数学建模——数学规划模型
第四章 数学规划模型 数学建模(姜启源第四版)ppt课件
12小时
3公斤A1
4公斤A2
获利24元/公斤
获利16元/公斤
8小时 每天 50桶牛奶 时间480小时 至多加工100公斤A1 x1桶牛奶生产A1 x2桶牛奶生产A2
决策变量
目标函数
获利 24×3x1 获利 16×4 x2 每天获利 Max z 72x1 64x2 原料供应
x1 x2 50
基本模型
变量
目标 函数 约束 条件
x5 kg A1加工B1, x6 kg A2加工B2 利润
Max z 24x1 16x2 44x3 32x4 3x5 3x6
x1 x5 x 2 x6 加工能力 50 3 4 附加约束 4( x1 x5 ) 2( x2 x6 )
4公斤A2
获利16元/公斤
每天: 50桶牛奶
时间480小时 至多加工100公斤A1
制订生产计划,使每天获利最大 • 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/公斤,应否改变生产计划?
基本 1桶 模型 牛奶 或
线性规划模型
A1,A2每公斤的获利是与各自 产量无关的常数
每桶牛奶加工A1,A2的数量, 时 间是与各自产量无关的常数 A1,A2每公斤的获利是与相互 产量无关的常数 每桶牛奶加工A1,A2的数量,时 间是与相互产量无关的常数 加工A1,A2的牛奶桶数是实数
可 加 性
连续性
模型求解
x1 x2 50
20桶牛奶生产A1, 30桶生产A2,利润3360元。
结果解释
Global optimal solution found. Objective value: 3360.000 Total solver iterations: 2 Variable Value Reduced Cost X1 20.00000 0.000000 X2 30.00000 0.000000 Row Slack or Surplus Dual Price 1 3360.000 1.000000 原料无剩余 MILK 0.000000 48.00000 三 TIME 0.000000 2.000000 时间无剩余 种 CPCT 40.00000 0.000000 加工能力剩余40
数学建模报告数学规划求解模型过程
2012——20 13 学年第二学期合肥学院数理系实验报告 课程名称:数学模型实验项目: 数学规划模型求解过程实验类别:综合性□设计性□验证性□专业班级:10级数学与应用数学(1)班姓名: 汪勤学号:1007021004实验地点:35#611 实验时间:2013年4月25日指导教师: 闫老师成绩:一.实验目的:了解线性规划的基本内容及求解的基本方法,学习MATLAB,LINDO,LI NGO求解线性规划命令,掌握用数学软件包求解线性规划问题;了解非线性规划的基本内容,掌握数学软件包求解非线性规划问题。
二。
实验内容:1、加工奶制品的生产计划问题一奶制品加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2。
根据市场需求,生产的A1、A2能全部售出,且每公斤A1获利24元每公斤A2获利16元。
现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤A1,设备乙的加工能力没有限制。
试为该厂制定一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:(1)若用35元可以购买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?(2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?(3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划?2、奶制品的生产销售计划问题第1题给出的A1,A2两种奶制品的生产条件、利润及工厂的“资源"限制全都不变。
为增加工厂的获利,开发了奶制品的深加工技术:用2小时和3元加工费,可将1千克A1加工成0.8千克高级奶制品B1,也可将1千克A2加工成0.75千克高级奶制品B2,每千克B1能获利44元,每千克B2能获利32元。
试为该厂制订一个生产销售计划,使每天的净利润最大,并讨论以下问题:(1)若投资30元可以增加供应1桶牛奶,投资3元可以增加1小时劳动时间,应否作这些投资?若每天投资150元可赚回多少?(2)每公斤高级奶制品B1,B2的获利经常有10%的波动,对制订的生产销售计划有无影响?若每公斤B1的获利下降10%,计划应该变化吗?(3)若公司已经签订了每天销售10千克 A1的合同并且必须满足,该合同对公司的利润有什么影响?3、货机装运某架货机有三个货舱:前仓、中仓、后仓。
常见数学建模模型
常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。
线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。
通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。
二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。
整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。
通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。
三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。
非线性规划模型常见于工程设计、经济优化等领域。
通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。
四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。
动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。
通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。
五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。
排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。
六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。
图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。
七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。
随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。
八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。
数学规划模型
数学规划模型
数学规划模型是一种数学建模方法,它使用数学方法来解决决策问题。
数学规划模型可以用来优化资源的利用,最大化或最小化某个目标函数。
首先,数学规划模型需要明确目标函数和约束条件。
目标函数是我们希望优化的指标,约束条件则是限制我们优化的条件。
例如,如果我们要找到一种最佳的生产计划,那么目标函数可以是产量的最大化,约束条件可以是原料的限制、生产设备的限制等。
接下来,数学规划模型需要定义决策变量。
决策变量是我们可以调整的变量,通过调整决策变量的值,我们可以达到最优解。
例如,对于生产计划问题,决策变量可以是每种产品的生产数量。
然后,将目标函数和约束条件用数学公式表示出来。
例如,如果我们的目标是最大化产量,那么目标函数可以表示为一个关于决策变量的函数。
同时,约束条件也可以用一组不等式来表示。
接下来,我们需要使用数学方法来求解这个数学规划模型。
常用的数学方法包括线性规划、整数规划、非线性规划等。
具体的求解方法取决于模型的特点和目标函数的形式。
最后,我们需要把数学模型的结果解释给决策者,帮助他们做出更明智的决策。
这个过程通常包括分析和解释模型的结果,
以及提供关于如何操作和调整决策变量的建议。
总结来说,数学规划模型是一种解决决策问题的数学方法。
通过明确目标函数和约束条件,定义决策变量,使用数学方法求解,并将结果解释给决策者,我们可以通过数学规划模型得到最优的决策方案。
这种方法在供应链管理、生产计划、资源分配等领域有着广泛的应用。
数学建模 四大模型总结
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
数学建模(线性规划).
1)模型建立。
①决策变量。决策变量为每年年初向四个项目的投资 额,设第i(i=1,2,3,4,5)年年初向A,B,C,D(j=1,2,3,4) 四个项目的投资额为xij(万元)。 ②目标函数。设第五年年末拥有的资金本利总额为z, 为了方便,将所有可能的投资列于下表1.2
表1.3 三个货舱装载货物的最大容许量和体积
前舱 重量限制/t 10
中舱 16
后舱 8
体积限制/m3
6800
8700
5300
现有四类货物供该货机本次飞行装运,其有关信息 如表1.4,最后一列指装运后获得的利润。
表1.4 四类装运货物的信息
货物1 货物2 货物3 货物4
质量/t 18 15 23 12
空间/(m3/t) 480 650 580 390
利润(元/t) 3100 3800 3500 2850
应如何安排装运,使该货机本次飞行利润最大?
1)模型假设。问题中没有对货物装运提出其他要 求,我们可做如下假设:
①每种货物可以分割到任意小; ②每种货物可以在一个或多个货舱中任意分布; ③多种货物可以混装,并保证不留空隙。 2)模型建立。 ①决策变量:用xij表示第i种货物装入第j个货舱的重 量(吨),货舱j=1,2,3分别表示前舱、中舱、后舱。
年份
1 x11
2 x21 x23 x24
3 x31 x32 x34
4 x41
5
项目
投资限额/万 元
A B C D
年年末回收的本利之和,于是, 目标函数为 ③约束条件 z 1.15x41 1.25x32 1.40 x23 1.06 x54
数学建模-数学规划模型
将决策变量、目标函数和约束条件用数学方程表示出来,形成线性规划模型。
线性规划的求解方法
单纯形法
单纯形法是线性规划最常用的求解方法,它通过不断迭代和调整决策 变量的值,逐步逼近最优解。
对偶法
对偶法是利用线性规划的对偶性质,通过求解对偶问题来得到原问题 的最优解。
分解法
分解法是将一个复杂的线性规划问题分解为若干个子问题,分别求解 子问题,最终得到原问题的最优解。
混合法
将优先级法和权重法结合起来,既考虑目标的优先级又考虑目标的 权重,以获得更全面的优化解。
多目标规划的求解方法
约束法
通过引入约束条件,将多目标问题转化为单目标问题求解。常用的约束法包括线性约束 、非线性约束等。
分解法
将多目标问题分解为若干个单目标问题,分别求解各个单目标问题,然后综合各个单目 标问题的解得到多目标问题的最优解。
特点
多目标规划问题通常具有多个冲突的目标, 需要权衡和折衷不同目标之间的矛盾,因此 求解难度较大。多目标规划广泛应用于经济 、管理、工程等领域。
多目标规划的建模方法
优先级法
根据各个目标的重要程度,给定不同的优先级,然后结合优先级 对目标进行优化。
权重法
给定各个目标的权重,将多目标问题转化为加权单目标问题,通过 求解加权单目标问题得到多目标问题的最优解。
数学建模-数学规划 模型
目录
• 数学规划模型概述 • 线性规划模型 • 非线性规划模型 • 整数规划模型 • 多目标规划模型
01
CATALOGUE
数学规划模型概述
定义与分类
定义
数学规划是数学建模的一种方法,通 过建立数学模型描述和解决优化问题 。
分类
数学建模常用模型及代码
数学建模常用模型及代码
一.规划模型
1.线性规划
线性规划与非线性规划问题一般都是求最大值和最小值,都是利用最小的有限资源来求最大利益等,一般都利用lingo工具进行求解。
点击进入传送门
2.整数规划
求解方式类似于线性规划,但是其决策变量x1,x2等限定都是整数的最优化问题。
传送门
3. 0-1规划
决策变量只能为0或者为1的一类特殊的整数规划。
n个人指派n项工作的问题。
传送门
4.非线性规划
目标函数或者存在约束条件函数是决策变量的非线性函数的最优化问题。
传送门
5.多目标规划
研究多于一个的目标函数在给定区域上的最优化。
把求一个单目标,在此单目标最优的情况下将其作为约束条件再求另外一个目标。
传送门
6.动态规划
运筹学的一个分支。
求解决策过程最优化的过程。
传送门
二. 层次分析法
是一种将定性和定量相结合的,系统化的,层次化的分析方法,主要有机理分析法和统计分析法。
传送门
三.主成分分析
指标之间的相关性比较高,不利于建立指标遵循的独立性原则,指标之间应该互相独立,彼此之间不存在联系。
传送门。
第三章数学规划模型
第三章数学规划模型第三章数学规划模型数学规划论起始20世纪30年代末,50年代与60年代发展成为⼀个完整的分⽀并受到数学界和社会各界的重视。
七⼋⼗年代是数学规划飞速发展时期,⽆论是从理论上还是算法⽅⾯都得到了进⼀步完善。
时⾄今⽇数学规划仍然是运筹学领域中热点研究问题。
从国内外的数学建模竞赛的试题中看,有近1/4的问题可⽤数学规划进⾏求解。
数学规划模型的⼀般表达式:),,(..),,(min(max)≤βαβαx g t s x ff 为⽬标函数,g 为约束函数,x 为可控变量,α为已知参数,β为随机参数。
本章主要介绍线性规划、整数规划、⾮线性规划的基本概念与基本原理、⽆约束问题的最优化⽅法、约束问题的最优化⽅法、动态规划。
3.1线性规划线性规划模型是运筹学的重要分⽀,是20世纪三四⼗年代初兴起的⼀门学科。
1947年美国数学家丹齐格G.B.Dantzig 及其同事提出的求解线性规划的单纯形法及有关理论具有划时代的意义。
他们的⼯作为线性规划这⼀学科的建⽴奠定了理论基础。
随着1979年前苏联数学家哈奇扬的椭球算法和1984年美籍印度数学家卡玛卡尔H.Karmarkar 算法的相继问世,线性规划的理论更加完备成熟,实⽤领域更加宽⼴。
线性规划研究的实际问题多种多样,如⽣产计划问题、物资运输问题、合理下料问题、库存问题、劳动⼒问题、最优设计问题等。
就模型⽽⾔,线形规划模型类似于⾼等数学中的条件极值问题,只是其⽬标函数和约束条件都限定为线性函数。
线性规划模型的求解⽅法⽬前仍以单纯形法为主要⽅法。
本节介绍的主要内容有:线性规划模型的建⽴以及求解,线性规划的matlab 解法,线性规划问题的建模实例。
3.1.1 线性规划模型的建⽴以及求解⼀、线性规划模型的建⽴例1、某机床⼚⽣产甲、⼄两种机床,每台销售后的利润分别为4000元与3000元。
⽣产甲机床需⽤B A 、机器加⼯,加⼯时间分别为每台2⼩时和1⼩时;⽣产⼄机床需⽤C B A 、、三种机器加⼯,加⼯时间为每台各⼀⼩时。
数学建模作业数学规划模型----供应与选址的问题
再编写主程序liaochang2.m为:
clear
x0=[3 5 4 7 1 0 0 0 0 0 5 11 5 4 7 7];
A=[1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0];
B=[20;20];
Aeq=[1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0];
使用临时料场的情形:
使用两个临时料场A(5,1),B(2,7).求从料场j向工地 的运送量 .在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性规划问题。线性规划模型为:
其中 ,i=1,2,…,6,j=1,2,为常数
设X11=X1,X21=X 2,,X31=X 3,X41=X 4,X51=X 5,,X61=X 6
程序截图如下:
程序的运行结果为:
xx =
3.0000
5.0000
0.0000
7.0000
0.0000
1.0000
0.0000
0.0000
4.0000
0.0000
6.0000
10.0000
fval =
136.2275
运行结果截图如下:
即由料场A、B向6个工地运料方案为:
数学建模模型常用的四大模型及对应算法原理总结
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
数学建模常用算法模型
数学建模常用算法模型在数学建模中,常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。
下面将对这些算法模型进行详细介绍。
1.线性规划:线性规划是一种用于求解最优化问题的数学模型和解法。
它的目标是找到一组线性约束条件下使目标函数取得最大(小)值的变量取值。
线性规划的常用求解方法有单纯形法、内点法和对偶理论等。
2.整数规划:整数规划是一种求解含有整数变量的优化问题的方法。
在实际问题中,有时变量只能取整数值,例如物流路径问题中的仓库位置、设备配置问题中的设备数量等。
整数规划常用的求解方法有分支界定法和割平面法等。
3.非线性规划:非线性规划是一种求解非线性函数优化问题的方法,它在实际问题中非常常见。
与线性规划不同,非线性规划的目标函数和约束函数可以是非线性的。
非线性规划的求解方法包括牛顿法、拟牛顿法和全局优化方法等。
4.动态规划:动态规划是一种用于解决决策过程的优化方法。
它的特点是将问题划分为一系列阶段,然后依次求解每个阶段的最优决策。
动态规划常用于具有重叠子问题和最优子结构性质的问题,例如背包问题和旅行商问题等。
5.图论算法:图论算法是一类用于解决图相关问题的算法。
图论算法包括最短路径算法、最小生成树算法、网络流算法等。
最短路径算法主要用于求解两点之间的最短路径,常用的算法有Dijkstra算法和Floyd-Warshall算法。
最小生成树算法用于求解一张图中连接所有节点的最小代价树,常用的算法有Prim算法和Kruskal算法。
网络流算法主要用于流量分配和问题匹配,例如最大流算法和最小费用最大流算法。
6.遗传算法:遗传算法是一种借鉴生物进化原理的优化算法。
它通过模拟生物的遗传、变异和选择过程,不断优化问题的解空间。
遗传算法适用于对问题解空间有一定了解但难以确定最优解的情况,常用于求解复杂的组合优化问题。
总结起来,数学建模中常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。
初中数学建模30种经典模型
初中数学建模30种经典模型初中数学建模是培养学生综合运用数学知识解决实际问题的一种教学方法和手段。
以下是初中数学建模中的30种经典模型,并对每种模型进行简要介绍:1.线性规划模型:通过建立线性目标函数和线性约束条件,优化解决线性规划问题。
2.排队论模型:研究排队系统中的等待时间、服务能力等问题,以优化系统效率。
3.图论模型:利用图的概念和算法解决实际问题,如最短路径、网络流等。
4.组合数学模型:应用组合数学的方法解决实际问题,如排列组合、集合等。
5.概率模型:利用概率理论分析和预测事件发生的可能性和规律。
6.统计模型:收集、整理和分析数据,通过统计方法得出结论和推断。
7.几何模型:运用几何知识解决实际问题,如图形的面积、体积等。
8.算术平均模型:利用算术平均数来描述和分析数据的集中趋势。
9.加权平均模型:利用加权平均数考虑不同数据的重要性来得出综合结论。
10.正态分布模型:应用正态分布来描述和分析数据的分布情况。
11.投影模型:通过投影的方法解决几何体在平面上的投影问题。
12.比例模型:利用比例关系解决实际问题,如物体的放大缩小比例等。
13.数据拟合模型:根据已知数据点,通过曲线或函数拟合来推测未知数据点。
14.最优化模型:寻找最大值或最小值,优化某种指标或目标函数。
15.路径分析模型:研究在网络或图中找到最优路径的问题。
16.树状图模型:通过树状图的结构来描述和解决问题,如决策树等。
17.随机模型:基于随机事件和概率进行建模和分析。
18.多项式拟合模型:利用多项式函数对数据进行拟合和预测。
19.逻辑回归模型:通过逻辑回归分析,预测和分类离散型数据。
20.回归分析模型:分析自变量和因变量之间的关系,并进行预测和推断。
21.梯度下降模型:通过梯度下降算法来求解最优解的问题。
22.贪心算法模型:基于贪心策略解决最优化问题,每次选择当前最优解。
23.线性回归模型:通过线性关系对数据进行建模和预测。
24.模拟模型:通过构建模拟实验来模拟和分析实际情况。
数学建模——规划模型
假设:料 场和工地 之间有直 线道路
1)现有 2 料场,位于 A (5, 1), B (2, 7),记为 (xj,yj),j=1,2, 日储量 ej 各有 20 吨。
i 1 i
n
i
a ik x k bi , i 1, 2 ,..., n. s.t . k 1 x 0 , i 1, 2 ,..., n. i
(3)二次规划问题
目标函数为二次函数,约束条件为线性约束
1 n min u f ( x ) ci xi bij xi x j 2 i , j 1 i 1 n a ij x j bi , i 1, 2,..., n. s.t . j 1 x 0 .i 1, 2,..., n. i
改写为: S.t.
min z 13 9 10 11 12 8X
0 0 800 0.4 1.1 1 0 X 0 0 0 0 . 5 1 . 2 1 . 3 900
x1 x2 x 3 ,X 0 x4 x 5 x 6
编写M文件xxgh4.m如下: c = [40 36]; A=[-5 -3]; b=[-45]; Aeq=[]; beq=[]; vlb = zeros(2,1); vub=[9;15]; %调用linprog函数: [x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)
(一)规划模型的数学描述
u f ( x)
数学建模,第五章 数学规划模型
数学建模,第五章数学规划模型数学建模:第五章数学规划模型在数学的广袤领域中,数学规划模型是解决实际问题的有力工具之一。
它帮助我们在各种限制条件下,寻找最优的解决方案,从而实现资源的合理分配、效益的最大化等目标。
数学规划模型的应用场景极为广泛。
比如在生产制造领域,企业需要决定生产何种产品、生产多少数量,以在有限的资源和时间内获得最大的利润;在物流运输中,如何规划运输路线,使得运输成本最低、时间最短;在资源分配方面,如电力分配、水资源分配等,怎样做到公平且高效。
数学规划模型主要包括线性规划、非线性规划、整数规划和动态规划等类型。
线性规划是其中最为基础和常见的一种。
它的目标函数和约束条件都是线性的。
举个简单的例子,一家工厂生产两种产品 A 和 B,生产A 产品每件需要 2 小时的加工时间和 1 公斤的原材料,生产B 产品每件需要 3 小时的加工时间和 2 公斤的原材料。
工厂每天有 10 小时的加工时间和 8 公斤的原材料可用,A 产品每件利润 3 元,B 产品每件利润 5 元。
那么,为了获得最大利润,应该分别生产多少件 A 和 B 产品呢?我们可以设生产 A 产品 x 件,生产 B 产品 y 件,目标函数就是利润最大化 3x + 5y,约束条件则是 2x +3y ≤ 10 和 x +2y ≤ 8 以及x ≥ 0,y ≥ 0。
通过求解这个线性规划问题,我们就能得出最优的生产方案。
非线性规划则是目标函数或约束条件中至少有一个是非线性的。
比如在一个生产过程中,成本函数可能不是简单的线性关系,而是与产量的平方或者其他非线性函数相关。
整数规划要求决策变量取整数值。
例如在人员安排问题中,只能安排整数个人,不能有半个人的情况。
动态规划则适用于多阶段决策问题。
比如在项目投资中,每年都要决定是否投资以及投资多少,需要考虑不同阶段的收益和成本。
建立数学规划模型的一般步骤包括:首先,明确问题的目标和约束条件。
这需要对实际问题进行深入的分析和理解,将其转化为数学语言。
数学建模作业5数学规划模型----供应与选址的问题
三、模型假设
1、假设料场和建筑工地之间都可以由直线到达;
2、运输费用由“吨千米数”来衡量;
3、两料场的日存储量够向各建筑工地供应;
f1=0;
fori=1:6
s(i)=sqrt((x(13)-a(i))^2+(x(14)-b(i))^2);
f1=s(i)*x(i)+f1;
end
f2=0;
fori=7:12
s(i)=sqrt((x(15)-a(i-6))^2+(x(16)-b(i-6))^2);
f2=s(i)*x(i)+f2;
end
一、问题提出
某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系(a,b)表示,距离单位:km)及水泥日用量d(吨)由下表给出。目前有两个料场位于A(5,1),B(2,7),日储量各有20吨。
(1)试制定每天的供应计划,即从A,B两料场分别向各工地运送多少水泥,可使运输费用(总的吨千米数)最小,并求出吨千米数。
d=[3 5 4 7 6 11];
x=[5 2];
y=[1 7];
e=[20 20];
fori=1:6
forj=1:2
aa(i,j)=sqrt((x(j)-a(i))^2+(y(j)-b(i))^2);
end
end
CC=[aa(:,1); aa(:,2)]'
A=[1 1 1 1 1 1 0 0 0 0 0 0
(注:先画图,在坐标上标出各工地位置(用蓝色*标示)和料场位置(用红色o标示))
常见数学建模模型
常见数学建模模型数学建模是数学与现实问题相结合的一门学科,通过数学方法和技巧对现实问题进行抽象和描述,从而得到问题的解决方案。
常见数学建模模型有线性规划模型、回归分析模型、离散事件模型和优化模型等。
下面将分别介绍这些常见数学建模模型的基本原理和应用领域。
一、线性规划模型线性规划模型是一种数学模型,用于解决具有线性约束条件的最优化问题。
其基本原理是通过线性目标函数和线性约束条件,找到使目标函数取得最大或最小值的变量取值。
线性规划模型广泛应用于生产调度、物流配送、资源优化等领域。
二、回归分析模型回归分析模型是通过建立变量之间的数学关系,预测或解释一个变量与其他变量之间的关系。
常见的回归分析模型包括线性回归模型、多项式回归模型和逻辑回归模型等。
回归分析模型在市场预测、金融风险评估等领域有广泛的应用。
三、离散事件模型离散事件模型是一种描述系统内离散事件发生和演化的数学模型。
该模型中,系统的状态随着事件的发生而发生改变,事件之间的发生是离散的。
离散事件模型广泛应用于排队系统、供应链管理、网络优化等领域。
四、优化模型优化模型是通过建立目标函数和约束条件,寻找使目标函数取得最大或最小值的变量取值。
常见的优化模型包括整数规划模型、非线性规划模型和动态规划模型等。
优化模型广泛应用于生产调度、资源分配、路径规划等领域。
以上是常见数学建模模型的基本原理和应用领域。
数学建模模型的应用能够帮助我们解决实际问题,优化决策过程,提高效率和准确性。
在实际应用中,我们可以根据具体问题的特点选择合适的数学建模模型,并通过数学方法求解得到最优解。
01线性规划数学建模
01-线性规划(数学建模) 线性规划是一种数学建模技术,用于解决一类特定的优化问题。
这些问题通常涉及到在一组线性约束条件下最大化或最小化一个线性目标函数。
线性规划的应用广泛,包括诸如生产计划、货物运输、资源分配等问题。
线性规划的基本模型由以下三个要素组成:1.决策变量:这是我们希望优化的变量。
它们通常是连续的实数变量,可以在问题中自由设定其范围。
2.目标函数:这是我们希望最大化或最小化的函数。
目标函数通常是决策变量的线性函数。
3.约束条件:这些是限制决策变量选择的条件。
它们通常是由决策变量的线性不等式或等式表示。
线性规划问题的一般形式可以表示为:最大化(或最小化)目标函数: c^T x在满足以下条件的情况下:Ax = bx >= lbx <= ub其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右侧常数向量,lb和ub分别是决策变量的下界和上界。
线性规划问题的求解方法有很多种,其中最常用的方法是使用单纯形法。
单纯形法的基本思想是通过在约束条件下不断迭代,寻找最优解。
在每次迭代中,我们根据目标函数的系数和约束条件,计算出每个约束条件的"优势",然后选择具有最大优势的约束条件进行扩展,直到找到最优解或确定无解。
线性规划问题在现实世界中的应用非常广泛。
例如,我们可以使用线性规划来安排生产计划,使得总成本最低。
我们也可以使用线性规划来分配资源,使得某种资源的需求总和不超过供应总和。
下面是一个具体的例子:假设我们有一个公司,生产三种产品:A、B和C。
每种产品都有各自的生产成本(单位成本),以及各自的预期销售量(单位售价)。
我们希望确定每种产品的生产量,以使得总生产成本最低,同时总销售收入最高。
这个问题可以通过一个线性规划来解决。
我们可以将生产量作为决策变量,将总生产成本和总销售收入分别作为目标函数和约束条件。
通过求解这个线性规划问题,我们可以得到最优的生产计划。
数学建模实验答案__数学规划模型二.
实验05 数学规划模型㈡(2学时)(第4章数学规划模型)1.(求解)汽车厂生产计划(LP,整数规划IP)p101~102(1) (LP)在模型窗口中输入以下线性规划模型max z = 2x1 + 3x2 + 4x3s.t. 1.5x1 + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3≥ 0并求解模型。
★(1) 给出输入模型和求解结果(见[101]):(2) (IP)在模型窗口中输入以下整数规划模型max z = 2x1 + 3x2 + 4x3s.t. 1.5x1 + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3均为非负整数并求解模型。
LINGO函数@gin见提示。
★(2) 给出输入模型和求解结果(见[102]模型、结果):2.(求解)原油采购与加工(非线性规划NLP ,LP 且IP )p104~107模型:已知 ⎪⎩⎪⎨⎧≤≤+≤≤+≤≤=)15001000(63000)1000500(81000)5000(10)(x x x x x xx c注:当500 ≤ x ≤ 1000时,c (x ) = 10 × 500 + 8( x – 500 ) = (10 – 8 ) × 500 + 8x112112221112212211112112122211122122max 4.8() 5.6()()500100015000.50.6,,,,0z x x x x c x x x x x x x x x x x x x x x x x x =+++-+≤++≤≤≥+≥+≥2.1解法1(NLP )p104~106将模型变换为以下的非线性规划模型:1121122212311122122111121121222123122312311122122max4.8()5.6()(1086)50010000.50.6(500)0(500)00,,500,,,,0z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =+++-+++≤++≤≥+≥+=++-=-=≤≤≥LINGO 软件设置:局部最优解,全局最优解,见提示。
数学建模30种经典模型matlab
一、概述数学建模是数学与实际问题相结合的产物,通过建立数学模型来解决现实生活中的复杂问题。
Matlab作为一个强大的数学计算工具,在数学建模中具有重要的应用价值。
本文将介绍30种经典的数学建模模型,以及如何利用Matlab对这些模型进行建模和求解。
二、线性规划模型1. 线性规划是数学建模中常用的一种模型,用于寻找最优化的解决方案。
在Matlab中,可以使用linprog函数对线性规划模型进行建模和求解。
2. 举例:假设有一家工厂生产两种产品,分别为A和B,要求最大化利润。
产品A的利润为$5,产品B的利润为$8,而生产每单位产品A 和B分别需要8个单位的原料X和10个单位的原料Y。
此时,可以建立线性规划模型,使用Matlab求解最大化利润。
三、非线性规划模型3. 非线性规划是一类更加复杂的规划问题,其中目标函数或约束条件存在非线性关系。
在Matlab中,可以使用fmincon函数对非线性规划模型进行建模和求解。
4. 举例:考虑一个有约束条件的目标函数,可以使用fmincon函数在Matlab中进行建模和求解。
四、整数规划模型5. 整数规划是一种特殊的线性规划问题,其中决策变量被限制为整数。
在Matlab中,可以使用intlinprog函数对整数规划模型进行建模和求解。
6. 举例:假设有一家工厂需要决定购物哪种机器设备,以最大化利润。
设备的成本、维护费用和每台设备能生产的产品数量均为已知条件。
可以使用Matlab的intlinprog函数对该整数规划模型进行建模和求解。
五、动态规划模型7. 动态规划是一种数学优化方法,常用于多阶段决策问题。
在Matlab 中,可以使用dynamic programming toolbox对动态规划模型进行建模和求解。
8. 举例:考虑一个多阶段生产问题,在每个阶段都需要做出决策以最大化总利润。
可以使用Matlab的dynamic programming toolbox对该动态规划模型进行建模和求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.000000
Row Slack or Surplus Dual Price
1单位时“效益”的增 量
影子价格
1 3360.000 MILK 0.000000
1.000000 48.00000 原料增加1单位, 利润增长48
TIME 0.000000 2.000000 时间增加1单位, 利润增长2
CPCT 40.00000
X3 19.20000
0.000000
2) 4x1 3x2 4x5 3x6 600
X4 0.000000 X5 24.00000
0.000000 0.000000
3) 4(x1 x5 ) 2(x2 x6 )
X6 0.000000
1.520000
Row Slack or Surplus Dual Price
x1系数范围(64,96) x2系数范围(48,72)
Row Current Allowable Allowable
MILK TIME CPCT
RHS 50.00000 480.0000 100.0000
Increase Decrease 10.00000 6.666667 53.33333 80.00000 INFINITY 40.00000
软件实现 LINGO
Objective value: Total solver iterations:
3460.800 2
2) x1 x5 x2 x6 50
3
4
Variable X1 X2
Value Reduced Cost
0.000000
1.6800001Leabharlann 8.00000.000000
约束
原料 供应
x1 x5 x2 x6 50 加工能力
3
4
条件
劳动
附加约束
4(x1 x5 ) 2(x2 x6 )
x1 x5 100 x3 0.8x5
x4 0.75 x6
时间 2x5 2x6 480 非负约束 x1, x6 0
模型求解
Global optimal solution found.
0.000000 加工能力增长不影响利润
• 35元可买到1桶牛奶,要买吗?
35 <48, 应该买!
• 聘用临时工人付出的工资最多每小时几元? 2元!
敏感性分析 (“LINGO|Ranges” )
最优解不变时目标函
Ranges in which the basis is unchanged:
数系数允许变化范围
• 30元可增加1桶牛奶,3元可增加1小时时间,应否投资?现投 资150元,可赚回多少?
• B1,B2的获利经常有10%的波动,对计划有无影响?
• 每天销售10公斤A1的合同必须满足,对利润有什么影响?
基本模型
1桶 牛奶
或
12小时
3kg A1
获利24元/kg
1kg 2小时,3元
0.8kg B1
获利44元/kg
例2 奶制品的生产销售计划 在例1基础上深加工
1桶 牛奶 或
12小时
3公斤A1 获利24元/公斤
1公斤 2小时,3元
0.8公斤B1
获利44元/公斤
8小时 4公斤A2
获利16元/公斤
50桶牛奶, 480小时
1公斤 2小时,3元
0.75公斤B2
获利32元/公斤
至多100公斤A1 制订生产计划,使每天净利润最大
时间层次 若短时间内外部需求和内部资源等不随时间变化,可 制订单阶段生产计划,否则应制订多阶段生产计划.
本节课题
例1 加工奶制品的生产计划
问 题
1桶 牛奶 或
12小时 8小时
3公斤A1 4公斤A2
获利24元/公斤 获利16元/公斤
每天: 50桶牛奶 时间480小时 至多加工100公斤A1
制订生产计划,使每天获利最大
Objective Coefficient Ranges
(约束条件不变)
Current Allowable Allowable
Variable Coefficient Increase Decrease X1 72.00000 24.00000 8.000000 X2 64.00000 8.000000 16.00000 Righthand Side Ranges
X3 19.20000
0.000000
X4 0.000000
0.000000
X5 24.00000
0.000000
X6 0.000000
1.520000
Row Slack or Surplus Dual Price
1
3460.800
1.000000
MILK 0.000000
3.160000
TIME 0.000000
• 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/公斤,应否改变生产计划?
基本 1桶
12小时 3公斤A1
模型 牛奶 或 8小时 4公斤A2
获利24元/公斤 获利16元/公斤
每天 50桶牛奶 时间480小时 至多加工100公斤A1
3x1 100
x1, x2 0
l3 : 3x1
l4 : x1 0,
目标 Max z 72 x1 64 x2
函数 z=c (常数) ~等值线
8x2 480
B
100 l4
l2 C Z=3600
l5 : x2 0 0
c l5
l3 D x1
Z=0 Z=2400
在B(20,30)点得到最优解
连续性 xi取值连续
A1,A2每公斤的获利是与相互 产量无关的常数
每桶牛奶加工A1,A2的数量,时 间是与相互产量无关的常数
加工A1,A2的牛奶桶数是实数
模型求解
图解法
Ax2
约 x1 x2 50
l1 : x1 x2 50
l1
束 12 x1 8x2 480
l2 :12 x1
条 件
32.00000
Global optimal solution found.
Objective value:
3460.800
Total solver iterations:
2
Variable
Value Reduced Cost
X1 0.000000
1.680000
X2 168.0000
0.000000
1 3360.000
1.000000
MILK 0.000000
48.00000
TIME 0.000000
2.000000
CPCT 40.00000
0.000000
20桶牛奶生产A1, 30桶生产A2,利润3360元。
结果解释
model:
Global optimal solution found.
max = 72*x1+64*x2; Objective value:
end
Row Slack or Surplus Dual Price
三
原料无剩余
种
时间无剩余
资 加工能力剩余40
1 MILK TIME CPCT
3360.000 0.000000 0.000000 40.00000
1.000000 48.00000 2.000000 0.000000
源
“资源” 剩余为零的约束为紧约束(有效约束)
2x5 2x6 480
1
3460.800
MILK 0.000000
1.000000 3.160000
3) 4x1 2x2 6x5 4x6 480
TIME 0.000000 CPCT 76.00000
3.260000 0.000000
5
0.000000
44.00000
6
0.000000
Current Allowable Allowable
Variable Coefficient Increase Decrease
X1 72.00000 24.00000 8.000000
X2 64.00000 8.000000 16.00000
Righthand Side Ranges
Row Current Allowable Allowable
MILK TIME
RHS 50.00000 480.0000
Increase 10.00000 53.33333
Decrease 6.666667 80.00000
原料最多增加10 时间最多增加53
CPCT 100.0000 INFINITY 40.00000
充分条件 !
• 35元可买到1桶牛奶, 每天最多买多少? 最多买10桶!
决策变量个数n和 约束条件个数m较大
最优解在可行域 的边界上取得
数 线性规划
学 规
非线性规划
划 整数规划
重点在模型的建立和结果的分析
4.1 奶制品的生产与销售
企业生产计划
空间层次
工厂级:根据外部需求和内部设备、人力、原料等 条件,以最大利润为目标制订产品生产计划;
车间级:根据生产计划、工艺流程、资源约束及费 用参数等,以最小成本为目标制订生产批量计划.
目标函数和约束条件是线性函数 可行域为直线段围成的凸多边形 目标函数的等值线为直线
最优解一定在凸多边 形的某个顶点取得。
模型求解
软件实现
LINGO
model: max = 72*x1+64*x2; [milk] x1 + x2<50; [time] 12*x1+8*x2<480; [cpct] 3*x1<100; end