最大值时的x ;21.已知函数45)62sin(21++=πx y (1)求函数的单调递增区间; (2)写出y=sinx 图象如何变换到15sin(2)264y x π=++的图象第一章《三角函数》综合练习答案一、选择题1-5 CDCBB 6-10 CBBCA 11-12 BB 二、填空题13、5[2,2],33k k k Z ππππ++∈14、31015、1[]216、13k << 17. 解析:(1)sin (tan )1()sin cos (tan )cos f ααααααα-==---;(2)若31sin()23πα-=-,则有1cos 3α=-,所以()f α=3。

人教新课标a版高一数学必修4

人教新课标a版高一数学必修4

人教新课标a版高一数学必修4人教新课标A版高一数学必修4是高中数学学习中非常重要的一部分,它涵盖了多个重要的数学概念和技能。

以下是该课程的主要内容概述:1. 三角函数:包括正弦、余弦、正切等基本三角函数的定义、性质、图像和应用。

学生将学习如何利用三角函数解决实际问题,如测量、导航等。

2. 三角恒等变换:这部分内容涉及到三角函数之间的基本关系,如和差公式、倍角公式、半角公式等,以及它们在简化表达式和解决复杂问题中的应用。

3. 解三角形:学生将学习如何使用正弦定理和余弦定理来解决三角形的问题,包括已知两边和夹角求第三边,或者已知三边求角度等。

4. 数列:数列是数学中的一个重要概念,学生将学习等差数列和等比数列的定义、通项公式、求和公式以及它们的应用。

5. 不等式:包括不等式的基本性质、解法和应用。

学生将学习如何解一元一次不等式、一元二次不等式以及更复杂的不等式系统。

6. 立体几何:这部分内容将介绍空间中的点、线、面之间的关系,包括直线与平面的位置关系、平面与平面的位置关系等。

7. 空间向量:学生将学习如何使用向量来描述空间中的点、线和面,以及如何利用向量解决几何问题。

8. 解析几何:包括直线和圆的方程,以及如何利用这些方程来解决几何问题。

9. 概率与统计初步:学生将学习基本的概率概念,如样本空间、事件、概率的计算,以及统计的初步知识,如数据的收集、整理和描述。

10. 算法初步:这部分内容将介绍算法的概念,包括算法的描述、设计和实现。

通过学习人教新课标A版高一数学必修4,学生不仅能够掌握高中数学的核心知识,还能够培养逻辑思维、抽象思维和解决问题的能力。

这些技能对于学生未来的学术和职业生涯都是非常宝贵的。

人教A版高考数学必修4同步练习题 单元评估验收(3)

人教A版高考数学必修4同步练习题  单元评估验收(3)

单元评估验收(三)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2sin 215°-1的值是( )A.12B .-12 C.32D .-32 解析:2sin 215°-1=-(1-2sin 215°)=-cos 30°=-32. 答案:D2.在△ABC 中,已知sin Asin B <cos Acos B ,则△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .等腰三角形解析:sin Asin B <cos Acos B ,即sin Asin B -cos Acos B <0,-cos(A +B)<0,所以cos C <0,从而C 为钝角,△ABC 为钝角三角形.答案:B3.已知cos ⎝⎛⎭⎪⎫5π2+α=35,-π2<α<0,则sin 2α的值是( ) A.2425 B.1225C .-1225D .-2425解析:由已知得sin α=-35,又-π2<α<0, 故cos α=45, 所以sin 2α=2sin αcos α=2×⎝ ⎛⎭⎪⎫-35×45=-2425. 答案:D4.函数f(x)=sin xcos x +32cos 2x 的最小正周期和振幅分别是( ) A .π,1 B .π,2 C .2π,1 D .2π,2解析:因为f(x)=sin xcos x +32cos 2x=12sin 2x +32cos 2x =sin ⎝⎛⎭⎪⎫2x +π3, 所以函数f(x)的最小正周期和振幅分别是π,1,故选A.答案:A5.在△ABC 中,C =120°,tan A +tan B =233,则tan Atan B 的值为( ) A.14 B.13 C.12 D.53解析:△ABC 中,C =120°,得A +B =60°,所以(tan A +tan B)=tan(A +B)(1-tan Atan B)=3(1-tan Atan B)=233. 所以tan Atan B =13. 答案:B6.已知α为锐角,cos α=55,则tan ⎝ ⎛⎭⎪⎫π4+2α=( ) A .-3B .-17C .-43D .-7 解析:由α为锐角,cos α=55,得sin α=255,所以tan α=2,tan 2α=2tan α1-tan2α=41-4=-43,所以tan ⎝ ⎛⎭⎪⎫π4+2α=1+tan 2α1-tan 2α=1-431+43=-17,选B. 答案:B7.若cos ⎝ ⎛⎭⎪⎫α+π4=13,α∈⎝⎛⎭⎪⎫0,π2,则sin α的值为( ) A.4-26 B.4+26 C.718 D.23解析:由题意可得,α+π4∈⎝ ⎛⎭⎪⎫π4,3π4, 所以sin ⎝ ⎛⎭⎪⎫α+π4= 1-cos 2⎝⎛⎭⎪⎫α+π4=223,sin α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π4-π4 =sin ⎝ ⎛⎭⎪⎫α+π4cos π4-cos ⎝⎛⎭⎪⎫α+π4·sin π4 =223×22-13×22 =4-26. 答案:A8.已知sin α-cos α=-52,则tan α-1tan α的值为( ) A .-5B .-6C .-7D .-8 解析:将方程sin α-cos α=-52两边平方,可得1-sin 2α=54,即sin 2α=-14,则 tan α+1tan α=tan 2+1tan α=⎝ ⎛⎭⎪⎫sin αcos α2+1sin αcos α=2sin 2α=2-14=-8. 答案:D 9.已知cos ⎝⎛⎭⎪⎫x +π6=35,x ∈(0,π),则sin x 的值为( ) A.-43-310 B.43-310C.12D.32 解析:由cos ⎝ ⎛⎭⎪⎫x +π6=35,且0<x<π,得0<x +π6<π2, 所以sin ⎝ ⎛⎭⎪⎫x +π6=45, 所以sin x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π6-π6=sin ⎝ ⎛⎭⎪⎫x +π6cos π6-cos ⎝ ⎛⎭⎪⎫x +π6sin π6=45×32-35×12=43-310. 答案:B10.已知sin ⎝ ⎛⎭⎪⎫π5-α=14,则cos ⎝⎛⎭⎪⎫2α+3π5=( ) A .-78 B.78 C.18 D .-18解析:由题意可得,cos ⎝ ⎛⎭⎪⎫2α+3π5=cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α+3π10 =cos 2⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π5-α =2cos 2⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π5-α-1 =2sin 2⎝ ⎛⎭⎪⎫π5-α-1 =-78. 答案:A11.函数y =sin ⎝ ⎛⎭⎪⎫x -π12·sin ⎝⎛⎭⎪⎫x +5π12的最大值为( ) A.12B.14 C .1 D.22解析:y =sin ⎝ ⎛⎭⎪⎫x -π12sin ⎝⎛⎭⎪⎫x +5π12 =sin ⎝ ⎛⎭⎪⎫x -π12sin ⎝ ⎛⎭⎪⎫x -π12+π2 =sin ⎝ ⎛⎭⎪⎫x -π12·cos ⎝ ⎛⎭⎪⎫x -π12 =12sin ⎝⎛⎭⎪⎫2x -π6, 所以当sin ⎝⎛⎭⎪⎫2x -π6=1时函数有最大值,最大值为12,故选A. 答案:A12.设函数f(x)=sin(ωx+φ)+cos(ωx+φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f(-x)=f(x),则( )A .f(x)在⎝⎛⎭⎪⎫0,π2上单调递减 B .f(x)在⎝ ⎛⎭⎪⎫π4,3π4上单调递减 C .f(x)在⎝⎛⎭⎪⎫0,π2上单调递增 D .f(x)在⎝ ⎛⎭⎪⎫π4,3π4上单调递增解析:f(x)=sin(ωx+φ)+cos(ωx+φ) =2⎣⎢⎡⎦⎥⎤cos (ωx +φ)·cos π4+sin (ωx+φ)·sin π4 =2cos ⎣⎢⎡⎦⎥⎤(ωx+φ)-π4 =2cos ⎣⎢⎡⎦⎥⎤ωx +⎝⎛⎭⎪⎫φ-π4 因为f(x)的最小正周期为π,所以2πω=π,ω=2. 又f(-x)=f(x),即f(x)是偶函数,所以φ-π4=k π(k ∈Z). 因为|φ|<π2,所以φ=π4, 所以f(x)=2cos 2x ,由0<2x <π得0<x <π2,此时,f(x)单调递减,故选A. 答案:A二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.已知2cos2x +sin 2x =Asin (ωx+φ)+b(A >0),则A =________,b =________.解析:因为2cos2x +sin 2x =1+cos 2x +sin 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1=Asin (ωx+φ)+b ,所以A =2,b =1. 答案: 2 114.若tan ⎝⎛⎭⎪⎫α-π4=16,则tan α=________. 解析:tan ⎝⎛⎭⎪⎫α-π4=tan α-11+tan α=16,解得tan α=75. 答案:7515.函数f(x)=sin ⎝⎛⎭⎪⎫2x -π4-22·sin 2x 的最小正周期是________. 解析:由f(x)=sin ⎝⎛⎭⎪⎫2x -π4-22sin 2x =22sin 2x -22cos 2x -22×1-cos 2x 2=22sin 2x +22cos 2x - 2 =sin ⎝⎛⎭⎪⎫2x +π4-2, 故最小正周期为π.答案:π16.我国古代数学家赵爽的弦图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于________.解析:题图中小正方形的面积为1,大正方形的面积为25,故每个直角三角形的面积为6.设直角三角形的两条直角边长分别为a ,b ,则有⎩⎪⎨⎪⎧a2+b2=25,12ab =6,所以两条直角边的长分别为3,4.则cos θ=45,cos 2θ=2cos2θ-1=725. 答案:725三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知0<α<π2,sin α=45. (1)求sin2α+sin 2αcos2α+cos 2α的值; (2)求tan ⎝⎛⎭⎪⎫α-5π4的值. 解:(1)由0<α<π2,sin α=45,得cos α=35. 所以sin2α+sin 2αcos2α+cos 2α=sin2α+2sin αcos α3cos2α-1= ⎝ ⎛⎭⎪⎫452+2×45×353×⎝ ⎛⎭⎪⎫352-1=20.(2)因为tan α=sin αcos α=43,所以tan ⎝ ⎛⎭⎪⎫α-5π4=tan α-11+tan α=43-11+43=17. 18.(本小题满分12分)已知函数f(x)=2cos ⎝ ⎛⎭⎪⎫x -π12,x ∈R. (1)求f ⎝ ⎛⎭⎪⎫-π6; (2)若cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,求f ⎝⎛⎭⎪⎫2θ+π3. 解:(1)f ⎝ ⎛⎭⎪⎫-π6=2cos ⎝ ⎛⎭⎪⎫-π6-π12=2cos ⎝ ⎛⎭⎪⎫-π4=2cos π4=1. (2)f ⎝⎛⎭⎪⎫2θ+π3 =2cos ⎝⎛⎭⎪⎫2θ+π3-π12 =2cos ⎝⎛⎭⎪⎫2θ+π4 =cos 2θ-sin 2θ.因为cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π, 所以sin θ=-45. 所以sin 2θ=2sin θcos θ=-2425. cos 2θ=cos 2θ-sin 2θ=-725. 所以f ⎝⎛⎭⎪⎫2θ+π3=cos 2θ-sin 2θ=-725-⎝ ⎛⎭⎪⎫-2425=1725. 19.(本小题满分12分)已知函数f(x)=3sin 2x -2cos 2x.(1)求f(x)的最大值;(2)若tan α=23,求f(α)的值.解:(1)f(x)=3sin 2x -2cos 2x =3sin 2x -cos 2x -1=2sin ⎝⎛⎭⎪⎫2x -π6-1. 当2x -π6=2k π+π2,即x =k π+π3,k ∈Z 时. f(x)的最大值为1. (2)f(α)=3sin 2α-2cos 2α =23sin αcos α-2cos 2αsin 2α+cos 2α=23tan α-2tan 2α+1, 因为tan α=23,所以f(α)=23×23-24×3+1=1013. 20.(本小题满分12分)已知向量m =(sin A ,cos A),n =(3,-1)且m·n=1,且A 为锐角.(1)求角A 的大小;(2)求函数f(x)=cos 2x +4cos Asin x (x∈R)的值域.解:(1)由题意得m·n=3sin A -cos A =2sin ⎝⎛⎭⎪⎫A -π6=1, sin ⎝⎛⎭⎪⎫A -π6=12. 由A 为锐角得A -π6=π6,所以A =π3. (2)由(1)知cos A =12, 所以f(x)=cos 2x +2sin x =1-2sin 2x +2sin x = -2⎝⎛⎭⎪⎫sin x -122+32. 因为x∈R,所以sin x ∈[-1,1],因此,当sin x =12时,f(x)有最大值32,当sin x =-1时,f(x)有最小值-3, 所以所求函数f(x)的值域为⎣⎢⎡⎦⎥⎤-3,32. 21.(本小题满分12分)设向量a =(sin x ,cos x),b =(cos x ,cos x),x ∈R ,函数f(x)=a·(a +b).(1)求函数f(x)的最大值与最小正周期;(2)求使不等式f(x)≥32成立的x 的取值范围. 解:(1)因为f(x)=a·(a+b)=a·a+a·b=sin 2x +cos 2x +sin xcos x +cos 2x =1+12sin 2x +12(cos2x +1)=32+22sin ⎝⎛⎭⎪⎫2x +π4, 所以f(x)的最大值为32+22,最小正周期T =2π2=π. (2)由(1)知f(x)≥32⇔32+22sin ⎝ ⎛⎭⎪⎫2x +π4≥32⇔sin ⎝⎛⎭⎪⎫2x +π4≥0⇔2k π≤2x +π4≤2k π+π⇔k π-π8≤x ≤k π+3π8(k∈Z). 所以使f(x)≥32成立的x 的取值范围是 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π-π8≤x≤kπ+3π8,k ∈Z . 22. (本小题满分12分)已知函数f(x)=2cos x(sin x +cos x).(1)求f ⎝ ⎛⎭⎪⎫5π4的值; (2)求函数f(x)的最小正周期及单调递增区间. 解:法一:(1)f ⎝⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4= -2cos π4⎝⎛⎭⎪⎫-sin π4-cos π4=2. (2)因为f(x)=2sin xcosx +2cos 2x =sin 2x +cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1, 所以T =2π2=π,故函数f(x)的最小正周期为π. 由2kπ-π2≤2x +π4≤2k π+π2,k ∈Z , 得kπ-3π8≤x ≤k π+π8,k ∈Z. 所以f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z. 法二:f(x)=2sin xcos x +2cos 2x =sin 2x +cos 2x +1=2sin ⎝⎛⎭⎪⎫2x +π4+1. (1)f ⎝ ⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)因为T =2π2=π,所以函数f(x)的最小正周期为π. 由2kπ-π2≤2x +π4≤2k π+π2,k ∈Z ,得kπ-3π8≤x ≤k π+π8,k ∈Z. 所以f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.。

高中数学(新课标人教A版)必修4 第一章三角函数精品课件 1.2任意角的三角函数(3课时)

高中数学(新课标人教A版)必修4 第一章三角函数精品课件 1.2任意角的三角函数(3课时)


tan 3
例5.求下列三角函数值
sin1480 10

'
9 s 4
11 tan( ) 6
小结:
1.任意角的三角函数是由角的终边与单 位圆交点的坐标来定义的. 2.三角函数值的符号是利用三角函数的 定义来推导的.要正确记忆三个三角函数 在各个象限内的符号; 3.诱导公式一的作用可以把大角的三角 函数化为小角的三角函数.
应用 1.利用同角三角函数的基 本关系求某个角的三角函数 值 例1.已知sinα=-3/5,且 α在第三象限,求cosα和 tanα的值.
例2.已知 cos m (m 0, m 1), 求的其他三角函数值
4 sin 2 cos 例3.已知 tanα=3,求值(1) 5 cos 3 sin

y
a的终边 P(x,y)
1
P(x,y)
a
O
M
A(1,.0)
x
(1)y叫做 的正弦,记作sin ,即 sin y (2)x叫做 的余弦,记作cos,即 cos x y y (3) 叫做 的正切,记作tan ,即 tan x x
阅读课本P12:三角函数的定义
例题:
5 1 求 的正弦、余弦和正切值. 3
作业:
课本P20习题1.2A组
1,2,6,7,9
1.2.1任意角的三角函数(2)
复习回顾
1、三角函数的定义; 2、三角函数在各象限角的符号; 3、三角函数在轴上角的值; 4、诱导公式(一):终边相同的角的 同一三角函数的值相等; 5、三角函数的定义域.
角是一个图形概念,也是一个数量概 念(弧度数). 作为角的函数——三角函数是一个 数量概念(比值),但它是否也是一个 图形概念呢?

高中数学必修四同步练习及答案(新课标人教A版)

高中数学必修四同步练习及答案(新课标人教A版)

高中数学必人修教四A版练习册高中数学人教A 版必修4练习册目录导航人教A 版必修4练习1.1任意角和弧度制 ....................................................... 1 1.2任意角的三角函数 ..................................................... 3 1.3三角函数的诱导公式 ................................................... 5 1.4三角函数的图像与性质 . (7)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 .............. 10 第一章 三角函数基础过关测试卷 ........................................... 12 第一章三角函数单元能力测试卷 .. (14)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 .................... 18 2.2向量减法运算与数乘运算 .............................................. 20 2.3平面向量的基本定理及坐标表示 ........................................ 22 2.4平面向量的数量积与2.5平面向量应用举例 .............................. 25 第二章平面向量基础过关测试卷 ............................................ 27 第二章平面向量单元能力测试卷 .. (29)3.1两角和与差的正弦、余弦和正切公式 .................................... 33 3.2简单的三角恒等变换 .................................................. 36 第三章三角恒等变换单元能力测试卷 . (38)人教A 版必修4练习答案1.1任意角和弧度制 ...................................................... 42 1.2任意角的三角函数 .................................................... 42 1.3三角函数的诱导公式 .................................................. 43 1.4三角函数的图像与性质 (43)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 .............. 44 第一章三角函数基础过关测试卷 ............................................ 45 第一章三角函数单元能力测试卷 .. (45)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 .................... 46 2.2向量减法运算与数乘运算 .............................................. 46 2.3平面向量的基本定理及坐标表示 ........................................ 46 2.4平面向量的数量积与2.5平面向量应用举例 .............................. 47 第二章平面向量基础过关测试卷 ............................................ 48 第二章平面向量单元能力测试卷 .. (48)3.1两角和与差的正弦、余弦和正切公式 .................................... 49 3.2简单的三角恒等变换 .................................................. 49 第三章三角恒等变换单元能力测试卷 . (50)1.1任意角和弧度制一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( )A.,398- 38 B.,398- 142 C.,398- 1042 D.,14210422.集合α{=A ︱ 90⋅=k α,36-}Z k ∈,β{=B ︱180-180<<β},则B A 等于( )A.,36{- 54} B.,126{- 144} C.,126{-,36-,54144} D.,126{-54}3.设θ{=A ︱θ为锐角},θ{=B ︱θ为小于90的角},θ{=C ︱θ为第一象限角}, θ{=D ︱θ为小于 90的正角},则 ( ) A.B A = B.C B = C.C A = D.D A =4.若角α与β终边相同,则一定有 ( ) A.180=+βα B.0=+βαC.360⋅=-k βα,Z k ∈ D.360⋅=+k βα,Z k ∈ 5.已知α为第二象限的角,则2α所在的象限是 ( ) A.第一或第二象限 B.第二或第三象限 C.第一或第三象限 D.第二或第四象限 6.将分针拨慢5分钟,则分针转过的弧度数是 ( )A.3π B.3π- C.2π D.32π7.在半径为cm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为 ( )A.6πB.3πC.2πD.32π 8.已知角α的终边经过点)1,1(--P ,则角α为 ( )A.)(45Z k k ∈+=ππα B.)(432Z k k ∈+=ππα C.)(4Z k k ∈+=ππα D.)(432Z k k ∈-=ππα 9.角316π化为)20,(2παπα<<∈+Z k k 的形式 ( )A.35ππ+B.344ππ+C.326ππ-D.373ππ+10.集合α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B 的关系是 ( ) A.B A = B.B A ⊇ C.B A ⊆ D.B A ≠ 二、填空题(每题5分,共20分)11.角a 小于180而大于-180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________.12.写满足下列条件的角的集合.1)终边在x 轴的非负半轴上的角的集合__________; 2)终边在坐标轴上的角的集合__________;3)终边在第一、二象限及y 轴上的角的集合__________; 4)终边在第一、三象限的角平分线上的角的集合__________.13.设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________. 14.已知a {∈θ︱a =+πk },4)1(Z k k∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)15.已知角a 的终边与y 轴的正半轴所夹的角是30,且终边落在第二象限,又720-<a < 0,求角a .16.已知角45=a ,(1)在区间720[-0,)内找出所有与角a 有相同终边的角β;(2)集合x M {=︱ 1802⨯=k x 45+,}Z k ∈,x N {=︱ 1804⨯=kx 45+}Z k ∈ 那么两集合的关系是什么?17.若θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同?18.已知扇形的周长为30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.1.2任意角的三角函数一、选择题(每题5分,共40分)1.已知角α的终边过点()αcos ,2,1-P 的值为 ( )A.55-B.55C.552 D.252.α是第四象限角,则下列数值中一定是正值的是 ( ) A.αsin B.αcos C.αtan D.αtan 13.已知角α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( )A.52B.52- C.0 D.与α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于 ( )A.34B.43C.34±D.43± 5.函数x x y cos sin -+=的定义域是 ( )A.()Z k k k ∈+,)12(,2ππB.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ 6.若θ是第三象限角,且,02cos<θ则2θ是 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角7.已知,54sin =α且α是第二象限角,那么αtan 的值为 ( ) A.34- B.43- C.43 D.348.已知点()ααcos ,tan P 在第三象限,则角α在 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 二、填空题(每题5分,共20分)9.已知,0tan sin ≥αα则α的取值集合为__________. 10.角α的终边上有一点(),5,m P 且(),013cos ≠=m mα则=+ααcos sin __________.11.已知角θ的终边在直线x y 33=上,则=θsin __________,=θtan __________. 12.设(),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________. 三、解答题(第15题20分,其余每题10分,共40分) 13.求43π的角的正弦,余弦和正切值.14.已知,51sin =α求ααtan ,cos 的值.15.已知,22cos sin =+αα求αα22cos 1sin 1+的值.1.3三角函数的诱导公式一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23 B.21C.23±D.23- 2.若,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( ) A.m 32-B.m 23-C.m 32D.m 233.已知,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21B.21-C.23D.23-4.如果),cos(|cos |π+-=x x 则x 的取值范围是( )A.)](22,22[Z k k k ∈++-ππππB.))(223,22(Z k k k ∈++ππππC.)](223,22[Z k k k ∈++ππππD.))(2,2(Z k k k ∈++-ππππ 5.已知,)1514tan(a =-π那么=︒1992sin ( )A.21||aa + B.21aa +C.21aa +-D.211a+-6.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( )A.33B.33-C.3D.-37.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( ) A.0 B.1C.1-D.238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( ) A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形二、填空题(每题5分,共20分)9.求值:︒2010tan 的值为 .10.若1312)125sin(=-α,则=+)55sin(α . 11.=+++++76cos 75cos 74cos 73cos 72cos 7cos ππππππ .12.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 . 三、解答题(每题10分,共40分) 13.已知3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.15.已知αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<< 求)sin()3cos(απαπ+-+的值.16.记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.1.4三角函数的图像与性质一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( ) A.[]1,0 B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+ πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ2.函数)652cos(3π-=x y 的最小正周期是 ( )A52π B 25π C π2 D π5 3.x x y sin sin -=的值域是 ( ) A ]0,1- B ]1,0 C ]1,1[- D ]0,2[-4.函数)44(tan 1ππ≤≤-=x x y 的值域是 ( ) A.[]1,1- B.(][) +∞-∞-,11, C.[)+∞-,1 D.(]1,∞-5.下列命题正确的是 ( ) A.函数)3sin(π-=x y 是奇函数 B.函数)cos(sin x y =既是奇函数,也是偶函数C.函数x x y cos =是奇函数D.函数x y sin =既不是奇函数,也不是偶函数6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于 ( ) A 1C.0D.2- 7.函数)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( ) A.8 B.6 C.8± D.48.函数)32sin(π+=x y 的图象 ( )A.关于点⎪⎭⎫⎝⎛0,12π对称 B.关于点⎪⎭⎫ ⎝⎛-0,6π对称C.关于直线3π=x 对称 D.关于直线6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( ) A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ 10.满足21)4sin(≥-πx 的x 的集合是 ( ) A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ C.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππ D.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分) 11.函数)23sin(2x y -=π的单调递增区间是__________.12.函数)21(cos log 2-=x y 的定义域是__________. 13.函数)2sin(x y =的最小正周期为__________.14.若)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时,=)(x f __________.三、解答题(每题10分,共30分) 15.利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图.16.已知函数⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间; (2)求不等式3)(1≤≤-x f 的解集.17.求下列函数的最大值和最小值及相应的x 值. (1)1)42sin(2++=πx y (2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x xy1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用一、选择题(每题5分,共35分) 1.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是 ( )A.13--,πB.13+-,πC.3-,πD.13--,π2 2.若函数)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω的一个可能值为 ( ) A.3 B.2 C.31 D.21 3.要得到)32sin(π-=x y 的图像,只要将x y 2sin =的图像 ( )A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位 4.函数1)62sin(2++=πx y 的最大值是 ( )A.1B.2C.3D.45.已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能为 ( )A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x fD.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为 ( )A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK K C.⎥⎦⎤⎢⎣⎡+-6,3ππππK K D.⎥⎦⎤⎢⎣⎡++1211,125ππππK K 7.函数[]),0(),62sin(3ππ∈--=x x y 为增函数的区间是 ( )A.⎥⎦⎤⎢⎣⎡125,0πB.⎥⎦⎤⎢⎣⎡32,6ππC.⎥⎦⎤⎢⎣⎡1211,6ππD.⎥⎦⎤⎢⎣⎡1211,32ππ二、填空题(每题5分,共15分)8.关于))(32sin(4)(R x x x f ∈+=有下列命题: 1)有0)()(31==x f x f 可得21x x -是π的整数倍; 2)表达式可改写为)62cos(4)(π-=x x f ;3)函数的图像关于点)0,6(π-对称;4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.9.甲乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲乙两楼的高度分别为__________.10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________. 三、解答题(每题25分,共50分) 11.已知函数)421sin(3π-=x y ,1)用“五点法”画函数的图像;2)说出此图像是由x y sin =的图像经过怎样的变换得到的; 3)求此函数的周期、振幅、初相;4)求此函数的对称轴、对称中心、单调递增区间.12.已知函数)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,1)求它的定义域; 2)求它的单调区间; 3)判断它的奇偶性;4)判断它的周期性,如果是周期函数,求出它的周期.第一章 三角函数基础过关测试卷一、选择题(每题5分,共40分)1.与240-角终边位置相同的角是 ( ) A.240 B.60 C.150 D.480 2.已知()21cos -=+απ,则()απ+3cos 的值为 ( ) A.21 B.23± C.21- D.233.函数x y sin 1-=的最大值为 ( ) A.1 B.0 C.2 D.1-4.函数⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是 ( ) A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是( ) A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ 6.函数x y cos 1+=的图象 ( ) A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称 D.关于直线2π=x 轴对称7.使x x cos sin <成立的x 的一个区间是 ( ) A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫ ⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,08.函数⎪⎭⎫⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象 ( )A.向左平移4π个单位 B.向右平移4π个单位 C .向左平移12π个单位 D .向右平移12π个单位二、填空题(每题5分,共20分)9.已知角β的终边过点()12,5--P ,求=βcos __________.10.函数x y tan lg =的定义域是__________. 11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分) 13.已知2tan =β,求1sin cos sin 2+βββ的值.14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.16.求函数⎪⎭⎫ ⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷一、选择题(每小题5分,共60分) 1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列值①)1000sin( -;②)2200cos(-;③)10tan(-;④4sin 是负值的为 ( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( )A.0 B4π C 2πD π 4.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于 ( ) A.43-B.34-C.43D.34 5.若α是第四象限的角,则πα-是 ( ) A 第一象限的角 B 第二象限的角 C 第三象限的角 D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( )A.1sin 2y x = B 1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=-7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是 ( )A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ 8.与函数)42tan(π+=x y 的图像不相交的一条直线是 ( )A.2π=x B 2π-=x C 4π=x D 8π=9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数是( ) A.1个 B 2个 C 个 D 4个10.方程1sin 4x x π=的解的个数是( ) A B C 7 D 811.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( )A.)45,()2,4(ππππ B.),4(ππ C.)45,4(ππ D.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是 ( )A.2π B 4π- C 4πD 34π二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15 若角α与角β的终边关于y 轴对称,则α与β的关系是__________16.关于x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数 其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分) 17.求下列三角函数值: (1))316sin(π- (2))945cos( -18.比较大小:(1) 150sin ,110sin ; (2)200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅--(2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域: (1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y21.求函数)32tan(π-=x y 的定义域、周期和单调区间.22.用五点作图法画出函数)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到2.1平面向量的实际背景及基本概念与2.2.1向量加法运算一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( ) A.一条线段 B.一段圆弧 C.两个孤立点 D.一个圆2.下列说法中,正确的是 ( )A.>,则b a >B.=,则b a =C.若b a =,则a ∥bD.若a ≠b ,则a 与b 不是共线向量3.设O 为△ABC 的外心,则AB 、BO 、CO 是 ( ) A.相等向量 B.平行向量 C.模相等的向量 D.起点相等的向量4.已知正方形ABCD 的边长为1,设a AB =,b BC =,c AC =, b ++=( ) A.0 B.3 C.22+ D.225.58==,的取值范围是 ( ) A.[]8,3 B.()8,3 C.[]13,3 D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B成立的是A.CA BC AB =+ B.BC AC AB =+C.AD BA AC =+D.DC AD AC =+ D C7.在边长为1的正三角形ABC 中,若向量a BA =,b BC =,+= ( ) A.7 B.5 C.3 D.28.向量a 、b 皆为非零向量,下列说法不正确的是 ( )A.向量a 与b >,则向量b a +与a 的方向相同B.向量a 与b <,则向量b a +与a 的方向相同C.向量a 与b 同向,则向量b a +与a 的方向相同D.向量a 与b 同向,则向量b a +与b 的方向相同二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量AB 与AC 的关系是__________.10.已知C B A ,,是不共线的三点,向量m 与向量AB 是平行向量,与BC 是共线向量,则m =__________.11.在菱形ABCD 中,∠DAB ︒=601==+__________.12.化简=++BO OP PB __________.三、解答题(13题16分,其余每题12分,共40分)13.化简:(1)FA BC CD DF AB ++++. (2)PM MN QP NQ +++.14.已知四边形ABCD 的对角线AC 与BD 相交于点O ,且OC AO =,OB DO =. 求证:四边形ABCD 是平行四边形.15.一艘船以h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.2.2向量减法运算与数乘运算一、选择题(每题5分,共40分) 1.在菱形ABCD 中,下列各式中不成立的是 ( ) A.-=AC AB BC B.-=AD BD AB C.-=BD AC BC D.-=BD CD BC2.下列各式中结果为O 的有 ( ) ①++AB BC CA ②+++OA OC BO CO ③-+-AB AC BD CD ④+-+MN NQ MP QP A.①② B.①③ C.①③④ D.①②③3.下列四式中可以化简为AB 的是 ( ) ①+AC CB ②-AC CB ③+OA OB ④-OB OA A.①④ B.①② C.②③ D.③④4. ()()=⎥⎦⎤⎢⎣⎡+-+ba b a24822131 ( )A.2a b -B.2b a -C.b a -D.()b a --5.设两非零向量12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( ) A.1 B.1- C.1± D.06.在△ABC 中,向量BC 可表示为 ( ) ①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④ 7.已知ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =( )A.a b +B.b a -C.-c bD.-b c 8.当C 是线段AB 的中点,则AC BC += ( ) A.AB B.BA C.AC D.O二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.10.一架飞机向北飞行km 300后改变航向向西飞行km 400,则飞行的总路程为__________, 两次位移和的和方向为__________,大小为__________. 11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________三、解答题(每题10分,共40分)13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值? 14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,AD =b ,试以a ,b 表示DE 、BF 、CG15.若菱形ABCD 的边长为2,求AB CB CD -+=?16.在平面四边形ABCD 中,若AB AD AB AD +=-,则四边形ABCD 的形状是什么?AGE F BD2.3平面向量的基本定理及坐标表示一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a则向量b a2321-等于( ) A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(-2.若),3,1(),4,2(==AC AB 则BC 等于 ( ) A.)1,1( B.)1,1(-- C.)7,3( D.)7,3(--3.21,e e 是表示平面内所有向量的一组基底,下列四组向量中,不能作为一组基底的是 ( )A.21e e +和21e e -B.2123e e -和1264e e -C.212e e +和122e e +D.2e 和21e e +4.已知平面向量),,2(),3,12(m b m a =+=且b a //,则实数m 的值等于 ( ) A.2或23-B.23C.2-或23D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为 A.13- B.9 C.9- D.13 ( ) 6.已知平面向量),,2(),2,1(m b a -==且b a //,则b a 32+等于 ( ) A.)10,5(-- B.)8,4(-- C.)6,3(-- D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( ) A.若实数21,λλ使02211=+e e λλ,则021==λλ B.21,e e 可以为零向量C.对实数21,λλ,2211e e λλ+不一定在平面内D.对平面中的任一向量a ,使=a 2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===c b a ,且b a c 21λλ+=,则21,λλ的值分别为 ( ) A.1,2- B.2,1- C.1,2- D.2,1-9.已知),3,2(),2,1(-==b a 若b n a m -与b a 2+共线(其中R n m ∈,且)0≠n ,则nm 等于 ( )A.21-B.2C.21D.2- 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,b BD a AC == 则AF 等于 ( )A.b a 2141+ B.b a 3132+ C.b a 4121+ D.b a 3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且b a //,则=x __________12.设向量)3,2(),2,1(==b a ,若向量b a +λ与向量)7,4(--=c 共线,则=λ__________13.已知x 轴的正方向与a 的方向的夹角为3π4=,则a 的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴,y 轴的正向上,则向量AC BC AB ++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量a 与b 不共线,实数y x ,满足等式b x a x b y a x 2)74()10(3++=-+,求y x ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e BC e e AB +=+=),(321e e CD -=则B A ,,D 三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R AC AB AP ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.18.平面内给定三个向量)1,4(),2,1(),2,3(=-==c b a ,(1)求c b a 23-+;(2)求满足c n b m a +=的实数n m ,;(3)若)2//()(a b c k a -+,求实数k .2.4平面向量的数量积与2.5平面向量应用举例一、选择题(每题5分,共50分)1.若b a ,是两个单位向量,那么下列四个结论中正确的是 ( )A.b a =B.1=⋅b aC.≠D.=2.下面给出的关系始终正确的个数是 ( )①00=⋅a ②a b b a ⋅=⋅ ③2a = ④()()c b a c b a ⋅⋅=⋅⋅ b a ⋅≤ A.0 B.1 C.2 D.33.对于非零向量b a ,,下列命题中正确的是 ( )A.000==⇒=⋅b a b a 或B. b a //a ⇒在bC.()2b a b a b a ⋅=⋅⇒⊥ D.b ac b c a =⇒⋅=⋅4.下列四个命题,真命题的是 ( ) A.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是锐角三角形; B.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是钝角三角形; C.ABC ∆为直角三角形的充要条件是0=⋅BC AB ; D.ABC ∆为斜三角形的充要条件是.0≠⋅BC AB .5.e ,8=为单位向量,a 与e 的夹角为,60o 则a 在e 方向上的投影为 ( )A.34B.4C.24D.238+6.若向量b a ,a ,1==与b 的夹角为120,则=⋅+⋅b a a a ( )A.21 B.21- C.23 D.23-7.a ,631==与b 的夹角为,3π则b a ⋅的值为 ( )A.2B.2±C.1D.1±8.已知()(),5,5,0,3-==b a 则a 与b 的夹角为 ( ) A.4π B.3π C.43π D.32π9.若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-OA OC OB OC OB 则ABC ∆ 的形状为 ( ) A.正三角形 B.直角三角形 C.等腰三角形 D.A ,B ,C 均不是10.设向量()(),1,,2,1x b a ==当向量b a 2+与b a -2平行时,b a ⋅等于 ( )A.25 B.2 C.1 D.27二、填空题(每题5分,共20分)11.(),2,1,3==b 且,b a ⊥则a 的坐标是_____________. 12.若(),8,6-=a 则与a 平行的单位向量是_____________.13.设21,e e 为两个不共线的向量,若21e e a λ+=与()2132e e b --=共线,则=λ________.14.有一个边长为1的正方形ABCD ,设,,,c AC b BC a AB ====b __________. 三、解答题(每题10分,共30分)15.()()61232,34=+⋅-==b a b a ,求a 与b的夹角θ.16.,43==且a 与b 不共线,当k 为何值的时,向量b k a +与b k a -互相垂直?17.平面上三个力321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷一、选择题(每题5分,共55分)1.如图在平行四边形ABCD 中,,b OB a OA ==,,d OD c OC ==则下列运算正确的是( )A.0=+++d c b a B.0 =-+-d c b a C.0 =--+d c b a D.0 =+--d c b a2.已知)1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( ) A.1- B.9 C.9- D.13.已知a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( ) A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(4.若点P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( ) A.34-B. 32-C.21-D.23- 5.下列命题中真命题是 ( )A.000 ==⇒=⋅b a b a 或B.a b a b a 上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b ac b c a =⇒⋅=⋅6.已知ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D的坐标为 ( ) A.)2,2( B.)0,6(- C.)6,4( D.)2,4(-7.设21,e e 为两不共线的向量,则21e e a λ+=与()1232e e b --=共线的等价条件是 A.23=λ B.32=λ C.32-=λ D.23-=λ ( ) 8.下面给出的关系式中正确的个数是 ( )① 00 =⋅a ②a b b a ⋅=⋅ ③22a a = ④)()(c b a c b a ⋅=⋅ ⑤||||b a b a⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 ( ) ①一个平面内只有一对不共线的向量可作为基底; ②两个非零向量平行,则他们所在直线平行;ACOD③零向量不能作为基底中的向量; ④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③10.已知()()5,0,1,221P P -且点P 在21P P 延长线上,22PP =,则点P 坐标是( ) A.)11,2(- B.)3,34( C.)3,32( D.)7,2(-11.若b a k b a b a b a 432,1||||-+⊥==与且也互相垂直,则k 的值为 ( ) A.6- B.6 C.3 D.3- 二、填空题(每题5分,共15分)12.已知向量)2,1(,3==b a,且b a ⊥,则a 的坐标是__________.13.若()0,2,122=⋅-==a b a b a,则b a 与的夹角为__________.14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________. 三、解答题(每题题10分,共30分)15.已知),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.16.已知向量)1,0(),0,1(,4,23212121==+=-=e e e e b e e a ,求(1)b a b a+⋅,的值;(2)a 与b的夹角的余弦值.17.已知四边形ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD 为正方形.第二章平面向量单元能力测试卷一、选择题(每题5分,共60分)1.设F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+ ②AC BE BC EA +=- ③ED AB EA AD +=+ ④0AB BC CD DE EA ++++= ⑤0AB BC AC +-=其中错误等式的个数是( )A.1B.2C.3D.42.已知正方形ABCD 的边长为1,设c AC b BC a AB ===,,=++b ( ) A.0 B.3 C.22+D.223.设1e 、2e 是两个不共线向量,若向量 a =2153e e +与向量213e e m b -=共线,则m 的值等于 ( ) A.35-B.-59C.53-D.95-4.已知)3,1(),1,2(=-=b a 则b a 32+-等于 ( ) A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(5.设P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为 A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+CB CA CB CA ,则ΔABC 为 ( ) A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量a ,b ,40-=⋅b a =8,则向量a 与b 的夹角为 ( ) A.60B. 60-C.120D.120-8.已知)0,3(=a ,)5,5(-=b ,则a 与b 的夹角为 ( )A.4πB.43π C.3π D.32π 9.若b a b a⊥==,1||||且b a 32+与b a k 4-也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-NA BDM C10.已知a =(2,3),b =(4-,7),则a 在b上的投影值为 ( )A.13B.513 C.565 D.6511.若035=+CD AB ,且BC AD =,则四边形ABCD 是 ( ) A.平行四边形B.菱形C.等腰梯形D.非等腰梯形12.己知)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,||2||21PP P P =, 则P 点坐标为 ( ) A.)11,2(-B.)3,34(C.(3,32) D.)7,2(- 二、填空题(每题5分,共 20分)13.已知|a |=1,|b |=2,且(a -b )和a 垂直,则a 与b的夹角为__________.14.若向量),2(x a -=,)2,(x b -=,且a 与b 同向,则-a b 2=__________.15.已知向量a )2,3(-=,b )1,2(-,c )4,7(-=,且b a cμλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.如图,ABCD 中,点M 是AB 的中点,点N 在BD 上,且BD BN 31=,求证:C N M ,,三点共线.18.已知C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--AE =31AC ,BF =31BC , 1)求点E 、F 及向量EF 的坐标; 2)求证:EF ∥AB .19.24==夹角为120,求:(1)b a ⋅;(2))()2(b a b a +⋅-;(3)a 3+.20.已知)2,3(),2,1(-==b a,当k 为何值时:(1)b a k +与b a 3-垂直;(2)b a k +与b a3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x b x x a -+==π,b a x f ⋅=)(,求:(1)函数()x f 的最小正周期; (2))(x f 的值域; (3))(x f 的单调递增区间.22.已知点)sin ,(cos ),3,0(),0,3(ααC B A , (1)若1-=⋅BC AC ,求α2sin 的值;(213=+,且),0(πα∈,求OB 与OC 的夹角.3.1两角和与差的正弦、余弦和正切公式一、选择题(每题5分,共45分)1. 345cos 的值等于 ( )A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( ) A.0 B.21 C.23D.21- 3.已知1312sin -=θ,)0,2(πθ-∈,则)4cos(πθ-的值为 ( )A.2627-B.2627C.26217-D.26217 4.已知53)4sin(=-x π,则x 2sin 的值为 ( )A.2519B.2516C.2514D.257 5.若31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于 ( )A.917 B.917± C.917- D.317 6.已知函数是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知71tan =α,βtan =31,20πβα<<<,则βα2+等于 ( )A.45πB.4πC.45π或4πD.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( ) A.2 B.2- C.4 D.4-9.函数56sin2sin 5cos 2cos )(ππx x x f -=的单调递增区间是 ( ) A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分)10.已知函数的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________. 11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. 13.已知函数[]则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分) 14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ.(2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.15.设x x x f 2sin 3cos 6)(2-=,(1)求)(x f 的最大值及最小正周期;(2)若锐角α满足323)(-=αf ,求α54tan 的值.16.已知),,0(,,55cos ,31tan πβαβα∈=-= (1)求)tan(βα+的值; (2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.3.2简单的三角恒等变换一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A .23 B .23-C .21 D .21- 2.下列各式中,最小的是 ( ) A .40cos 22B .6cos 6sin 2 C .37sin 50cos 37cos 50sin - D .41cos 2141sin 23- 3.函数()R x x y ∈+=2cos 21的最小正周期为 ( ) A .2πB .πC .π2D .π4 4.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( ) A .21 B .23 C .21- D .3-5.若316sin =⎪⎭⎫ ⎝⎛-απ,则=⎪⎭⎫ ⎝⎛+απ232cos ( ) A .97-B .31-C .31D .97 6.若函数x x y tan 2sin =,则该函数有 ( ) A .最小值0,无最大值 B .最大值2,无最小值 C .最小值0,最大值2 D .最小值2-,最大值2 7.若παπ223<<,则=++α2cos 21212121 ( ) A .2cosαB .2sinαC .2cosα- D .2sinα-8.若()x x f 2sin tan =,则()=-1f ( ) A .1 B .1- C .21D .21-二、填空题(每题5分,共20分)9.计算=-+75tan 175tan 1__________.10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.sin αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________.三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22.15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值.16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期;(2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( )A.26 B.23 C.45 D.431+2.已知222tan -=θ,πθπ22<<,则θtan 的值为 ( ) A.2 B.22-C.2D.2或22- 3.设︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系 A.b a = B.b a > C.b a < D.b a ≠ ( )4.函数x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( )A.1B.231+ C.23 D.31+5.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为( ) A.π,1 B.π,2 C.π2,1 D.π2,2 6.xx xx sin cos sin cos -+= ( )A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x 7.函数)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是A.6π=x B.4π=x C.6π-=x D.2π-=x ( )8.)24tan 1)(25tan 1)(20tan 1)(21tan 1(++++的值为 ( ) A.2 B.4 C.8 D.169.若51)cos(=+βα,53)cos(=-βα,则βαtan tan = ( )A.2B.21C.1D.010.函数[]0,(cos 3sin )(π-∈-=x x x x f )的单调递增区间是 ( ) A.⎥⎦⎤⎢⎣⎡--65,ππ B.⎥⎦⎤⎢⎣⎡--6,65ππ C.⎥⎦⎤⎢⎣⎡-0,3π D.⎥⎦⎤⎢⎣⎡-0,6π 11.已知A 、B 为小于︒90的正角,且31sin =A ,21sin =B ,则)(2sin B A +的值是 A.97B.23C.1832+D.183724+ ( )12.若22)4sin(2cos -=-παα,则ααsin cos +的值为 ( ) A.27-B.21-C.21D.27 二、填空题(每题5分,共20分) 13.已知32tan=θ,则θθθθsin cos 1sin cos 1+++-=__________.14.函数)2sin()3sin(ππ+⋅+=x x y 的最小正周期T =__________. 15.已知xxx f +-=11)(,若),2(ππα∈则)cos ()(cos αα-+f f 可化简为__________.16.若2cos sin -=+αα,则ααtan 1tan +=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.(1)已知54cos =α,且παπ223<<,求2tan α.(2)已知1cos )cos()22sin(sin 3=⋅+--θθπθπθ,),0(πθ∈,求θ的值.18.已知135)43sin(=+πα,53)4cos(=-βπ,且434,44πβππαπ<<<<-, 求)cos(βα-的值.19.已知函数R x x x x x x f ∈++=,cos 3cos sin 2sin )(22, 求:(1)函数)(x f 的最大值及取得最大值的自变量x 的集合; (2)函数)(x f 的单调增区间.20.已知α、β),0(π∈,且αtan 、βtan 是方程0652=+-x x 的两根,求:(1)βα+的值;(2))cos(βα-的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合质量评估本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-1 320°角所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:-1 320°=-360°×4+120°,所以-1 320°角所在象限与120°角所在象限相同.又120°角为第二象限角,故选B.答案:B2.已知OA →=(2,3),OB →=(-3,y ),且OA →⊥OB →,则y 等于( ) A .2 B .-2 C.12D .-12解析:∵OA →⊥OB →,∴OA →·OB →=-6+3y =0.∴y =2. 答案:A3.(2014·陕西高考)函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6的最小正周期是( ) A.π2B .πC .2πD .4π解析:最小正周期为T =2πω=2π2=π,故选B.答案:B4.已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( ) A .a ∥b B .a ⊥b C .|a |=|b |D .a +b =a -b解析:因为|a +b |=|a -b |,所以(a +b )2=(a -b )2,即a ·b =0.故a ⊥b . 答案:B5.1-sin 20°=( ) A .cos 10° B .sin 10°-cos 10° C.2sin 35°D .±(sin 10°-cos 10°)解析:1-sin 20°=1-cos 70°=2sin 235°, ∴1-sin 20°=2sin 35°. 答案:C6.(2014·新课标全国高考Ⅰ)若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin 2α>0D .cos 2α>0解析:由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号,故sin 2α=2sin a cos α>0.故选C.答案:C7.已知锐角α终边上一点A 的坐标为(2sin 3,-2cos 3),则角α的弧度数为( ) A .3 B .π-3 C .3-π2D.π2-3 解析:tan α=-2cos 32sin 3=-1tan 3=tan ⎝ ⎛⎭⎪⎫3-π2,且α与3-π2的范围均在⎝ ⎛⎭⎪⎫0,π2上,所以α=3-π2.答案:C8.已知a =(1,sin 2x ),b =(2,sin 2x ),其中x ∈(0,π).若|a ·b |=|a ||b |,则tan x 的值等于( )A .1B .-1 C. 3D.22解析:由|a·b |=|a ||b |知a ∥b ,所以sin 2x =2sin 2x ,即2sin x cos x =2sin 2x .而x ∈(0,π),所以sin x =cos x ,即x =π4.故tan x =1.答案:A9.(2014·浙江高考)为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( )A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位解析:∵y =sin 3x +cos 3x =2sin ⎝⎛⎭⎪⎫3x +π4=2sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x +π12, 又y =2cos 3x =2sin ⎝⎛⎭⎪⎫3x +π2 =2sin ⎣⎢⎡⎦⎥⎤3⎝⎛⎭⎪⎫x +π6,∴应由y =2cos 3x 的图象向右平移π12个单位得到.答案:A10.已知向量a 与向量b 的夹角为120°,若向量c =a +b ,且a ⊥c ,则|a ||b |的值为( )A.12B.233C .2D. 3解析:c·a =(a +b )·a =a 2+a ·b =|a |2+|a ||b |cos 120°=|a |2-12|a ||b |=0,∴|a ||b |=12. 答案:A11.已知函数y =2sin(ωx +θ)为偶函数(0<θ<π),其图象与直线y =2的某两个交点的横坐标为x 1,x 2,若|x 2-x 1|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2C .ω=12,θ=π4D .ω=2,θ=π4解析:∵y =2sin(ωx +θ)为偶函数,0<θ<π,∴θ=π2.∵图象与直线y =2的两个交点的横坐标为x 1,x 2,|x 2-x 1|min =π,∴2πω=π,ω=2.故选A.答案:A12.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13 B .3 C .6D .9解析:将y =f (x )的图象向右平移π3个单位长度后得到的图象与原图象重合,则π3=2πωk ,k ∈Z ,得ω=6k ,k ∈Z .又ω>0,则ω的最小值等于6,故选C.答案:C第Ⅱ卷(非选择题)二、填空题(本大题共4小题,每小题4分,共16分,请把正确答案填在题中横线上)13.cos ⎝ ⎛⎭⎪⎫-17π3=______ .解析:cos ⎝ ⎛⎭⎪⎫-17π3=cos ⎝ ⎛⎭⎪⎫-6π+π3=cos π3=12.答案:1214.(2014·江西高考)已知单位向量e 1,e 2的夹角为α,且cos α=13,若向量a =3e 1-2e 2,则|a |=__________.解析:因为a 2=(3e 1-2e 2)2=9-2×3×2×cos α+4=9,所以|a |=3. 答案:315.已知tan α=2,则2sin 2α+1sin 2α=______.解析:2sin 2α+1sin 2α=3sin 2α+cos 2α2sin αcos α=3tan 2α+12tan α=3×22+12×2=134.答案:13416.函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象如图所示,则y 的表达式为________.解析:由T 2=2π3-π6,求出周期T =π,ω=2,然后可求得A =2,φ=π6.答案:y =2sin ⎝⎛⎭⎪⎫2x +π6三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为120°.求: (1)|a +b |及|a -b |; (2)向量a +b 与a -b 的夹角.解:(1)a ·b =|a ||b |cos θ=2×2×cos 120° =-2,所以|a +b |2=(a +b )2=a 2+b 2+2a ·b =22+22+2×(-2)=4. 所以|a +b |=2.同理可求得|a -b |=2 3.(2)因为(a +b )·(a -b )=a 2-b 2=22-22=0,所以(a +b )⊥(a -b ).所以a +b 与a -b 的夹角为90°.18.(本小题满分12分)已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ).(1)求证:tan(α+β)=2tan α. (2)求f (x )的解析式.(1)证明:由sin(2α+β)=3sin β, 得sin[(α+β)+α]=3sin[(α+β)-α], 即sin(α+β)cos α+cos(α+β)sin α =3sin(α+β)cos α-3cos(α+β)sin α, ∴sin(α+β)cos α=2cos(α+β)sin α. ∴tan(α+β)=2tan α.(2)解:由(1)得tan α+tan β1-tan αtan β=2tan α,即x +y1-xy =2x ,∴y =x 1+2x 2,即f (x )=x1+2x2.19.(本小题满分12分)已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+2sin 2⎝ ⎛⎭⎪⎫x -π12(x ∈R ).(1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合.解:(1)∵f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12=3sin ⎝ ⎛⎭⎪⎫2x -π6-cos ⎝ ⎛⎭⎪⎫2x -π6+1=2sin ⎝⎛⎭⎪⎫2x -π6-π6+1 =2sin ⎝ ⎛⎭⎪⎫2x -π3+1,∴T =2π2=π. (2)当f (x )取最大值时,sin ⎝⎛⎭⎪⎫2x -π3=1,得2x -π3=π2+2k π,k ∈Z ,得x =5π12+k π,k ∈Z ,故使函数f (x )取得最大值的x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =5π12+k π,k ∈Z. 20.(本小题满分12分)已知a =(cos 2α,sin α),b =(1,2sin α-1),α∈⎝ ⎛⎭⎪⎫π2,π,a·b =25,求52sin 2α-4cos ⎝⎛⎭⎪⎫α+π42cos2α2的值.解:∵a·b =(cos 2α,sin α)·(1,2sin α-1) =cos 2α+sin α·(2sin α-1) =cos 2α+2sin 2α-sin α =cos 2α+(1-cos 2α)-sin α =1-sin α=25,∴sin α=35.又∵α∈⎝ ⎛⎭⎪⎫π2,π, ∴cos α=-1-sin 2α=-45.∴52sin 2α-4cos ⎝⎛⎭⎪⎫α+π42cos2α2=102sin α cos α-4×22cos α-sin α1+cos α=102sin αcos α-22cos α+22sin α1+cos α=102×35×⎝ ⎛⎭⎪⎫-45-22×⎝ ⎛⎭⎪⎫-45+22×351+⎝ ⎛⎭⎪⎫-45=102×3×⎝ ⎛⎭⎪⎫-45-22×(-4)+22×3 =-242+82+62=-10 2.21.(本小题满分12分)(2014·重庆高考)已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值.(2)若f ⎝ ⎛⎭⎪⎫α2=34⎝ ⎛⎭⎪⎫π6<α<2π3,求cos ⎝ ⎛⎭⎪⎫α+3π2的值.解:(1)∵f (x )的图象上相邻两个最高点的距离为π, ∴f (x )的最小正周期T =π.从而ω=2πT=2.又∵f (x )图象关于直线x =π3对称, ∴2×π3+φ=k π+π2,k ∈Z .由-π2≤φ<π2,得k =0,∴φ=π2-2π3=-π6.(2)由(1)得f ⎝ ⎛⎭⎪⎫α2=3sin ⎝⎛⎭⎪⎫2·α2-π6=34.∴sin ⎝ ⎛⎭⎪⎫α-π6=14.由π6<α<2π3,得0<α-π6<π2,∴cos ⎝⎛⎭⎪⎫α-π6=1-sin 2⎝⎛⎭⎪⎫α-π6=1-⎝ ⎛⎭⎪⎫142=154.∴cos ⎝ ⎛⎭⎪⎫α+3π2=sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+π6 =sin ⎝ ⎛⎭⎪⎫α-π6cos π6+cos ⎝ ⎛⎭⎪⎫α-π6sin π6=14×32+154×12=3+158. 22.(本小题满分14分)(2013·陕西高考)已知向量a =⎝ ⎛⎭⎪⎫cos x ,-12,b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a·b .(1)求f (x )的最小正周期;(2)求f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解:f (x )=⎝⎛⎭⎪⎫cos x ,-12·(3sin x ,cos 2x )=3cos x sin x -12cos 2x=32sin 2x -12cos 2x =cos π6sin 2x -sin π6cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π6.(1)f (x )的最小正周期为T =2πω=2π2=π,即函数f (x )的最小正周期为π. (2)∵0≤x ≤π2,∴-π6≤2x -π6≤5π6.由正弦函数的性质,当2x -π6=π2,即x =π3时,f (x )取得最大值1.当2x -π6=-π6,即x =0时,f (0)=-12.当2x -π6=56π,即x =π2时,f ⎝ ⎛⎭⎪⎫π2=12.∴f (x )的最小值为-12.因此,f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值是1,最小值是-12.。

相关文档
最新文档