2015年高考文科数学答案

合集下载

2015年全国高考数学(文科)新课标1卷真题与答案

2015年全国高考数学(文科)新课标1卷真题与答案

2015年普通高等学校招生全国统一考试一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|=(A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代容极为丰富的数学名著,书中有如下问题:“今有委米依垣角,下周八尺,高五尺。

问:积与为米几何?”其意思为:“在屋墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,=(A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k, k),k(B)(2k,2k),k(C)(k, k),k(D)(2k,2k),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A)1(B) 2 (C) 4(D) 8(12)设函数y=f(x)的图像关于直线y=-x对称,且f(-2)+f(-4)=1,则a=(A)-1 (B)1 (C)2 (D)4二.填空题:本大题共4小题,每小题5分(13)在数列{a n}中,a1=2,a n+1=2a n, S n为{a n}的前n项和。

2015年全国高考数学卷文科卷1及解析

2015年全国高考数学卷文科卷1及解析

2015 年全国高考数学卷文科卷 1一、选择题1.已知集合 A { x x 3n 2,n N}, B {6,8,10,12,14} ,则集合 A B 中的元素个数为( )(A)5 (B)4 (C)3 (D)2(A)14 斛(B)22 斛(C)36 斛(D)66 斛2.已知点A(0,1), B(3,2) ,向量AC ( 4, 3),则向量BC ( ) 7.已知{ a n} 是公差为1 的等差数列,S n 为{a n} 的前n项和,若S8 4S4 ,则a10()()()() A ( 7, 4) (7, 4)( 1,4) (1,4)B C D3.已知复数z 满足( z 1)i 1 i ,则z ()(A)172(B)192(C)10 (D)128.函数 f (x) cos( x )的部分图像如图所示,则 f (x) 的单调递减区间为(A) 2 i (B) 2 i (C)2 i (D)2 i4.如果 3 个正整数可作为一个直角三角形三条边的边长,则称这 3 个数为一组()勾股数,从1,2,3,4,5 中任取 3 个不同的数,则这 3 个数构成一组勾股数的概率为()(A)310(B)15(C)110(D)1205.已知椭圆E的中心为坐标原点,离心率为12,E 的右焦点与抛物线 2C : y 8x的焦点重合,A, B 是C的准线与 E 的两个交点,则AB ( ) (A)1 3(k ,k), k Z4 4(A) 3 (B)6 (C)9 (D)126.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有(B)1 3(2k ,2k ), k Z4 4委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8 尺,(C)1 3(k ,k), k Z4 4米堆的高为 5 尺,米堆的体积和堆放的米各为多少?”已知 1 斛米的体积约为1.62 立方尺,圆周率约为3,估算出堆放的米有()(D)1 3(2k ,2k ),k Z4 4试卷第 1 页,总 4 页9.执行右面的程序框图,如果输入的t 0.01 ,则输出的n ()二、填空题13.数列a中a1 2,a n 1 2a n,S n 为a n 的前n 项和,若S n 126,则nn .()()()() AB CD 12 56 1010.已知函数f (x)7543414(A)(x 1 x2 2, 1log (x1), x 12 ,且f (a)3 ,则f (6)a()3114.已知函数f x axx1,f 12,7的图像在点的处的切线过点,则a.15.若x,y 满足约束条件x y 2 0x 2y 1 02x y 2 0****B)411.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何, 则z=3x+y 的最大值为.体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16 20 ,则r ( ) 16.已知F 是双曲线2y2C : x 1的右焦点,P 是C左支上一点, A 0,66 ,8当APF 周长最小时,该三角形的面积为.三、解答题17.(本小题满分12 分)已知a,b,c 分别是ABC 内角A, B,C 的对边,2sin B 2sin A sin C .(Ⅰ)若 a b ,求cos B;(A)1 (B)2 (C)4 (D)8x a12 .设函数y f (x) 的图像与y 2 的图像关于直线y x 对称,且(Ⅱ)若 B 90 ,且a 2, 求ABC 的面积.f ( 2) f ( 4) ,1 则a ( )(A) 1 (B)1 (C)2 (D) 4试卷第 2 页,总 4 页18.(本小题满分12 分)如图四边形ABCD为菱形,G 为AC 与BD 交点,BE 平面ABCD ,x y w 8 2(x i x)882(w i w) ( x i x)( y i y)(w i w)( y i i 1 i 1 i 1 i 1 1.6356.3 6.8 289.8 1.6 1469 108.8表中w =ix ,w =i818i1wi(Ⅰ)根据散点图判断,y a bx 与y c d x ,哪一个适宜作为年销售量y 关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x 的回归方程;(Ⅰ)证明:平面AEC 平面BED ;(III )已知这种产品的年利润z 与x,y 的关系为z 0.2 y x ,根据(Ⅱ)的(Ⅱ)若ABC 120 ,AE EC, 三棱锥 E ACD 的体积为棱锥的侧面积.63,求该三(Ⅰ)当年宣传费x90 时,年销售量及年利润(Ⅱ)当年宣传费x为何值时,年利润的预报值最大?结果回答下列问题:附:对于一组数据(u ,v ) , (u2,v2 ) ,⋯⋯,(u n ,v n) , 其回归线v u 的斜1 119.(本小题满分12 分)某公司为确定下一年度投入某种产品的宣传费,需了率和截距的最小二乘估计分别为:解年宣传费x(单位:千元)对年销售量y(单位:t )和年利润z(单位:千元)n的影响,对近8年的宣传费x和年销售量y i i 1,2, ,8 数据作了初步处理,i得到下面的散点图及一些统计量的值. = i 1(u u)(v v)i in2(u u)ii 1,=v u3页,总4页试卷第20.(本小题满分12 分)已知过点 A 1,0 且斜率为k 的直线l 与圆C:23.(本小题满分10 分)选修4-4 :坐标系与参数方程2 2x 2 y 3 1交于M,N两点. 2 2在直角坐标系xOy 中,直线C1 : x 2,圆C2 : x 1 y 2 1,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)求k 的取值范围;(Ⅰ)求C1,C2 的极坐标方程.(Ⅱ)OM ON 12,其中O为坐标原点,求MN .(Ⅱ)若直线 C 的极坐标方程为3 π4R ,设C2,C3 的交点为M , N ,求C MN 的面积.221.(本小题满分12 分)设函数2x lnf x e a x .(Ⅰ)讨论 f x 的导函数 f x 的零点的个数;(Ⅱ)证明:当 a 0 时f x 2a aln 2a.24.(本小题满分10 分)选修4-5 :不等式选讲22.(本小题满分10 分)选修4-1 :几何证明选讲如图AB是直径,AC是切线,BC交与点 E.已知函数 f x x 1 2 x a ,a0 . (Ⅰ)当 a 1 时求不等式 f x 1的解集;(Ⅱ)若f x 图像与x 轴围成的三角形面积大于6,求a 的取值范围.(Ⅰ)若D为AC中点,求证:DE是切线;(Ⅱ)若OA 3CE ,求ACB 的大小.试卷第 4 页,总 4 页****【解析】参考答案∴椭圆E的焦点在x轴上,设方程为22x y221(0)a ba b1.D,c=2,试题分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A∩B={8,14},故选D.考点:集合运算∵eca12,∴a4,∴22212b a c,∴椭圆E方程为22x y16121,2.A将x2代入椭圆E的方程解得A(-2,3),B(-2,-3),∴|AB|=6,故选B.【解析】考点:抛物线性质;椭圆标准方程与性质试题分析:∵AB OB OA=(3,1),∴BC AC AB=(-7,-4),故选A.6.B 【解析】考点:向量运算3.C1试题分析:设圆锥底面半径为r,则423r8,所以16r,所以米堆的3【解析】试题分析:∴(z1)i1i,∴z=12i(12i)(i)2i i2i,故选C.11163292体积为3()5=433考点:圆锥的性质与圆锥的体积公式,故堆放的米约为3209÷1.62≈22,故选B.考点:复数运算7.B 4.C【解析】****【解析】试题分析:从1,2,3,4,51,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求11试题分析:∵公差d1,1解得a=1,∴2S84S4,∴8a1874(4a143),22119a a9d9,故选B.10122概率为110,故选C.考点:等差数列通项公式及前n项和公式8.D考点:古典概型【解析】5.B【解析】2试题分析:∵抛物线C:y8xx2的焦点为(2,0),准线方程为,∴椭圆E的右焦点为(2,0),试题分析:由五点作图知,1+4253+42,解得=,=4,所以答案第1页,总8页****f (x) cos( x ) ,令2k x 2k , k Z ,解得4 41k <x42试题分析:∵ f (a) 3,∴当a 1时, a 1f (a) 2 2 3 ,则a 12 1,32k ,k Z ,故单调减区间为(<4考点:三角函数图像与性质12k ,432k ),k Z ,故选 D.4此等式显然不成立,当 a 1时,l og (a 1) 3,解得 a 7 ,29.C 【解析】∴f (6 a) f ( 1) = 1 172 24,故选 A.试题分析:执行第 1 次,考点:分段函数求值;指数函数与对数函数图像与性质t=0.01,S=1,n=0,m= 12=0.5,S=S-m=0.5,mm =0.25,n=1,S=0.5 >t=0.01,211.B【解析】是,循环,试题分析:由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱执行第 2 次,S=S-m =0.25, 执行第 3 次,S=S-m=0.125,mm =0.125,n=2,S=0.25 >t=0.01, 是,循环,2mm =0.0625,n=3,S=0.125 >t=0.01, 是,循环,2的半径与球的半径都为r ,圆柱的高为2r ,其表面积为122 24 r r 2r r 2r 2r =2 25 r 4r =16 + 20 ,解得r=2 ,故选B.执行第 4 次,S=S-m=0.0625,mm =0.03125,n=4,S=0.0625 >t=0.01, 是,循2考点:简单几何体的三视图;球的表面积公式;圆柱的测面积公式12.C环,【解析】执行第 5 次,S=S-m=0.03125,mm =0.015625,n=5,S=0.03125 >t=0.01, 是,2试题分析:设(x, y)是函数y f (x) 的图像上任意一点,它关于直线y x 对循环,执行第 6 次,S=S-m=0.015625, 是,循环,mm =0.0078125,n=6,S=0.015625 >t=0.01,2x a y a称为(y, x ),由已知知(y, x )在函数y 2 的图像上,∴x 2 ,解得y l o g x ( ,a ) 即 f (x) log2 ( x) a ,∴2执行第7 次,S=S-m=0.0078125,mm =0.00390625,n=7,S=0.0078125 >2f ( 2) f ( 4) log 2 a log 4 a 1,解得a 2,故选 C.2 2t=0.01, 否,输出n=7,故选 C.考点:函数对称;对数的定义与运算考点:程序框图13.610.A【解析】【解析】试题分析:∵a1 2,a n 1 2a n ,∴数列a n 是首项为2,公比为 2 的等比数答案第 2 页,总8 页列,【解析】∴n2(12)nS126,∴264 n12考点:等比数列定义与前n项和公式14.1【解析】试题分析:∵2f(x)3ax1,∴f(1)3a1,即切线斜率k3a1,f(1)a2a212,7又∵,∴切点为(,),∵切线过(),∴解得a 1.考点:利用导数的几何意义求函数的切线;常见函数的导数;a27123a1,F共线,1x y∵A0,66,F1(-3,0),∴直线AF1的方程为136615.4【解析】266960y y,解得y26或试题分析:作出可行域如图中阴影部分所示,作出直线l:3x y0,平移直线l,当直线l:z=3x+y过点A时,z取最大值,由0x y2=0x2y1=0解得A(1,1),y86(舍),所以P点的纵坐标为26,∴S S S=APF AFF PFF111166662622=126.∴z=3x+y的最大值为 4.考点:双曲线的定义;直线与双曲线的位置关系;最值问题考点:简单线性规划解法16.12617.(Ⅰ)【解析】14(Ⅱ)1答案第3页,总8页试题分析:(Ⅰ)先由正弦定理将2sin B2sin A s in C化为变得关系,结合试题解析:(Ⅰ)因为四边形ABCD为菱形,所以AC^ BD,因为BE^平面ABCD,所以AC^BE,故AC^平面BED.条件a b,用其中一边把另外两边表示出来,再用余弦定理即可求出角B的又ACì平面AEC,所以平面AEC^平面BED余弦值;(Ⅱ)由(Ⅰ)知的面积.22b=ac,根据勾股定理和即可求出c,从而求出ABC3(Ⅱ)设AB=x,在菱形ABCD中,由D ABC=120°,可得AG=GC=2xx,GB=GD=2.试题解析:(Ⅰ)由题设及正弦定理可得又a=b,可得b=2c,a=2c,22b=ac.因为AE^EC,所以在RtD AEC中,可得EG=32x.由余弦定理可得cos B2221a+c-b==.2ac4由BE^平面ABCD,知D EBG为直角三角形,可得BE=22x.22(Ⅱ)由(1)知b=ac.因为B=90°,由勾股定理得222a+c=b.由已知得,三棱锥E-ACD的体积故x=211663V AC GD BE x-=醋?=.E ACD32243故222a+c=ac,得c=a=2.从而可得AE=EC=ED=6.所以D ABC的面积为 1.考点:正弦定理;余弦定理;运算求解能力所以D EAC的面积为3,D EAD的面积与D ECD的面积均为5.18.(Ⅰ)见解析(Ⅱ)3+25故三棱锥E-ACD的侧面积为3+25.【解析】考点:线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计试题分析:(Ⅰ)由四边形ABCD为菱形知AC^BD,由BE^平面ABCD知AC^BE,算;逻辑推理能力;运算求解能力由线面垂直判定定理知AC^平面BED,由面面垂直的判定定理知平面AEC 平面BED;(Ⅱ)设AB=x,通过解直角三角形将AG、GC、GB、GD用x表示19.(Ⅰ)y c d x适合作为年销售y关于年宣传费用x的回归方程类型出来,在Rt D AEC中,用x表示EG,在RtD EBG中,用x表示EB,根据条件三(Ⅱ)y100.668x(Ⅲ)46.24棱锥E ACD的体积为63求出x,即可求出三棱锥E ACD的侧面积.【解析】试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)答案第4页,总8页令w x ,先求出建立y 关于w的线性回归方程,即可y 关于x的回归方程;∴当x =1.642=6.8 ,即x 46.24 时,z取得最大值.(Ⅲ)( ⅰ) 利用y 关于x的回归方程先求出年销售量y 的预报值,再根据年利故宣传费用为46.24 千元时,年利润的预报值最大. ⋯⋯12 分率z 与x、y 的关系为z=0.2y-x 即可年利润z 的预报值;(ⅱ)根据(Ⅱ)的考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意结果知,年利润z 的预报值,列出关于x的方程,利用二次函数求最值的方法识即可求出年利润取最大值时的年宣传费用.试题解析:(Ⅰ)由散点图可以判断,y c d x适合作为年销售y关于年20.(Ⅰ)骣- +4 7 4 7琪,琪3 3桫(Ⅱ)2宣传费用x的回归方程类型.【解析】(Ⅱ)令w x ,先建立y 关于w 的线性回归方程,由于试题分析:(Ⅰ)设出直线l 的方程,利用圆心到直线的距离小于半径列出关于k 的不等式,即可求出k 的取值范围;(Ⅱ)设M (x1, y1), N (x2, y2) ,将直8d i 1 (w w )y( y )i i108.816=82(w w)ii 1=68 ,线l 方程代入圆的方程化为关于x的一元二次方程,利用韦达定理将x1x2, y1 y2用k 表示出来,利用平面向量数量积的坐标公式及O M ON 12列出关于k方程,解出k,即可求出|MN|.∴c y dw =563-68 ×6.8=100.6.试题解析:(Ⅰ)由题设,可知直线l 的方程为y = kx +1 . ∴y 关于w的线性回归方程为y 100.6 68w,∴y 关于x的回归方程为y 100.6 68 x . 因为l 与C交于两点,所以|2k - 3 +1|21+ k< 1.(Ⅲ)( ⅰ)由(Ⅱ)知,当x=49 时,年销售量y 的预报值y 100.6 68 49 =576.6 ,解得4 - 7 4 + 7< k < .3 3z 576.6 0.2 49 66.32.(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值骣-+4 7 4 7琪所以k 的取值范围是,琪3 3桫.z 0.2(100.6 68 x) x x 13.6 x 20.12,(Ⅱ)设M (x , y ), N(x , y ) .1 12 2答案第 5 页,总8页22将y=kx+1代入方程()()x-2+y-3=1,整理得当a>0时,因为2xe单调递增,a-单调递增,所以f¢(x)在(0,+¥)单调递x22(1+k)x-4(k+1)x+7=0,增.又f¢(a)>0,当b满足0a<b<且41b<时,f¢(b)<0,故当a>0时,44(k+1)7x+x=,x x=.所以1221221+k1+kf¢(x)存在唯一零点.4k(1+k)2OM?ON x x+y y=1+k x x+k x+x+1=+8 1212121221+k ,(Ⅱ)由(Ⅰ),可设f¢(x)在(0,+¥)的唯一零点为x,当()x?0,x时,00由题设可得4k(1+k)21+k+8=12,解得k=1,所以l的方程为y=x+1.f¢(x)<0;故圆心在直线l上,所以|MN|=2.当x违(x0,+)时,f¢(x)>0.考点:直线与圆的位置关系;设而不求思想;运算求解能力21.(Ⅰ)当a£0时,f¢(x)没有零点;当a>0时,f¢(x)存在唯一零点.故f(x)在(0,x)单调递减,在()x0,+¥单调递增,所以当x=x0时,f(x)故f(x)在(0,x)单调递减,在()(Ⅱ)见解析取得最小值,最小值为f(x).【解析】试题分析:(Ⅰ)先求出导函数,分a£0与a>0考虑f x的单调性及性质,2x a a22由于02e-=0,所以f(x0)=+2ax0+aln?2a a ln.x2x a a00即可判断出零点个数;(Ⅱ)由(Ⅰ)可设f¢(x)在(0,+¥)的唯一零点为x,故当a>0时,2f(x)?2a aln.a根据f x的正负,即可判定函数的图像与性质,求出函数的最小值,即可证考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.明其最小值不小于22a+a ln,即证明了所证不等式.a22.(Ⅰ)见解析(Ⅱ)60°【解析】2x a试题解析:(Ⅰ)f(x)的定义域为(0,+¥),()f¢(x)=2e-x>0.x 试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE⊥BC,AC⊥AB,由直角三角形中线性质知DE=DC,OE=OB,利用等量代换可证∠DEC+∠OEB=9°0,即当a£0时,f¢(x)>0,f¢(x)没有零点;∠OED=9°0,所以DE是圆O的切线;(Ⅱ)设CE=1,由OA3CE得,AB=23,设AE=x,由勾股定理得2BE12x,由直角三角形射影定理可得答案第6页,总8页2AE CE BE ,列出关于x的方程,解出x,即可求出∠ACB的大小. 试题解析:(Ⅰ)因为x cos , y sin ,试题解析:(Ⅰ)连结AE,由已知得,AE⊥BC,AC⊥AB,在Rt△AEC中,由已知得DE=DC,∴∠DEC=∠DCE,∴ C 的极坐标方程为cos 2 ,C2 的极坐标方程为1连结O E,∠OBE=∠OEB,∵∠ACB+∠ABC=90°,∴∠DEC+∠OEB=9°0,2 2 cos 4 sin 4 0 . ⋯⋯ 5 分∴∠OED=9°0,∴DE是圆O的切线.(Ⅱ)设C E=1,AE=x, 由已知得AB=2 3, 2BE 12 x ,(Ⅱ)将=解得2 2 cos 4 sin 4,得代入41 =2 2 , 2 = 2 ,|MN|= 1 - 2 = 2 ,2由射影定理可得,∴AE CE BE ,2 12 2x x ,解得x= 3,∴∠ACB=60°.1o因为C 的半径为1,则C2 MN 的面积2 1 sin 4522考点: 直角坐标方程与极坐标互化;直线与圆的位置关系=12.24.(Ⅰ)【解析】2{ x | x 2} (Ⅱ)(2,+∞)3试题分析:(Ⅰ)利用零点分析法将不等式f(x)>1 化为一元一次不等式组来解;(Ⅱ)将 f ( x) 化为分段函数,求出 f (x) 与x轴围成三角形的顶点坐标,即可求出三角形的面积,根据题意列出关于a的不等式,即可解出a的取值范考点: 圆的切线判定与性质;圆周角定理;直角三角形射影定理围.23.(Ⅰ)cos 2 , 2 2 cos 4 sin 4 0 (Ⅱ)12试题解析:(Ⅰ)当a=1 时,不等式f(x)>1 化为|x+1|-2|x-1| >1,【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得 C ,C2 的极坐1 等价于x 1或x 1 2x 2 11 x 1x 1 2x 2 1或x 1x 1 2x 2 1,解得标方程;(Ⅱ)将将=4 代入 2 2 cos 4 sin 4 0 即可求出|MN| ,23x 2 ,利用三角形面积公式即可求出C MN 的面积.2答案第7 页,总8页所以不等式f(x)>1 的解集为2{ x | x 2} .3x 1 2a, x 1(Ⅱ)由题设可得, f (x) 3x 1 2a, 1 x a,x 1 2a, x a所以函数 f (x) 的图像与x轴围成的三角形的三个顶点分别为2a 1A( ,0) ,3B(2 a 1,0) ,C(a, a+1) ,所以△ABC的面积为232 (a 1) .由题设得232(a1) >6,解得 a 2 .所以a的取值范围为(2,+∞).考点:含绝对值不等式解法;分段函数;一元二次不等式解法答案第8 页,总8 页。

2015年高考文科数学真题及答案16套

2015年高考文科数学真题及答案16套

福建卷---------------------------------------------------2-18页新课标1-------------------------------------------------18-33 新课标2-------------------------------------------------33-47 重庆卷-------------------------------------------------47-62湖北卷-------------------------------------------------62-75天津卷-------------------------------------------------75-85安徽卷------------------------------------------------86-98北京卷-------------------------------------------------98-111 广东卷-------------------------------------------------111-121 湖南卷-------------------------------------------------121-136 江苏卷-------------------------------------------------136-152 山东卷-------------------------------------------------152-168 陕西卷-------------------------------------------------168-184 四川卷-------------------------------------------------184-195 上海卷-------------------------------------------------195-204 浙江卷-------------------------------------------------205-216第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( ) A .3,2- B .3,2 C .3,3- D .1,4- 【答案】A 【解析】试题分析:由已知得32i a bi -=+,所以3,2a b ==-,选A . 考点:复数的概念.2.若集合{}22M x x =-≤<,{}0,1,2N =,则MN 等于( )A .{}0B .{}1C .{}0,1,2D {}0,1 【答案】D考点:集合的运算.3.下列函数为奇函数的是( ) A .y x = B .x y e = C .cos y x = D .x x y e e -=-【答案】D 【解析】试题分析:函数y x =和x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇函数,故选D .考点:函数的奇偶性.4.阅读如图所示的程序框图,阅读相应的程序.若输入x 的值为1,则输出y 的值为( ) A .2 B .7 C .8 D .128【答案】C 【解析】试题分析:由题意得,该程序表示分段函数2,2,9,2x x y x x ⎧≥=⎨-<⎩,则(1)918f =-=,故选C .考点:程序框图. 5.若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C考点:基本不等式. 6.若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-【答案】D 【解析】试题分析:由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin tan cos ααα= 512=-,故选D .考点:同角三角函数基本关系式.7.设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) A .32-B .53-C .53D .32【答案】A考点:平面向量数量积.8.如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0).且点C 与点D 在函数1,0()11,02x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率等于( ) A .16 B .14 C .38 D .12xyOBCDAF【答案】B考点:古典概型.9.某几何体的三视图如图所示,则该几何体的表面积等于( ) A .822+ B .1122+ C .1422+ D .151112【答案】B 【解析】试题分析:由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为1,斜腰为2.底面积为12332⨯⨯=,侧面积为则其表面积为 2+2+4+22=8+22,所以该几何体的表面积为1122+,故选B .考点:三视图和表面积.10.变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .2 【答案】C 【解析】x–1–2–3–41234–1–2–3–4123BOC试题分析:将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤时,不满足题意;当0m >时,画出可行域,如图所示, 其中22(,)2121mB m m --.显然(0,0)O 不是最优解,故只能22(,)2121m B m m --是最优解,代入目标函数得4222121m m m -=--,解得1m =,故选C . 考点:线性规划.11.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A . 3(0,]2 B .3(0,]4C .3[,1)2 D .3[,1)4【答案】A考点:1、椭圆的定义和简单几何性质;2、点到直线距离公式. 12.“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B考点:导数的应用.第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______. 【答案】25 【解析】试题分析:由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=. 考点:分层抽样.14.若ABC ∆中,3AC =,045A =,075C =,则BC =_______.【答案】2 【解析】试题分析:由题意得018060B A C =--=.由正弦定理得sin sin AC BC B A =,则sin sin AC ABC B=, 所以232232BC ⨯==.考点:正弦定理.15.若函数()2()x af x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______. 【答案】1 【解析】试题分析:由(1)(1)f x f x +=-得函数()f x 关于1x =对称,故1a =,则1()2x f x -=,由复合函数单调性得()f x 在[1,)+∞递增,故1m ≥,所以实数m 的最小值等于1. 考点:函数的图象与性质.16.若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________. 【答案】9考点:等差中项和等比中项.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【答案】(Ⅰ)2n a n =+;(Ⅱ)2101. 【解析】试题分析:(Ⅰ)利用基本量法可求得1,a d ,进而求{}n a 的通项公式;(Ⅱ)求数列前n 项和,首先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2nn b n =+,故可采取分组求和法求其前10项和.试题解析:(I )设等差数列{}n a 的公差为d .由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+.考点:1、等差数列通项公式;2、分组求和法. 18.(本题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.组号分组 频数 1 [4,5) 2 2 [5,6) 8 3 [6,7) 7 4[7,8]3(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05.解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.55.56.57.5 6.0520202020⨯+⨯+⨯+⨯=.解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个. 所以所求的概率1911010P =-=.(II )同解法一.考点:1、古典概型;2、平均值. 19.(本小题满分12分)已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =. (Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【答案】(Ⅰ)24y x =;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)利用抛物线定义,将抛物线上的点到焦点距离和到准线距离相互转化.本题由3AF =可得232p+=,可求p 的值,进而确定抛物线方程;(Ⅱ)欲证明以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.可证明点F 到直线GA 和直线GB 的距离相等(此时需确定两条直线方程);也可以证明GF GF ∠A =∠B ,可转化为证明两条直线的斜率互为相反数.试题解析:解法一:(I )由抛物线的定义得F 22pA =+. 因为F 3A =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =. (II )因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由()2,22A ,()F 1,0可得直线F A 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,所以()G 22022213k A -==--,()G 20221312k B --==---, 所以G G 0k k A B +=,从而GF GF ∠A =∠B ,这表明点F 到直线G A ,G B 的距离相等, 故以F 为圆心且与直线G A 相切的圆必与直线G B 相切. 解法二:(I )同解法一.(II )设以点F 为圆心且与直线G A 相切的圆的半径为r . 因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由()2,22A ,()F 1,0可得直线F A 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,故直线G A 的方程为223220x y -+=,从而2222428917r +==+.又直线G B 的方程为223220x y ++=,所以点F 到直线G B 的距离2222428917d r +===+. 这表明以点F 为圆心且与直线G A 相切的圆必与直线G B 相切. 考点:1、抛物线标准方程;2、直线和圆的位置关系. 20.(本题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值; (Ⅲ)若2BC =,点E 在线段PB 上,求CE OE +的最小值.【答案】(Ⅰ)详见解析;(Ⅱ)13;(Ⅲ)262+.【解析】试题分析:(Ⅰ)要证明C A ⊥平面D P O ,只需证明AC 垂直于面D P O 内的两条相交直线.首先由PO 垂直于圆O 所在的平面,可证明C PO ⊥A ;又C OA =O ,D 为C A 的中点,可证明C D A ⊥O ,进而证明结论;(Ⅱ)三棱锥P ABC -中,高1PO =,要使得P ABC -体积最大,则底面ABC 面积最大,又2AB =是定值,故当AB 边上的高最大,此时高为半径,进而求三棱锥P ABC -体积;(Ⅲ)将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,此时线段'OC 的长度即为CE OE +的最小值. 试题解析:解法一:(I )在C ∆AO 中,因为C OA =O ,D 为C A 的中点, 所以C D A ⊥O .又PO 垂直于圆O 所在的平面, 所以C PO ⊥A . 因为D OPO =O ,所以C A ⊥平面D P O .(II )因为点C 在圆O 上,所以当C O ⊥AB 时,C 到AB 的距离最大,且最大值为1. 又2AB =,所以C ∆AB 面积的最大值为12112⨯⨯=. 又因为三棱锥C P -AB 的高1PO =, 故三棱锥C P -AB 体积的最大值为111133⨯⨯=. (III )在∆POB 中,1PO =OB =,90∠POB =,所以22112PB =+=.同理C 2P =,所以C C PB =P =B .在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值. 又因为OP =OB ,C C ''P =B , 所以C 'O 垂直平分PB , 即E 为PB 中点. 从而2626C C 222+''O =OE +E =+=, 亦即C E +OE 的最小值为262+. 解法二:(I )、(II )同解法一.(III )在∆POB 中,1PO =OB =,90∠POB =,所以45∠OPB =,22112PB =+=.同理C 2P =.所以C C PB =P =B ,所以C 60∠PB =.在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示. 当O ,E ,C '共线时,C E +OE 取得最小值.所以在C '∆O P 中,由余弦定理得:()2C 12212cos 4560'O =+-⨯⨯⨯+212312222222⎛⎫=+-⨯-⨯ ⎪ ⎪⎝⎭23=+. 从而26C 232+'O =+=. 所以C E +OE 的最小值为262+. 考点:1、直线和平面垂直的判定;2、三棱锥体积. 21.(本题满分12分) 已知函数()2103sincos 10cos 222x x xf x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2. (ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ⅱ)详见解析. 【解析】试题分析:(Ⅰ)首先利用证明二倍角公式和余弦降幂公式将()f x 化为()10sin 56f x x π⎛⎫=++ ⎪⎝⎭,然后利用2T πω=求周期;(Ⅱ)由函数()f x 的解析式中给x 减6π,再将所得解析式整体减去a 得()g x 的解析式为()10sin 5g x x a =+-,当sin x 取1的时,()g x 取最大值105a +-,列方程求得13a =,从而()g x 的解析式可求;欲证明存在无穷多个互不相同的正整数0x ,使得()00g x >,可解不等式()00g x >,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数0x .试题解析:(I )因为()2103sincos 10cos 222x x xf x =+ 53sin 5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭.所以函数()f x 的最小正周期2πT =. (II )(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象.又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =. 所以()10sin 8g x x =-.(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >. 由4352<知,存在003πα<<,使得04sin 5α=. 由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >. 因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >. 因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++-,使得4sin 5k x >. 亦即存在无穷多个互不相同的正整数0x ,使得()00g x >. 考点:1、三角函数的图像与性质;2、三角不等式. 22.(本小题满分14分)已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) 150,2⎛⎫+ ⎪ ⎪⎝⎭;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】试题分析:(Ⅰ)求导函数()21x x f x x-++'=,解不等式'()0f x >并与定义域求交集,得函数()f x 的单调递增区间;(Ⅱ)构造函数()()()F 1x f x x =--,()1,x ∈+∞.欲证明()1f x x <-,只需证明()F x 的最大值小于0即可;(Ⅲ)由(II )知,当1k =时,不存在01x >满足题意;当1k >时,对于1x >, 有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意;当1k <时,构造函数()()()G 1x f x k x =--,()0,x ∈+∞,利用导数研究函数()G x 的形状,只要存在01x >,当0(1,)x x ∈时()0G x >即可.试题解析:(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得2010x x x >⎧⎨-++>⎩解得1502x +<<.故()f x 的单调递增区间是150,2⎛⎫+ ⎪ ⎪⎝⎭. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意. 当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得()2111402k k x ---+=<,()2211412k k x -+-+=>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞. 考点:导数的综合应用.2015年普通高等学校招生全国统一考试(新课标1卷)文数一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为(A ) 5 (B )4 (C )3 (D )2 【答案】D 【解析】试题分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D. 考点:集合运算2、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)【答案】A考点:向量运算3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +【答案】C 【解析】试题分析:∴(1)1z i i -=+,∴z=212(12)()2i i i i i i ++-==--,故选C. 考点:复数运算4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )120【答案】C 【解析】试题分析:从1,2,3,4,51,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为110,故选C. 考点:古典概型5、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A ) 3 (B )6 (C )9 (D )12【答案】B考点:抛物线性质;椭圆标准方程与性质6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛【答案】B 【解析】试题分析:设圆锥底面半径为r ,则12384r ⨯⨯==163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B.考点:本题主要考查圆锥的性质与圆锥的体积公式7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )12 【答案】B 【解析】试题分析:∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 考点:等差数列通项公式及前n 项和公式8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13(2,2),44k k k Z -+∈ 【答案】D【解析】 试题分析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 考点:三角函数图像与性质9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )10 (D )12【答案】C考点:程序框图10、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -= (A )74-(B )54- (C )34- (D )14- 【答案】A【解析】试题分析:∵()3f a =-,∴当1a ≤时,1()223a f a -=-=-,则121a -=-,此等式显然不成立, 当1a >时,2log (1)3a -+=-,解得7a =,∴(6)f a -=(1)f -=117224---=-,故选A. 考点:分段函数求值;指数函数与对数函数图像与性质11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】试题分析:由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.考点:简单几何体的三视图;球的表面积公式;圆柱的测面积公式12、设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4【答案】C【解析】试题分析:设(,)x y 是函数()y f x =的图像上任意一点,它关于直线y x =-对称为(,y x --),由已知知(,y x --)在函数2x a y +=的图像上,∴2y a x -+-=,解得2log ()y x a =--+,即2()log ()f x x a =--+,∴22(2)(4)log 2log 41f f a a -+-=-+-+=,解得2a =,故选C. 考点:函数对称;对数的定义与运算二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .【答案】6【解析】试题分析:∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列, ∴2(12)12612n n S -==-,∴264n =,∴n=6. 考点:等比数列定义与前n 项和公式14. 已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 【答案】1【解析】试题分析:∵2()31f x ax '=+,∴(1)31f a '=+,即切线斜率31k a =+,又∵(1)2f a =+,∴切点为(1,2a +),∵切线过(2,7),∴273112a a +-=+-,解得a =1.考点:利用导数的几何意义求函数的切线;常见函数的导数;15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .【答案】4【解析】试题分析:作出可行域如图中阴影部分所示,作出直线0l :30x y +=,平移直线0l ,当直线l :z =3x +y 过点A 时,z 取最大值,由2=021=0x y x y +-⎧⎨-+⎩解得A (1,1),∴z =3x +y 的最大值为4.考点:简单线性规划解法 16. 已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 . 【答案】126考点:双曲线的定义;直线与双曲线的位置关系;最值问题 三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (I )若a b =,求cos ;B(II )若90B =,且2,a =求ABC ∆的面积. 【答案】(I )14(II )1 【解析】试题分析:(I )先由正弦定理将2sin 2sin sin B A C =化为变得关系,结合条件a b =,用其中一边把另外两边表示出来,再用余弦定理即可求出角B 的余弦值;(II )由(I )知22b ac =,根据勾股定理和即可求出c ,从而求出ABC ∆的面积.试题解析:(I )由题设及正弦定理可得22b ac =.又a b =,可得2b c =,2a c =, 由余弦定理可得2221cos 24a cb B ac +-==. (II )由(1)知22b ac =.因为B =90°,由勾股定理得222a c b +=.故222a c ac +=,得2c a ==.所以D ABC 的面积为1. 考点:正弦定理;余弦定理;运算求解能力18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积. 【答案】(I )见解析(II )3+25试题解析:(I )因为四边形ABCD 为菱形,所以AC ^BD ,因为BE ^平面ABCD ,所以AC ^BE ,故AC ^平面BED.又AC Ì平面AEC ,所以平面AEC ^平面BED(II )设AB=x ,在菱形ABCD 中,由ÐABC=120°,可得AG=GC=32x ,GB=GD=2x . 因为AE ^EC ,所以在Rt D AEC 中,可得EG=32x . 由BE ^平面ABCD ,知D EBG 为直角三角形,可得BE=22x . 由已知得,三棱锥E-ACD 的体积3116632243E ACD V AC GD BEx -=醋?=.故x =2 从而可得AE=EC=ED=6.所以D EAC 的面积为3,D EAD 的面积与D ECD 的面积均为5.故三棱锥E-ACD 的侧面积为3+25.考点:线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值. x y w 21()n i i x x =-∑ 21()n i i w w =-∑ 1()()n i i i x x y y =--∑ 1()()n i i i w w y y =--∑ 46.6 56.3 6.8 289.8 1.6 1469 108.8表中w 1 =x 1, ,w =181n i i w =∑(I )根据散点图判断,y a bx =+与y c d x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费90x =时,年销售量及年利润的预报值时多少?(ii )当年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:121()()=()ni ii n ii u u v v u u β==---∑∑,=v u αβ-【答案】(Ⅰ)y c d x =+适合作为年销售y 关于年宣传费用x 的回归方程类型(Ⅱ)100.668y x =+(Ⅲ)46.24【解析】试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)令w x =,先求出建立y 关于w 的线性回归方程,即可y 关于x 的回归方程;(Ⅲ)(ⅰ)利用y 关于x 的回归方程先求出年销售量y 的预报值,再根据年利率z 与x 、y 的关系为z=0.2y-x 即可年利润z 的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值,列出关于x 的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用.考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )12OM ON ⋅=,其中O 为坐标原点,求MN .【答案】(I )4747,33骣-+琪琪桫(II )2 【解析】试题分析:(I )设出直线l 的方程,利用圆心到直线的距离小于半径列出关于k 的不等式,即可求出k 的取值范围;(II )设1122M(,y ),N(,y )x x ,将直线l 方程代入圆的方程化为关于x 的一元二次方程,利用韦达定理将1212,x x y y 用k 表示出来,利用平面向量数量积的坐标公式及12OM ON ⋅=列出关于k 方程,解出k ,即可求出|MN|.试题解析:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C 交于两点,所以2|231|11k k -+<+. 解得474733k -+<<. 所以k 的取值范围是4747,33骣-+琪琪桫. (II )设1122M(,y ),N(,y )x x .将1y kx =+代入方程()()22231x y -+-=,整理得22(1)-4(1)70k x k x +++=, 所以1212224(1)7,.11k x x x x k k ++==++ ()()21212121224(1)OM ONy 1181k k x x y k x x k x x k +?+=++++=++, 由题设可得24(1)8=121k k k+++,解得=1k ,所以l 的方程为1y x =+. 故圆心在直线l 上,所以|MN |2=.考点:直线与圆的位置关系;设而不求思想;运算求解能力21. (本小题满分12分)设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22ln f x a a a≥+. 【答案】(I )当0a £时,()f x ¢没有零点;当0a >时,()f x ¢存在唯一零点.(II )见解析【解析】试题分析:(I )先求出导函数,分0a £与0a >考虑()f x '的单调性及性质,即可判断出零点个数;(II )由(I )可设()f x ¢在()0+¥,的唯一零点为0x ,根据()f x '的正负,即可判定函数的图像与性质,求出函数的最小值,即可证明其最小值不小于22lna a a+,即证明了所证不等式. 试题解析:(I )()f x 的定义域为()0+¥,,()2()=20x a f x e x x ¢->. 当0a £时,()0f x ¢>,()f x ¢没有零点;当0a >时,因为2x e 单调递增,a x -单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b 满足04a b <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点. (II )由(I ),可设()f x ¢在()0+¥,的唯一零点为0x ,当()00x x Î,时,()0f x ¢<; 当()0+x x 违,时,()0f x ¢>.故()f x 在()00x ,单调递减,在()0+x ¥,单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x -,所以00022()=2ln 2ln 2a f x ax a a a x a a++?. 故当0a >时,2()2lnf x a a a ?. 考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图AB 是O 直径,AC 是O 切线,BC 交O 与点E.(I )若D 为AC 中点,求证:DE 是O 切线;(II )若3OA CE = ,求ACB ∠的大小.【答案】(Ⅰ)见解析(Ⅱ)60° 【解析】 试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE ⊥BC ,AC ⊥AB ,由直角三角形中线性质知DE=DC ,OE=OB ,利用等量代换可证∠DEC+∠OEB=90°,即∠OED=90°,所以DE 是圆O 的切线;(Ⅱ)设CE=1,由3OA CE =得,AB=23,设AE=x ,由勾股定理得212BE x =-,由直角三角形射影定理可得2AE CE BE =,列出关于x 的方程,解出x ,即可求出∠ACB 的大小. 试题解析:(Ⅰ)连结AE ,由已知得,AE ⊥BC ,AC ⊥AB , 在Rt △AEC 中,由已知得DE=DC ,∴∠DEC=∠DCE , 连结OE ,∠OBE=∠OEB ,∵∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°, ∴∠OED=90°,∴DE 是圆O 的切线. ……5分(Ⅱ)设CE=1,AE=x ,由已知得AB=23,212BE x =-, 由射影定理可得,2AE CE BE =,∴2212x x =-,解得x =3,∴∠ACB =60°. ……10分考点:圆的切线判定与性质;圆周角定理;直角三角形射影定理 23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 【答案】(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN 的面积. 试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分 (Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1ρ=22,2ρ=2,|MN|=1ρ-2ρ=2,因为2C 的半径为1,则2C MN 的面积o 121sin 452⨯⨯⨯=12. 考点:直角坐标方程与极坐标互化;直线与圆的位置关系 24. (本小题满分10分)选修4-5:不等式选讲 已知函数()12,0f x x x a a =+--> . (I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 图像与x 轴围成的三角形面积大于6,求a 的取值范围. 【答案】(Ⅰ)2{|2}3x x <<(Ⅱ)(2,+∞)(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3a +. 由题设得22(1)3a +>6,解得2a >.所以a 的取值范围为(2,+∞). ……10分考点:含绝对值不等式解法;分段函数;一元二次不等式解法一、选择题:本大题共12道小题,每小题5分,共60分. 1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3 【答案】A考点:集合运算. 2. 若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4 【答案】D 【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D. 考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D考点:柱形图4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( ) A .1- B .0 C .1 D .2 【答案】C 【解析】试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:向量数量积.5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11 【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6 1D.5【答案】D 【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15,故选D.考点:三视图7. 已知三点(1,0),(0,3),(2,3)A B C,则△ABC外接圆的圆心到原点的距离为()5 A. 321B.325C.34D.3【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b分别为14,18,则输出的a为()A.0B.2C.4D.14【答案】B 【解析】试题分析:由题意输出的a 是18,14的最大公约数2,故选B. 考点:1. 更相减损术;2.程序框图. 9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1 1C.2 1D.8【答案】C 【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q == ,选C.考点:等比数列.10. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π256 【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】试题分析:由21()ln(1||)1f x x x =+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以 ()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<< .故选A.考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分。

2015年高考文科数学全国卷及答案

2015年高考文科数学全国卷及答案

2015年普通高等学校招生全国统一考试(新 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟. 第Ⅰ卷2015·新课标Ⅰ卷 第1页一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( )A .5B .4C .3D .22.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量错误!=( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)3.已知复数z 满足(z -1)i =1+i ,则z =( )A .-2-iB .-2+iC .2-iD .2+i4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A 。

错误! B.错误! C.错误! D 。

错误!5.已知椭圆E 的中心在坐标原点,离心率为错误!,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1。

62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛7.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172B.错误! C .10 D .12 8.函数f (x )=cos (ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A 。

2015年全国统一高考数学试卷(文科)(新课标i)答案与解析

2015年全国统一高考数学试卷(文科)(新课标i)答案与解析

2015年全国统一高考数学试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2考点:交集及其运算.专题:集合.分析:根据集合的基本运算进行求解.解答:解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.点评:本题主要考查集合的基本运算,比较基础.2.(5分)已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)考点:平面向量的坐标运算.专题:平面向量及应用.分析:顺序求出有向线段,然后由=求之.解答:解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A.点评:本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.3.(5分)已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由已知等式变形,然后利用复数代数形式的乘除运算化简求得z﹣1,进一步求得z.解答:解:由(z﹣1)i=1+i,得z﹣1=,∴z=2﹣i.故选:C.点评:本题考查复数代数形式的乘除运算,是基础的计算题.4.(5分)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.B.C.D.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:一一列举出所有的基本事件,再找到勾股数,根据概率公式计算即可.解答:解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C点评:本题考查了古典概型概率的问题,关键是不重不漏的列举出所有的基本事件,属于基础题.5.(5分)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A.3B.6C.9D.12考点:圆锥曲线的综合;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B坐标,即可求解所求结果.解答:解:椭圆E的中心在坐标原点,离心率为,E的右焦点(c,0)与抛物线C:y2=8x 的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以a(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.点评:本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:根据圆锥的体积公式计算出对应的体积即可.解答:解:设圆锥的底面半径为r,则×2×3r=8,解得r=,故米堆的体积为××3×()2×5=,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.点评:本题主要考查椎体的体积的计算,比较基础.7.(5分)已知{a n}是公差为1的等差数列;S n为{a n}的前n项和,若S8=4S4,则a10=()A.B.C.10 D.12考点:等差数列的前n项和.专题:等差数列与等比数列.分析:利用等差数列的通项公式及其前n项和公式即可得出.解答:解:∵{a n}是公差为1的等差数列,S8=4S4,∴=4×(4a1+),解得a1=.则a10==.故选:B.点评:本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z考点:余弦函数的单调性.专题:三角函数的图像与性质.分析:由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.解答:解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos(πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了余弦函数的单调性,属于基础题.9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.8考点:程序框图.专题:算法和程序框图.分析:由题意可得,算法的功能是求S=1﹣﹣≤t 时n的最小值,由此可得结论.解答:解:由程序框图知:算法的功能是求S=1﹣﹣≤t 时n的最小值,再根据t=0.01,可得当n=6时,S=1﹣﹣=>0.01,而当n=7时,S=1﹣﹣=≤0.01,故输出的n值为7,故选:C.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键,属于基础题.10.(5分)(2015春•河南校级月考)已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=()A.﹣B.﹣C.﹣D.﹣考点:分段函数的应用;函数的零点.专题:函数的性质及应用.分析:由f(a)=﹣3,结合指数和对数的运算性质,求得a=7,再由分段函数求得f(6﹣a)的值.解答:解:函数f(x)=且f(a)=﹣3,若a≤1,则2a﹣1﹣2=﹣3,即有2a﹣1=﹣1<0,方程无解;若a>1,则﹣log2(a+1)=﹣3,解得a=7,则f(6﹣a)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.点评:本题考查分段函数的运用:求函数值,主要考查指数和对数的运算性质,属于中档题.11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8考点:由三视图求面积、体积.专题:立体几何.分析:通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.解答:解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.点评:本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.(5分)(2015春•河南校级月考)设函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,且f(﹣2)+f(﹣4)=1,则a=()A.﹣1 B.1C.2D.4考点:函数的图象与图象变化.专题:开放型;函数的性质及应用.分析:先求出与y=2x+a的反函数的解析式,再由题意f(x)的图象与y=2x+a的反函数的图象关于原点对称,继而求出函数f(x)的解析式,问题得以解决.解答:解:∵与y=2x+a的图象关于y=x对称的图象是y=2x+a的反函数,x=log2y﹣a(y>0),即g(x)=log2x﹣a,(x>0).∵函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,∴f(x)=﹣g(﹣x)=﹣log2(﹣x)+a,x<0,∵f(﹣2)+f(﹣4)=1,∴﹣log22+a﹣log24+a=1,解得,a=2,故选:C.点评:本题考查反函数的概念、互为反函数的函数图象的关系、求反函数的方法等相关知识和方法,属于基础题二、本大题共4小题,每小题5分.13.(5分)在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=6.考点:等比数列的前n项和;等比关系的确定.专题:计算题;等差数列与等比数列.分析:由a n+1=2a n,结合等比数列的定义可知数列{a n}是a1=2为首项,以2为公比的等比数列,代入等比数列的求和公式即可求解.解答:解:∵a n+1=2a n,∴,∵,a1=2,∴数列{a n}是a1=2为首项,以2为公比的等比数列,∴S n===2n+1﹣2=126,∴2n+1=128,∴n+1=7,∴n=6.故答案为:6点评:本题主要考查了等比数列的通项公式及求和公式的简单应用,解题的关键是熟练掌握基本公式.14.(5分)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=1.考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出函数的导数,利用切线的方程经过的点求解即可.解答:解:函数f(x)=ax3+x+1的导数为:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,切线方程为:y﹣a﹣2=(3a+1)(x﹣1),因为切线方程经过(2,7),所以7﹣a﹣2=(3a+1)(2﹣1),解得a=1.故答案为:1.点评:本题考查函数的导数的应用,切线方程的求法,考查计算能力.15.(5分)若x,y满足约束条件,则z=3x+y的最大值为4.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.解答:解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A时,直线y=﹣3x+z的截距最大,此时z最大.由,解得,即A(1,1)此时z的最大值为z=3×1+1=4,故答案为:4.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.16.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为12.考点:双曲线的简单性质.专题:计算题;开放型;圆锥曲线的定义、性质与方程.分析:利用双曲线的定义,确定△APF周长最小时,P的坐标,即可求出△APF周长最小时,该三角形的面积.解答:解:由题意,设F′是左焦点,则△APF周长=|AF|+|AP|+|PF|=|AF|+|AP|+|PF′|+2 ≥|AF|+|AF′|+2(A,P,F′三点共线时,取等号),直线AF′的方程为与x2﹣=1联立可得y2+6y﹣96=0,∴P的纵坐标为2,∴△APF周长最小时,该三角形的面积为﹣=12.故答案为:12.点评:本题考查双曲线的定义,考查三角形面积的计算,确定P的坐标是关键.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.考点:正弦定理;余弦定理.专题:解三角形.分析:(I)sin2B=2sinAsinC,由正弦定理可得:b2=2ac,再利用余弦定理即可得出.(II)利用(I)及勾股定理可得c,再利用三角形面积计算公式即可得出.解答:解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=2ac,解得a=c=.∴S△ABC==1.点评:本题考查了正弦定理余弦定理、勾股定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.18.(12分)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.考点:平面与平面垂直的判定;棱柱、棱锥、棱台的侧面积和表面积.专题:空间位置关系与距离.分析:(Ⅰ)根据面面垂直的判定定理即可证明:平面AEC⊥平面BED;(Ⅱ)根据三棱锥的条件公式,进行计算即可.解答:证明:(Ⅰ)∵四边形ABCD为菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴AC⊥BE,则AC⊥平面BED,∵AC⊂平面AEC,∴平面AEC⊥平面BED;解:(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,得AG=GC=x,GB=GD=,∵AE⊥EC,∴△EBG为直角三角形,则BE=x,∵三棱锥E﹣ACD的体积V===,解得x=2,从而得AE=EC=ED=,∴△EAC的面积为3,∴△EAD的面积和△ECD的面积均为,故该三棱锥的侧面积为3+2.点评:本题主要考查面面垂直的判定,以及三棱锥体积的计算,要求熟练掌握相应的判定定理以及体积公式.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i﹣)(w i ﹣)(y i ﹣)46.6 563 6.8 289.8 1.6 1469 108.8表中w i =1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.考点:线性回归方程.专题:概率与统计.分析:(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.解答:解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w 的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,年利润的预报值最大.点评:本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.(12分)已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.(1)求k的取值范围;(2)若•=12,其中O为坐标原点,求|MN|.考点:直线与圆的位置关系;平面向量数量积的运算.专题:开放型;直线与圆.分析:(1)由题意可得,直线l的斜率存在,用点斜式求得直线l的方程,根据圆心到直线的距离等于半径求得k的值,可得满足条件的k的范围.(2)由题意可得,经过点M、N、A的直线方程为y=kx+1,根据直线和圆相交的弦长公式进行求解.解答:(1)由题意可得,直线l的斜率存在,设过点A(0,1)的直线方程:y=kx+1,即:kx﹣y+1=0.由已知可得圆C的圆心C的坐标(2,3),半径R=1.故由=1,解得:k1=,k2=.故当<k<,过点A(0,1)的直线与圆C:(x﹣2)2+(y﹣3)2=1相交于M,N两点.(2)设M(x1,y1);N(x2,y2),由题意可得,经过点M、N、A的直线方程为y=kx+1,代入圆C的方程(x﹣2)2+(y﹣3)2=1,可得(1+k2)x2﹣4(k+1)x+7=0,∴x1+x2=,x1•x2=,∴y1•y2=(kx1+1)(kx2+1)=,由•=x1•x2+y1•y2==12,解得k=1,故直线l的方程为y=x+1,即x﹣y+1=0.圆心C在直线l上,MN长即为圆的直径.所以|MN|=2.点评:本题主要考查直线和圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计算能力.21.(12分)(2015春•河南校级月考)设函数f(x)=e2x﹣alnx.(Ⅰ)讨论f(x)的导函数f′(x)零点的个数;(Ⅱ)证明:当a>0时,f(x)≥2a+aln.考点:导数在最大值、最小值问题中的应用;根的存在性及根的个数判断;导数的运算.专题:开放型;导数的综合应用.分析:(Ⅰ)先求导,在分类讨论,当a≤0时,当a>0时,根据零点存在定理,即可求出;(Ⅱ)设导函数f′(x)在(0,+∞)上的唯一零点为x0,根据函数f(x)的单调性得到函数的最小值f(x0),只要最小值大于2a+aln,问题得以证明.解答:解:(Ⅰ)f(x)=e2x﹣alnx的定义域为(0,+∞),∴f′(x)=2e2x﹣.当a≤0时,f′(x)>0恒成立,故f′(x)没有零点,当a>0时,∵y=e2x为单调递增,y=﹣单调递增,∴f′(x)在(0,+∞)单调递增,又f′(a)>0,当b满足0<b<时,且b<,f(b)<0,故当a>0时,导函数f′(x)存在唯一的零点,(Ⅱ)由(Ⅰ)知,可设导函数f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0,当x∈(x0+∞)时,f′(x)>0,故f(x)在(0,x0)单调递减,在(x0+∞)单调递增,所欲当x=x0时,f(x)取得最小值,最小值为f(x0),由于﹣=0,所以f(x0)=+2ax0+aln≥2a+aln.故当a>0时,f(x)≥2a+aln.点评:本题考查了导数和函数单调性的关系和最值的关系,以及函数的零点存在定理,属于中档题.四、请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.【选修4-1:几何证明选讲】22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.考点:圆的切线的判定定理的证明.专题:直线与圆.分析:(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x值,可得所求角度.解答:解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°点评:本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.五、【选修4-4:坐标系与参数方程】23.(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.解答:解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入ρ2﹣3ρ+4=0,求得ρ1=2,ρ2=,∴|MN|=ρ1﹣ρ2=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=.点评:本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.六、【选修4-5:不等式选讲】24.已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f(x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a 的取值范围.解答:解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).点评:本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

(完整word版)2015年全国新课标2卷高考文科数学答案

(完整word版)2015年全国新课标2卷高考文科数学答案

2015普通高等学校招生全国统一考试Ⅱ卷文科数学第一卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={}{}=<<=<<-B A x x B x x 则,30,21 A.(-1,3) B.(-1,0 ) C.(0,2) D.(2,3) 1、选A (2)若a 实数,且=+=++a i iai则,312 A.-4B. -3C. 3D. 42、解:因为.4,42)1)(3(2=+=++=+a i i i ai 所以故选D(3)根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下 结论中不正确的是2700260025002400210020001900)A.逐年比较,2008年减少二氧化碳排放量的效果最显著;B.2007年我国治理二氧化碳排放显现成效;C.2006年以来我国二氧化碳排放量呈减少趋势;D.2006年以来我国二氧化碳年排放量与年份正相关。

3、选D(4)已知向量=∙+-=-=则(2),2,1(),1,0( A. -1 B. 0 C. 1 D. 2 4、选B(5)设{}项和,的前是等差数列n a S n n 若==++5531,3S a a a 则A. 5B. 7C. 9D. 115、解:在等差数列中,因为.,5525)(,1,335153531A a a a S a a a a 故选所以==⨯+===++(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A.81 B.71 C. 61 D. 51 6、解:如图所示,选D.(7)已知三点)32()30(),01(,,,,C B A ,则ABC ∆外接圆的圆心到原点的距离为A.35B. 321C. 352D. 34 7、解:根据题意,三角形ABC 是等边三角形,设外接圆的圆心为D ,则D (1,332)所以, .32137341==+=OD 故选B. (8)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。

2015年高考文科数学试题及答案(新课标全国卷1)

2015年高考文科数学试题及答案(新课标全国卷1)

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3. 考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,= (A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A )1 (B) 2 (C) 4 (D) 8(12)设函数y=f (x )的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a= (A )-1 (B )1 (C )2 (D )4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。

2015年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.43.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.25.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)【考点】1D:并集及其运算.【专题】5J:集合.【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.4【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】根据复数相等的条件进行求解即可.【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.【点评】本题主要考查复数相等的应用,比较基础.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】利用向量的加法和数量积的坐标运算解答本题.【解答】解:因为=(1,﹣1),=(﹣1,2)则(2+)=(1,0)•(1,﹣1)=1;故选:C.【点评】本题考查了向量的加法和数量积的坐标运算;属于基础题目.5.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【考点】85:等差数列的前n项和.【专题】35:转化思想;4A:数学模型法;54:等差数列与等比数列.【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【考点】J1:圆的标准方程.【专题】5B:直线与圆.【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.【点评】本题主要考查圆性质及△ABC外接圆的性质,了解性质并灵运用是解决本题的关键.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点评】本题主要考查了循环结构程序框图,属于基础题.9.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)【考点】6B:利用导数研究函数的单调性.【专题】33:函数思想;49:综合法;51:函数的性质及应用.【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键.二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=﹣2.【考点】36:函数解析式的求解及常用方法.【专题】11:计算题;51:函数的性质及应用.【分析】f(x)是图象过点(﹣1,4),从而该点坐标满足函数f(x)解析式,从而将点(﹣1,4)带入函数f(x)解析式即可求出a.【解答】解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.【点评】考查函数图象上的点的坐标和函数解析式的关系,考查学生的计算能力,比较基础.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为8.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,2)将A(3,2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是x2﹣y2=1.【考点】KB:双曲线的标准方程.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】设双曲线方程为y2﹣x2=λ,代入点,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为y2﹣x2=λ,代入点,可得3﹣=λ,∴λ=﹣1,∴双曲线的标准方程是x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.【考点】6H:利用导数研究曲线上某点切线方程.【专题】26:开放型;53:导数的综合应用.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故答案为:8.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,设出切线方程运用两线相切的性质是解题的关键.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【考点】HP:正弦定理.【专题】58:解三角形.【分析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180°﹣(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.【点评】本题考查了内角平分线的性质,考查了正弦定理的应用,是中档题.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【考点】B8:频率分布直方图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,P(C A),P(C B),即可判断不满意的情况.【解答】解:(Ⅰ)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B 地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(C A)=(0.01+0.02+0.03)×10=0.6得P(C B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【点评】本题考查了频率直方图,频率表达运用,考查了阅读能力,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.【考点】LF:棱柱、棱锥、棱台的体积;LJ:平面的基本性质及推论.【专题】15:综合题;5F:空间位置关系与距离.【分析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.【点评】本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【考点】K3:椭圆的标准方程;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】26:开放型;53:导数的综合应用.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。

2015年高考文科数学(新课标1)试题及答案(word版)

2015年高考文科数学(新课标1)试题及答案(word版)

2015 年高考文科数学 ( 新课标 1)试题及答案 (word 版)高考数学提分特训2015 真题2015 年一般高等学校招生全国一致考试文科数学第Ⅰ卷一、选择题:本大题共 12 小题,每题 5 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的。

(1)已知会合A { x | x 3n 2, n N } , B {6,8,12,14} ,则会合A B中元素的个数为(A)5 (B)4(C)3(D)2uuur(2)已知点A(0,1 ),B(3,2 ),向量AC =(-4 ,-3 ),uuur则向量 BC =(A)(-7 ,-4 )(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z知足(z 1)i i 1,则z =(A)2 i (B)2 i(C)i(D)22 i(4)假如 3 个整数可作为一个直角三角形三条边的边长,则称这 3 个数为一组勾股数,从 1,2,3,4, 5 中易达数学- 1 -的概率为(A)10(B)1(C)1(D)3510120(5)已知椭圆 E 的中心在座标原点,离心率为1,E的2右焦点与抛物线 C:y28x 的焦点重合,A,B是C的准线与 E 的两个焦点,则 |AB|=(A)3(B)6(C)9(D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有以下问题: “今有委米依垣内角,下周八尺,高五尺。

问: 积及为米几何 ?”其意思为 : “在屋内墙角处堆放米 ( 如图,米堆为一个圆锥的四分之一 ) ,米堆为一个圆锥的四分之一 ) ,米堆底部的弧度为 8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少 ?”已知 1 斛米的体积约为 1.62 立方尺,圆周率约为 3,估量出堆放斛的米约有A.14斛B.22斛C.36斛D.66 斛(7)已知是公差为 1 的等差数列,=4,则 =(A)(B)(C)10(D)12(8)函数f (x) cos(x ) 的部分图像以下图,则 f ( x) 的单调递减区间为(A)(k1 , k3 )(k Z )44(B)(2k1 ,2k3)( k Z )44(C)(D)(k13Z ), k)(k44(2k1, 2k3)(k Z )44(9)履行右边的程序框图,假如输入的t 0.01,则输出的n(A)5(B)6(C)7(D)82x 12, x 1,且f (a) 3 ,(10)已知函数f ( x)则 f (6 a)(A)- 7(B)- 5(C)- 3(D)444-14(11)圆柱被一个平面截去一部分后与半球(半径为 r )构成一个几何体,该几何体三视图中的正视图和俯视图以下图,若该几何体的表面积为16 20,则 r(A)1(B) 2(C) 4(D) 8( 12 )设函数y f (x) 的图像对于直线y x 对称,且f ( 2) f ( 4) 1,则 a(A)-1(B)1(C)2(D)4第Ⅱ卷二. 填空题:本大题共 4 小题,每题 5 分(13)在数列{ a n}中,a1 2 ,a n 12a n,S n为{ a n}的前n项和。

2015年全国高考文科数学试题及参考答案-新课标1

2015年全国高考文科数学试题及参考答案-新课标1

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B 中元素的个数为 (A )5 (B )4 (C )3 (D )2(2)已知点A (0,1),B (3,2),向量AC u u u r =(-4,-3),则向量BC uuu r=(A )(-7,-4)(B )(7,4)(C )(-1,4)(D )(1,4) (3)已知复数z 满足(z-1)i=i+1,则z= (A )-2-I (B )-2+I (C )2-I (D )2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为 (A )103(B )15(C )110(D )120(5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y2=8x 的焦点重合,A ,B 是C 的准线与E 的两个焦点,则|AB|= (A )3(B )6(C )9(D )12(6)《九章算术》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

(完整word版)2015年全国新课标2卷高考文科数学及答案

(完整word版)2015年全国新课标2卷高考文科数学及答案

2015年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}30|,21|<<=<<-=x x B x x A ,则=⋃B A ( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3)2.若a 为实数,且i iai +=++312,则=a ( ) A .-4 B .-3 C .3 D .43.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关4.向量()1,1-=a ,()2,1-=b ,则()=⋅+a b a 2 ( )A .-1B .0C .1D .25.设n S 是等差数列{}n a 的前n 项和,若3531=++a a a ,则=5S ( )A .5B .7C .9D .11 6.第6题图一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.157.已知三点()01,A ()30,B ,()32,C ,则ABC ∆外接圆的圆心到原点的距离为( )A.53B.213C.253D.438.第8题图右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的=a ( )A .0B .2C .4D .149.已知等比数列{}n a 满足411=a ,()14453-=a a a ,则=2a ( ) A .2 B .1 C.12 D.1810.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ­ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π 11.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x ,将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )12.设函数()()2111ln x x x f +-+=,则使得()()12->x f x f 成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.()∞+⋃⎪⎭⎫ ⎝⎛∞,,131- C.⎝ ⎛⎭⎪⎫-13,13 D.⎪⎭⎫ ⎝⎛∞+⋃⎪⎭⎫ ⎝⎛∞,,3131-- 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数()x ax x f 23-=的图象过点()4,1-,则=a ________.14.若x ,y 满足约束条件⎩⎨⎧ x +y -5≤0,2x -y -1≥0,x -2y +1≤0,则y x z +=2的最大值为________. 15.已知双曲线过点()34,,且渐近线方程为x y 21±=,则该双曲线的标准方程为________.16.已知曲线x x y ln +=在点()1,1处的切线与曲线()122+++=x a ax y 相切,则=a ________. 三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分) ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,DC BD 2=(1)求CB sin sin (2)若︒=∠60BAC ,求B ∠18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.图①B地区用户满意度评分的频数分布表2015·新课标Ⅱ卷第4页(1)在图②中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图②(2)根据用户满意度评分,将用户的满意度分为三个等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(本小题满分12分)如图,长方体1111D C B A ABCD -中,16=AB ,10=BC ,81=AA ,点E ,F 分别在11B A ,11C D 上,411==F D E A .过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.20.(本小题满分12分)已知椭圆C :12222=+by a x ()0.>>b a 的离心率为22,点()22,在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.(本小题满分12分)已知函数()()x a x x f -+=1ln .(1)讨论()x f 的单调性;(2)当()x f 有最大值,且最大值大于22-a 时,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22. (本小题满分10分)选修4-1:几何证明选讲如图O 是等腰三角形AB C 内一点, ⊙O 与△ABC 的底边BC 交于M ,N 两点,与底边上的高交于点G ,且与AB ,AC 分别相切于E ,F 两点.(I )证明EF ∥BC .(II )若AG 等于⊙O 的半径,且AE MN ==,求四边形EDCF 的面积23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ== (I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值24.(本小题满分10分)选修4-5:不等式选讲设a ,b ,c ,d 均为正数,且a +b =c +d .证明:(1)若ab >cd ,则a +b >c +d ;N M G OFE D C B A(2)a+b>c+d是|a-b|<|c-d|的充要条件.2015·新课标Ⅱ卷第8页1、选A2、故选D3、选D4、选B5、解:在等差数列中,因为.,5525)(,1,335153531A a a a S a a a a 故选所以==⨯+===++6、解:如图所示,选D.7、选B.8、故选B.9、解:因为{}),1(4,414531-==a a a a a n 满足所以, .21241,2,2),1(4123144424=⨯=====-=q a a q q a a a a a 所以,所以又解得故选C.10、解:因为A,B 都在球面上,又为该球面上动点,C AOB ,90︒=∠所以 三棱锥的体积的最大值为3661213132==⨯⨯R R R ,所以R=6,所以球的表面积为 S=14442=R ππ,故选C.11、解:如图,当点P 在BC 上时, ,tan 4tan ,tan 4,tan ,22x x PB PA x PA x PB x BOP ++=+∴+===∠ 当4π=x 时取得最大值51+,以A,B 为焦点C,D 为椭圆上两定点作椭圆,显然,当点P 在C,D 之间移动时PA+PB<51+. 又函数)(x f 不是一次函数,故选B.xP O DC B A12、解:因为函数时函数是增函数是偶函数,),0[,11)1ln()(2+∞∈+-+=x x x x f .131,)12(,12)12()(22<<->∴->∴->x x x x x x f x f 解得 故选A.第二卷一、填空题:本大题共4个小题,每小题5分 13、答:a=-214、解:当x=3,y=2时,z=2x+y 取得最大值8.15、解:设双曲线的方程为.43,4),0(422=≠=-k k k y x )代入方程,解得,点(1422=-∴y x 双曲线的标准方程为16、解:.122,11'-=∴+=x y xy ,切线方程为切线的斜率为 .8120.08,08,021)2(12222=+=====-=∆=+++++=-=a x y a a a a a ax ax x a ax y x y 所以与切线平行,不符。

2015年高考文科数学全国卷1及答案

2015年高考文科数学全国卷1及答案

4
4
数学试卷 第 2 页(共 15 页)
9.执行如图所示的程序框图,如果输入的 t 0.01,则输出的 n
()
A.5 10.已知函数 f ( x)
B.6 2x 1 2,
log 2 ( x
C.7 x≤1, 且 f (a) 1), x>1,
D. 8 3 ,则 f (6 a)
()
A. 7 4
B. 5 4
C. 3 4
附:对于一组数据 (u1, v1) , ( u2 , v2 ) ,…, (un , vn ) ,其回归直线 v
n
距的最小二乘估计分别为
(ui u)(vi v)
i1 n
, v u.
(ui u)2
i1
u 的斜率和截
20.(本小题满分 12 分) 已知过点 A(0,1) 且斜率为 k 的直线 l 与圆 C:(x 2) 2 (y 3)2 1交于 M, N 两点 . (Ⅰ)求 k 的取值范围; (Ⅱ)若 OM ON 12 ,其中 O 为坐标原点,求 |MN |.
三、解答题: 本大题共 6 小题, 共 70 分 . 解答应写出必要的文字说明、 证明过程或演算步骤 .
17.(本小题满分 12 分)
已知 a , b , c 分别是 △ABC 内角 A , B , C 的对边, sin 2 B
(Ⅰ)若 a b ,求 cosB ;
2sin Asin C .
(Ⅱ)若 B 90°,且 a 2 ,求 △ABC 的面积 .
2 执行第 3 次, S S m 0.125 ,m m 0.0625 ,n 3 ,S 0.125 t 0.01 ,是,循环,
2 执行第 4 次, S S m 0.0625 , m m 0.03125 , n 4 , S 0.0625 t 0.01,是,

2015年全国高考文科数学试题及标准答案

2015年全国高考文科数学试题及标准答案

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试(全国卷1)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为ﻩ(A)5ﻩ(B)4ﻩﻩ(C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4) (D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|=(A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有ﻩ A.14斛 B.22斛C.36斛 D.66斛(7)已知是公差为1的等差数列,则=4,=(A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k。

2015年全国高考文科数学试题及答案-新课标1

2015年全国高考文科数学试题及答案-新课标1

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A (0,1),B (3,2),向量AC u u u r =(-4,-3),则向量BC uuu r =(A )(-7,-4)(B )(7,4)(C )(-1,4)(D )(1,4)(3)已知复数z 满足(z-1)i=i+1,则z=(A )-2-I (B )-2+I (C )2-I (D )2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A )103(B )15(C )110(D )120(5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y2=8x 的焦点重合,A ,B 是C 的准线与E 的两个焦点,则|AB|=(A )3(B )6(C )9(D )12(6)《九章算术》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档