分子生物学6真核生物的转录及其调控

合集下载

分子生物学

分子生物学
TFIIB
单亚基的因子(35 kD) 能把TFIID与TFIIF/Pol II相连在一起,即是聚合
酶II结合到预起始复合物所必需的 能与一些基因特异转录因子相互作用,促进转录
四、真核生物的基因转录及其调控
4. 真核生物的通用转录因子 (1)II类因子(class II factors) TFIIF的结构及功能
TFIIA
在酵母中有2个亚基,在果蝇和人中有3个亚基 TFIIA可以看成是一种TAFII(与TBP结合,
能稳定TFIID与启动子之间的结合) 在体外体系中,TFIIA并非必不可少
四、真核生物的基因转录及其调控
4. 真核生物的通用转录因子 (1)II类因子(class II factors) TFIIA与TFIIB的结构及功能
四、真核生物的基因转录及其调控
4. 真核生物的通用转录因子 (1)II类因子(class II factors) TFIIE和TFIIH的结构及功能
TFIIH
最后一个结合到预起始复合物的通用转录因子, 结构、功能均复杂
功能之一是使Pol II最大一个亚基的羧基末端域 (CTD)磷酸化,即使Pol IIA变为Pol IIO,从 而导致转录起始到转录延伸过渡
有些基因甚至没有TATA区
看家基因(housekeeping genes) 控制发育的基因
四、真核生物的基因转录及其调控
2. 真核RNA聚合酶识别的启动子 (1)RNA聚合酶II识别的启动子 起始子(initiator)
转录起始位点前后的保守序列 共同序列为:PyPyANT/APyPy
分子生物学
四、真核生物的基因转录及其调控
2. 真核RNA聚合酶识别的启动子 (1)RNA聚合酶II识别的启动子(II类启动子,

真核基因转录调控

真核基因转录调控

• (二)真核基因的转录与染色质的结构变化 相关 。
真核基因组DNA绝大部分都在细胞核内与组蛋 白等结合成染色质,染色质的结构、染色质中 DNA和组蛋白的结构状态都影响转录,至少有 以下现象:
1.染色质结构影响基因转录
染色体结构复杂 由DNA、组蛋白、非组蛋白等大分 子组成; DNA顺序重复;基因不连续性,真核生物基因的 不连续性和转录后加工是真核基因有别于原核基因的 又一重要特征。
纵元控制。
化调控基因表达;基因分布在不同的染色
体上,存在不同染色体间基因的调控问题。
适应外界环境,操纵元调控表达。 基因差别表达是细胞分化和功能的核 心。
转录和翻译同时进行,大部分 为转录水平调控。
转录和翻译在时间和空间上均不同, 从DNA到蛋白质的各层次上都有调控, 但多数为转录水平调控
• 一、真核基因表达调控的特点
• 2.增强子
是一种能够提高转录效率的顺式调控元件,最 早是在SV40病毒中发现的长约200bp的一段 DNA,可使旁侧的基因转录提高100倍,其后 在多种真核生物,甚至在原核生物中都发现了 增强子。增强子通常占100-200bp长度,也和 启动子一样由若干组件构成,基本核心组件常 为8-12bp,可以单拷贝或多拷贝串连形式存 在。
第七章 真核生物基因的表达及其 调控
第一节 真核生物表达调控特点
真核生物基因的表达调控系统远比 原核生物复杂
• 真核生物和原核生物由于基本生活方式不同所决 定基因表达调控上的巨大差别。
• 原核生物的调控系统就是要在一个特定的环境中 为细胞创造高速生长的条件,或使细胞在受到损 伤时,尽快得到修复,所以,原核生物基因表达 的开关经常是通过控制转录的起始来调节的。
④增强子的作用机理虽然还不明确,但与其他 顺式调控元件一样,必须与特定的蛋白质因结 合后才能发挥增强转录的作用。增强子一般具 有组织或细胞特异性,许多增强子只在某些细 胞或组织中表现活性,是由这些细胞或组织中 具有的特异性蛋白质因子所决定的。

分子生物学:真核基因表达调控

分子生物学:真核基因表达调控
第二类是发育调控或称不可逆调控,是真核基因调控的精髓 部分,它决定了真核细胞生长、分化、发育的全部进程。
真核基因表达的多级调控
在真核生物中基因表达的调节其特是
(1)多层次; (2)无操纵子和弱化子; (3)个体发育复杂; (4)受环境影响较小;
研究基因调控3个问题:
① 什么是诱发基因转录的信号?
基因扩增是指某些基因的拷贝数专一性大量增加的现象,它 使细胞在短期内产生大量的基因产物以满足生长发育的需要,是 基因活性调控的一种方式。
实例: 非洲爪蟾的卵母细胞中原有rRNA基因(rDNA)约500个拷
贝,在减数分裂I的粗线期,这个基因开始迅速复制,到双线 期它的拷贝数约为200万个,扩增近4000倍,可用于合成1012个 核糖体,以满足卵裂期和胚胎期合成大量蛋白质的需要。
二、基因扩增、基因重排和基因丢失
三、DNA甲基化与基因活性的调控
一、 染色质结构对转录的影响
按功能状态的不同可将染色质分为: (1)活性染色质(有转录活性) (2)非活性染色质(没有转录活性)
染色质的核小体发生构象改变,松散的染色质结构,便 于转录调控因子和顺式用元件结合和RNA聚合酶在转录模板上 滑动。
真核基因调控中虽然也发现有负性调控元件,但其存在并不 普遍;
顺式作用元件: 由若干可以区分的DNA序列组成,并与特定的功能
基因相连,组成基因转录的调控区,通过与相应的反 式作用因子结合,实现对基因转录的调控。
反式作用因子: 能直接地或间接地识别或结合在各类顺式作用元
件核心序列上,参与调控靶基因转录效率的蛋白因子, 也被称为转录因子(TF)。
哺乳类基因组中约存在4万个CpG 岛,它们大多位于结构基 因启动子的核心序列和转录起始点,其中有60%~ 90% 的 CpG 被甲基化, CpG 岛在基因表达调控中起重要作用。

分子生物学总复习期末考试总复习

分子生物学总复习期末考试总复习

分子生物学课程重点,以及一份真题。

1、绪论(1)分子生物学的概念分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与蛋白质、蛋白质与核酸之间的互作及其基因表达调控机理的学科。

(3)经典历史事迹1928年格里菲斯证明了某种转化因子是遗传物质1944年艾弗里做了肺炎双球杆菌转换实验1953年沃森和克里克提出双螺旋结构桑格尔两次诺贝尔学奖2、染色体与 DNA(1)真核生物染色体具体组成成分为:组蛋白、非组蛋白和DNA。

在真核细胞染色体中,DNA与蛋白质完全融合在一起,其蛋白质与相应DNA的质量之比约为2:1。

这些蛋白质在维持染色体结构中起着重要作用。

(2)组蛋白组蛋白是染色体的结构蛋白,其与DNA组成核小体。

根据其凝胶电泳性质可将其分为H1、H2A、H2B、H3及H4。

组蛋白含有大量的赖氨酸和精氨酸,其中H3、H4富含精氨酸,H1富含赖氨酸。

H2A、H2B 介于两者之间。

H1易分离,不保守;组蛋白的特性:①进化上的极端保守,②无组织特异性;③肽链上分布的不对称性;组蛋白的修饰作用⑤富含赖氨酸的组蛋白H5(3)C值反常现象C值:一种生物单倍体基因组DNA的总量。

一般情况,真核生物C值是随着生物进化而增加,高等生物的C值一般大于低等生物。

(4)DNA的结构•DNA的一级结构即是指四种核苷酸的连接及排列顺序,表示该DNA分子的化学构成。

•DNA二级结构是指两条多核苷酸链反相平行盘绕所生成的双螺旋盘绕结构。

DNA的二级结构分两大类:一类是右手螺旋,如A-DNA和B-DNA;另一类是左手螺旋,即Z-DNA。

DNA三级结构:是双螺旋进一步缠绕,形成核小体,染色质,染色体等超螺旋结构,5、每轮碱基数10•DNA的高级结构指DNA双螺旋进一步扭曲盘旋所形成的特定空间结构。

超螺旋结构是DNA高级结构的主要形式(非唯一形式),可分为正超螺旋和负超螺旋两类,它们在不同类型的拓扑异构酶(通过催化DNA链的断裂和结合,从而影响DNA的拓扑状态。

分子生物学--名词解释(全)

分子生物学--名词解释(全)

1. 半保留复制(semiconservative replication):DNA复制时,以亲代DNA的每一股做模板,以碱基互补配对原则,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代DNA链,这种现象称为半保留复制。

2. 复制子replicon:由一个复制起始点构成的DNA复制单位。

57. 复制起始点(Ori C)DNA在复制时,需在特定的位点起始,这是一些具有特定核苷酸序列顺序的片段,即复制起始点。

24.(35)复制叉(replication fork)是DNA复制时在DNA链上通过解旋、解链和SSB蛋白的结合等过程形成的Y字型结构称为复制叉。

3. Klenow 片段klenow fragment:DNApol I(DNA聚合酶I)被酶蛋白切开得到的大片段。

4. 外显子exon、extron:真核细胞基因DNA中的编码序列,这部分可转录为RNA,并翻译成蛋白质,也称表达序列。

5.(56) 核心启动子core promoter:指保证RNA聚合酶Ⅱ转录正常起始所必需的、最少的DNA序列,包括转录起始位点及转录起始位点上游TATA区。

(Hogness区)6. 转录(transcription):是在 DNA的指导下的RNA聚合酶的催化下,按照硷基配对的原则,以四种核苷酸为原料合成一条与模板DNA互补的RNA 的过程。

7. 核酶(ribozyme):是具有催化功能的RNA分子,是生物催化剂,可降解特异的mRNA序列。

8.(59)信号肽signal peptide:常指新合成多肽链中用于指导蛋白质的跨膜转移(定位)的N-末端的氨基酸序列(有时不一定在N 端)。

9. 顺式作用元件(cis-acting element):真核生物DNA中与转录调控有关的核苷酸序列,包括增强子、沉默子等。

10.错配修复(mismatch repair,MMR):在含有错配碱基的DNA 分子中,使正常核苷酸序列恢复的修复方式;主要用来纠正DNA双螺旋上错配的碱基对,还能修复一些因复制打滑而产生的小于4nt的核苷酸插入或缺失。

分子生物学名词解释 (2)

分子生物学名词解释 (2)

基因genes:基因是负责编码RNA或一条多肽链的DNA片段,包括编码序列、编码序列外的侧翼序列及插入序列。

是决定遗传性状的功能单位。

结构基因structure genes:基因中编码RNA或蛋白质的DNA序列称为结构基因。

基因组genome:一个细胞或病毒的全部遗传信息。

(细胞或生物体的一套完整单倍体的遗传物质的总和。

)真核生物基因组是指一套完整单倍体DNA(染色体DNA)和线粒体DNA的全部序列,包括编码序列和非编码序列。

GT-AG法则:真核生物基因的外显子与内含子接头处都有一段高度保守的一致性序列,即:内含子5’端大多数是以GT开始,3’端大多是以AG结束。

端粒:以线性染色体形式存在的真核基因组DNA末端都有一种特殊的结构叫端粒。

该结构是一段DNA序列和蛋白质形成的一种复合体,仅在真核细胞染色体末端存在。

端粒DNA由重复序列组成,人类端粒一端是TTAGGG 另一端是AATCCC.操纵子:是指数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位。

所转录的RNA为多顺反子。

操纵元件:是一段能够被不同基因表达调控蛋白质识别和结合的DNA序列,是决定基因表达效率的关键元件。

顺式作用元件:是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的特异DNA序列。

包括启动子、上游启动子元件、增强子、反应元件和poly(A)加尾信号。

反式作用因子:是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节基因转录活性的蛋白质因子。

启动子:是能够被RNA聚合酶特异性识别并与其结合并开始转录的核苷酸序列。

(TATAbox、CAATbox、GCbox)增强子enhancer:是一段短的DNA序列,其中含有多个作用元件,可以特异性地与转录因子结合,增强基因的转录活性。

它可位于被增强的转录基因的上游或下游,也可相距靶基因较远。

分子生物学选择题部分

分子生物学选择题部分

分子生物学选择题部分1、证明DNA是遗传物质的两个关键性实验是:肺炎链球菌在老鼠体内的毒性和T2噬菌体感染大肠杆菌。

这两个实验中主要的论点证据是:( C )(a)从被感染的生物体内重新分离得到DNA,作为疾病的致病剂(b)DNA突变导致毒性丧失(c)生物体吸收的外源DNA(而并非蛋白质)改变了其遗传潜能(d)DNA是不能在生物体间转移的,因此它一定是一种非常保守的分子2、1953年Watson和Crick提出:( A )(a)多核苷酸DNA链通过氢键连接成一个双螺旋(b)DNA的复制是半保留的,常常形成亲本—子代双螺旋杂合链(c)三个连续的核苷酸代表一个遗传密码(d)遗传物质通常是DNA 而非RNA3、原核细胞信使RNA含有几个功能所必需的特征区段,它们是:( D )A.启动子,SD序列,起始密码子,终止密码子,茎环结构B.启动子,转录起始位点,前导序列,由顺反子间区序列隔开的SD序列和ORF,尾部序列,茎环结构C.转录起始位点,尾部序列,由顺反子间区序列隔开的SD序列和ORF,茎环结构D.转录起始位点,前导序列,由顺反子间区序列隔开的SD序列和ORF,尾部序列4、下面哪一项是对三元转录复合物的正确描述( B )A.σ因子、核心酶和双链DNA在启动子形成的复合物B.全酶、模板DNA和新生RNA形成的复合物C.三个全酶在转录起始点形成的复合物D.σ因子、核心酶和促旋酶形成的复合物5、色氨酸操纵子的调控作用是受两个相互独立的系统控制的,其中一个需要前导肽的翻译,下面哪一个调控这个系统?( B )A.色氨酸B.色氨酰-tRNA TrpC.色氨酰-tRNAD.cAMP多选题6、DNA的变性:( ACE )A.包括双螺旋的解链B.可以由低温产生C.是可逆的D.是磷酸二酯键的断裂E.包括氢键的断裂7、DNA在30nm纤丝中压缩多少倍?( C )A.6倍B.10倍C.40倍D.240倍8、tRNA参与的反应有:( BC )A.转录B.反转录C.翻译D.前体mRNA的剪接9、对于一个特定的起点,引发体的组成包括:( AC )A.在起始位点与DnaG引发酶相互作用的一个寡聚酶B.一个防止DNA降解的单链结合蛋白C.DnaB解旋酶和附近的DnaC,DnaT,PriA等蛋白D.DnaB,单链结合蛋白, DnaC,DnaT,PriA蛋白和DnaG引发酶E.DnaB解旋酶,DnaG引发酶和DNA聚合酶lll10、下面哪些真正是乳糖操纵子的诱导物?( CD )A.乳糖B.ONPGC.异丙基-β-半乳糖苷D.异乳糖————————————————————————————————————1.DNA的二级结构指:( C )A:是指4种核苷酸的连接及其排列顺序,表示了该DNA分子的化学构成;B:是指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构;C:是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。

湖北大学2024年硕士研究生自命题考试大纲 927分子生物学基础

湖北大学2024年硕士研究生自命题考试大纲  927分子生物学基础

湖北大学硕士研究生入学考试《分子生物学基础》考试大纲科目代码:927第一部分考试说明一、考试性质全国硕士研究生入学考试是教育主管部门和招生机构为选拔硕士研究生而组织的相关考试,其中生物类研究生的专业课程由我校自行出题,包括《分子生物学基础》考试,其难度标准相当于高校生物类专业优秀本科毕业生能达到的及格或及格以上水平。

二、评价目标《分子生物学基础》试题以中心法则为主线,基本内容包括核苷酸、核酸的结构和功能、真核染色体包装、组蛋白的修饰和功能、DNA的复制、DNA损伤修复、转录及其调控、真核生物RNA拼接、蛋白质翻译及修饰、调控RNA、分子生物学中基本的核酸、蛋白质操作和检测技术等。

试题重点考察以下几个方面:1.正确理解和掌握分子生物学相关的基本概念,能够用准确、恰当的专业术语,合乎逻辑的语言回答相关试题。

2.掌握中心法则中的主要环节,了解遗传信息传递的机制。

3.了解分子生物学发展史和学科前沿,初步掌握相关研究技术手段。

三、考试形式和试卷结构1.答卷方式:闭卷笔试,所列题目全部为必答题。

2.答题时间:180分钟3.题型及比例:名词解释20分;判断题20分;选择题20分,简答题30分;问答题60分,总分150分。

4.英文题约占5%(中英文作答均可),其他为中文题。

四、参考书目分子生物学(Molecular Biology,5th Edition)ISBN9780070368539Robert F.Weaver著,郑用琏等译科学出版社,2013年3月第一版第二部分考查要点一、绪论1.基因的基本概念和中心法则的基本内容2.分子生物学学科发展史,主要涉及著名科学家及其贡献3.分子生物学学科前沿的主要突破性成果以及发展趋势二、生物大分子和染色体1.核苷酸及核酸的化学、物理性质2.DNA的双螺旋结构,核酸的光谱和热力学性质3.原核生物的染色体结构,真核生物从DNA到染色体的包装过程,核小体、常染色质、异染色质的概念三、基因组与蛋白质组1.基因、基因组、基因组学的概念2.基因组复杂度的概念和意义,C0t曲线,C值悖论3.基因组学研究的主要内容和主要方法四、DNA复制1.DNA复制中半保留复制的基本概念以及实验证据2.复制子、复制起点和复制终点的概念3.原核生物DNA复制的基本过程,参与复制的酶、蛋白质因子及其作用4.真核生物DNA复制的基本过程,参与复制的酶、蛋白质因子及其与细胞周期的偶联机制5.保证DNA复制忠实度的机制五、DNA损伤、修复和重组1.突变的概念和诱变剂的种类2.DNA损伤的种类及其原因3.DNA损伤修复的种类及其机制六、分子生物学基本方法1.DNA克隆的基本过程及应用2.载体的种类、特点以及制备3.限制性内切酶和凝胶电泳,连接、转化和重组子的分析4.PCR的基本原理5.核酸测序的基本方法和应用七、原核生物的转录及其调控1.基因表达、转录的概念2.RNA聚合酶的基本组成和各组分的作用3.原核转录的起始、延伸和终止过程,参与的酶和蛋白质因子4.乳糖操纵子的构成及其转录调控机制5.色氨酸操纵子的构成及其转录调控机制八、真核生物的转录及其调控1.三种真核RNA聚合酶的基本特征和功能2.真核RNA聚合酶I所转录的基因及其转录过程3.真核RNA聚合酶II所转录的基因及其转录过程4.真核RNA聚合酶III所转录的基因及其转录过程5.真核转录因子的结构域种类及其特点6.真核转录调控的典型例子九、RNA加工1.真核生物RNA拼接的类型和基本过程2.真核生物的mRNA加帽、加尾等过程3.snRNP、hnRNP、核酶、可变剪切、RNA编辑的概念十、蛋白质合成1.ORF、遗传密码等基本概念,遗传密码子的特点2.tRNA的结构和功能,tRNA的氨酰化反应过程3.核糖体的基本结构和功能4.原核生物蛋白质合成的基本过程5.真核生物蛋白质合成的基本过程6.翻译调控和翻译后加工十一、调控RNA1.RNAi的作用机制和功能2.CRISPR/Cas9及其作用机制。

(完整版)分子生物学填空题部分

(完整版)分子生物学填空题部分

分子生物学填空题部分1、分子生物学研究内容主要包括以下四个方面: DNA重组技术、基因表达调控研究基因组、功能基因组与生物信息学和生物大分子的结构功能研究。

2、原核生物中一般只有一条染色体且大都带有单拷贝基因,只有很少数基因是以多拷贝形式存在,整个染色体DNA几乎全部由功能基因与调控序列所组成。

3、核小体是由H2A、H2B、H3、H4各两个分子生成的 _ 八聚体___ 和由大约200bp DNA组成的。

八聚体在中间,DNA分子盘绕在外,而 H1 则在核小体的外面。

4、错配修复系统根据“保存母链,修正子链”的原则,找出错误碱基所在的DNA链,进行修复。

5、基因表达包括转录和翻译两个阶段,转录阶段是基因表达的核心步骤,翻译是基因表达的最终目的。

6、–10位的 TATA 区和–35位的 TTGACA 区是RNA聚合酶与启动子的结合位点,能与σ因子相互识别而具有很高的亲和力。

7、核糖体小亚基负责对模板mRNA进行序列特异性识别,大亚基负责携带氨基酸及tRNA的功能8、DNA后随链合成的起始要一段短的__ RNA引物___,它是由__ DNA引发酶_ 以核糖核苷酸为底物合成的。

9、帮助DNA解旋的___单链DNA结合蛋白____与单链DNA结合,使碱基仍可参与模板反应。

10、真核生物的mRNA加工过程中,5’端加上_帽子结构__,在3’端加上_多腺苷化尾___,后者由__ poly(A)聚合酶 _催化。

如果被转录基因是不连续的,那么,_内含子__一定要被切除,并通过_剪接___过程将__外显子__连接在一起。

这个过程涉及很多RNA分子,如U1和U2等,它们被统称为_ snRNA ___。

它们分别与一组蛋白质结合形成__ snRNP __,并进一步地组成40S或60S的结构,叫___剪接体___。

-----------------------------------------------------------1.DNA修复包括3个步骤:核酸外切酶对DNA链上不正常碱基的识别与切除, DNA聚合酶I 酶对已切除区域的重新合成,连接酶对剩下切口的修补。

分子生物学讲义-6RNA的生物合成1

分子生物学讲义-6RNA的生物合成1

分子生物学Molecular Biology赵青天津科技大学生物工程学院Email: zhao_qing@前情回顾3. RNA的生物合成(转录 Transcription)3.1 RNA结构、分类与功能3.2 转录基本概念及特点3.3 转录的基本过程3.1 RNA ( r ibo n ucleic a cid) 结构、分类与功能核糖核苷酸是RNA的基本结构和功能单位。

一个核糖核苷酸分子由三个分子组成:一分子磷酸、一分子核糖、一分子含氮碱基。

3.1 RNA ( r ibo n ucleic a cid) 结构、分类与功能核糖和嘧啶,T-U单链线性分子自身折叠RNA can fold into specific structuresRNA的双螺旋结构特征(a) 发夹结构(hairpin);(b)凸结构(bulge);(c) 环结构(loop)2. RNA分类及功能mRNAtRNA3’5’rRNA细胞内总RNA 编码RNA占总量的2% 非编码RNA 占总量的98%前mRNA (hnRNA )mRNA 非编码RNA 前rRNA 前tRNA snRNA snoRNA scRNA tmRNArRNA tRNA所有生物仅真核生物 仅细菌 Small nuclear ribonucleic acids 小核RNA ,主要功能是RNA 剪接 small nucleolar RNAs 小核仁RNA ,主要功能是修饰RNA ,有明确的二级结构 small cytosol RNAs 小胞浆RNA ,是蛋白质定位合成于粗面内质网上所需的信号识别体的组成成分 Transfer-messenger RNA 是一种细菌的RNA 分子有双类似tRNA 和信使RNA 类似物质3.2 转录基本概念及特点转录是指在DNA指导的RNA聚合酶的催化下,按照碱基配对的原则,以4种NTP为原料合成一条与模板DNA互补的RNA的过程。

(1)转录从DNA模板的特定位点(启动子)开始,并在特定位点终止(终止子),此转录区域为一个转录单位(transcription unit)(2)合成方向为5’- 3’, 不需要引物。

《分子生物学》教案

《分子生物学》教案

《分子生物学》教案第一章:分子生物学概述1.1 分子生物学的定义和发展历程1.2 分子生物学的研究内容和方法1.3 分子生物学的重要性和应用领域第二章:DNA与基因2.1 DNA的结构和功能2.2 基因的概念和作用2.3 基因的表达和调控第三章:RNA与蛋白质3.1 RNA的结构和功能3.2 蛋白质的结构和功能3.3 蛋白质合成和调控第四章:酶与催化作用4.1 酶的定义和特性4.2 酶的分类和作用机制4.3 酶的研究方法和应用第五章:分子生物学实验技术5.1 分子克隆与基因工程5.2 PCR技术及其应用5.3 蛋白质分离和鉴定技术5.4 生物信息学在分子生物学中的应用第六章:基因表达调控6.1 基因表达的转录和翻译过程6.2 真核生物的转录调控机制6.3 翻译调控和后修饰机制第七章:蛋白质结构与功能7.1 蛋白质结构的基本层次7.2 蛋白质功能的多样性7.3 结构决定功能的原则第八章:信号传导与细胞代谢8.1 细胞信号传导的基本概念8.2 细胞信号传导的主要途径8.3 信号传导与细胞代谢的调控第九章:基因组学与遗传变异9.1 基因组学的基本概念和方法9.2 基因组结构和变异类型9.3 遗传变异在疾病和进化中的作用第十章:分子生物学在生物技术与医学中的应用10.1 基因克隆与基因治疗10.2 重组蛋白药物的开发与应用10.3 分子诊断与个性化医疗10.4 生物芯片技术及其应用第十一章:分子生物学实验设计与分析11.1 实验设计的原则和方法11.2 实验数据的收集与分析11.3 实验结果的验证与解释第十二章:蛋白质相互作用与网络12.1 蛋白质相互作用的机制12.2 蛋白质相互作用网络的构建与分析12.3 蛋白质相互作用在生物学中的意义第十三章:RNA干扰与基因沉默13.1 RNA干扰机制及其作用13.2 基因沉默技术在研究中的应用13.3 RNA干扰在医学和生物技术领域的应用第十四章:病毒分子生物学14.1 病毒的基本结构与生命周期14.2 病毒基因组的复制与表达14.3 病毒与宿主细胞的相互作用第十五章:分子生物学在生物技术与医学中的应用案例分析15.1 基因治疗与基因编辑技术的应用15.2 生物制药与重组蛋白的应用15.3 分子诊断与个性化医疗的实践案例重点和难点解析第一章:分子生物学概述重点:分子生物学的定义和发展历程,研究内容和方法,重要性和应难点:分子生物学研究方法的理解和应用。

医学分子生物学原理-真核基因表达与调控

医学分子生物学原理-真核基因表达与调控
• 能识别并结合调控区的顺式作用元件; • 对基因表达有正性调节(激活)和负性调节
(抑制)二种方式。 • 其调节机制涉及顺式作用元件、RNA聚合酶
和其它调节蛋白。
(二)转录调节因子分类 (按功能特性)
* 基本转录因子
是RNA聚合酶结合启动子所必需的一组 蛋白因子,决定三种RNA(mRNA、tRNA及 rRNA)转录的类别。TF I;TF II;TF III
一个真核生物基因的转录需要3至5个转 录因子。转录因子之间不同方案组合,生成 有活性、专一性的复合物,再与RNA聚合酶 搭配而有针对性地结合、转录相应的基因。
按不同组合,人类约3.5万个基因,估 计需转录因子300余个即可。
(四)转录起始调控模式
主要通过调节反式作用因子的活性控制转录起始;
反式作用因子(有活性) 反式作用因子(无活性)
为重要,需要2个帽结合蛋白参与(CBP80 和CBP20)
A基因表达
A
B
C
A
B
B基因关闭 D
三、转录后调控
(一)mRNA加帽和加尾的调控意义
• 5′帽子结构的作用:
– 防止mRNA被5′→ 3′核酸酶降解; – 能被帽结合蛋白识别,增强mRNA的可翻译
性,没帽子结构,翻译效率降低; – 促进mRNA从核到胞浆的运输过程; – 增强mRNA的剪接效率, 帽对exon1的剪接尤
• Ⅱ类顺式作用元件包括: 核心启动子( Core promoter),增强子(enhancer),沉 默子(silencer ),及各种反应元件等。
1. 核心启动子( Core promoter)
• Ⅱ类启动子的核心启动子常由TATA盒、位于 TATA盒上游的的上游启动子元件、以转录点 为中心的起始子和下游启动子元件,4个元件 组合而成。

分子生物学-真核生物基因表达调控

分子生物学-真核生物基因表达调控

3 基因重排与交换
将一个基因从远离启动子的地方移到距它很
Hale Waihona Puke 近的位点从而启动转录,这种方式称为基因 重排。
通过基因重排调节基因活性的典型例子是免
疫球蛋白和T-细胞受体基因的表达。
V、C和J基因片段在胚胎细胞中相隔较远。编码产生免疫球蛋白的细胞发 育分化时,通过染色体内DNA重组把4个相隔较远的基因片段连接在一起, 从而产生了具有表达活性的免疫球蛋白基因。
发育早期:只有一个着丝点行使功能,
从头合成型甲基转移酶:催化未甲基化的CpG成 为mCpG
基因丢失
在细胞分化过程中,可以通过丢失掉某些基
因而去除这些基因的活性。某些原生动物、 线虫、昆虫和甲壳类动物在个体发育中,许 多体细胞常常丢失掉整条或部分的染色体, 只有将来分化产生生殖细胞的那些细胞一直 保留着整套的染色体。
一.
基因丢失: 在细胞分化过程中,某些原生动物、线虫 、昆虫等体细胞通过丢失某些基因而除去 这些基因的活性。 马蛔虫:只有一对染色体,染色体上有许 多着丝点。
假基因
是基因组中因突变而失活的基因,无蛋白质产
物。
一般是启动子出现问题。
8.2 DNA水平的基因表达调控
1染色质水平的调节:“开放”型活性染色质
(activechromatin)结构对转录的影响
2基因扩增
3基因重排与交换
4
DNA甲基化与基因活性的调控
1 染色质状态对基因表达的调控
能相关的基因,这些基因成套组合称为基因家族。 如:编码组蛋白、免疫球蛋白和血红蛋白的基因都 属于基因家族 同一家族中的成员有时紧密地排列在一起,成为 一个基因簇(gene cluster) 。
1、简单多基因家族

分子生物学基础第七章真核基因表达的调控第三节真核基因表达转录水平的调控

分子生物学基础第七章真核基因表达的调控第三节真核基因表达转录水平的调控
分子生物学基础
第七章 真核基因表达的调控
第三节 真核基因表达转录水平的调控
一、真核基因转录与染色质结构变化的关系 DNA绝大部分都在细胞核内与组蛋白等结合成染色质, 染色质的结构影响转录,至少有以下现象: 1.染色质结构影响基因转录 在真核细胞中以核小体为基本单位的染色质是真核基 因组DNA的主要存在方式。DNA盘绕组蛋白核心形成核小体, 妨碍了与转录因子及RNA聚合酶的靠近和结合,使基因的 活性受到抑制。 2.组蛋白的作用 组蛋白H1及核心组蛋白共同参与核小体的组装与凝聚。 在特殊氨基酸残基上的乙酰化、甲基化或磷酸化等修饰, 可改变蛋白质分子表面的电荷,影响核小体的结构,从而 调节基因的活性。
第三节 真核基因表达转录水平的调控
图7-6 碱性螺旋-环-螺旋结构图
第三节 真核基因表达转录水平的调控
螺旋-转角-螺旋结构域是最早发现于原核生物中的一个关键因子, 该结构域长约20个aa,主要是两个α-螺旋区和将其隔开的β转角。 其中的一个被称为识别螺旋区,因为它常常带有数个直接与DNA序列 相识别的氨基酸。其结构如图7-3所示。
图7-3 螺旋-转角-螺旋结构及其与 DNA的结合
第三节 真核基因表达转录水平的调控
2.增强子 增强子是指能使基因转录频率明显增加的DNA序列。增强子的作 用有以下特点。 ①增强效应十分明显。一般能使基因转录频率增加10~200倍,有 的可以增加上千倍, ②增强效应与其位置和取向无关。 ③大多为重复序列。 ④增强效应有严密的组织和细胞特异性。说明只有特定的蛋白质 (转录因子)参与才能发挥其功能。 ⑤没有基因专一性,可以在不同的基因组合上表现增强效应。 ⑥许多增强子还受外部信号的调控,如金属硫蛋白的基因启动区 上游所带的增强子,就可以对环境中的锌、镉浓度做出反应。 ⑦增强子要有启动子才能控

分子生物学9

分子生物学9

均有两个较大的亚基(> 100 kD) 另有多个较小的亚基(大部分 < 50 kD)
三种聚合酶都有一些共有亚基 (common subunit)
以酿酒酵母 (Saccharomyces cerevisiae) 的 Pol II为参照:Rpb5、Rpb6、Rpb8、
3
Large subunits Common subunits
4
四、真核生物的基因转录及其调控
1. 真核生物的RNA聚合酶 (3)RNA聚合酶II的结构 研究得比较清楚的一种 有12个亚基(Saccharomyces cerevisiae中)
Rpb1、 Rpb2、 Rpb3、 Rpb4、 Rpb5、 Rpb6、 Rpb7、 Rpb8、 Rpb9、 Rpb10、 Rpb11、 Rpb12
1
hnRNA: heterogeneous nuclear RNA (核不均一RNA)
snRNA: small nuclear控
1. 真核生物的RNA聚合酶 (2)真核RNA聚合酶的亚基组成 Polymerase I、II、III都由多个亚基组
Carboxyl terminal domain, CTD (羧基末端域): A repeating string of Tyr-Ser-Pro-Thr-Ser-Pro-Ser
15
四、真核生物的基因转录及其调控
1. 真核生物的RNA聚合酶 (3)RNA聚合酶II的结构 在体内,含IIa的聚合酶II为RNA
Rpb1, Rpb2, Rpb3,对聚合酶的活性必不 可少
分别与原核RNA聚合酶的’, 和亚基同 源,且功能也基本相同(Rpb3在聚合酶中 也是有2个拷贝)
9
Regions of homology between yeast Rpb1 and E. coli ’ and between Rpb2 and
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. RNA Pol I promoters in human cells are best characterized.
•Core element: -45 to +20, sufficient for transcription initiatiation.
•UCE: -180 to -107, to increase the transcription efficiency.
SL1 consists of 4 proteins
1. TBP (TATA-binding protein)
a factor also required for initiation by RNA Pol II and III. A critical general factor in eukaryotic transcription that ensures RNA Pol to be properly localized at the startpoint.
RNA Pol I genes:
the ribosomal repeats
Ribosomal RNA Genes & nucleolus
1. A copy of 18S, 5.8S and 28S rRNA genes is organized as a single transcription unit in eukayotes. A 45S rRNA transcript (~13 000 nt long) is produced during transcription, which is then processed into 18S, 5.8S and 28S rRNA.
RNA Pol I promoters
1. Generally consists of a bipartite sequence in the region preceding the start site, including core element and the upstream control elements (UCE).
RNA Pol I Nucleoli Most rRNAs gene Insensitive
RNA Pol II
Nucleoplasm All protein-coding genes and some snRNA genes
Very sensitive
RNA Pol III Nucleoplasm tRNAs, 5S rRNA, U6 snRNA and other small RNAs
5. The CTD is unphosphorylated at transcription initiation, and phosphorylation occurs during transcription elongation as the RNA Pol II leaves the promoter (In vitro results).
•Both regions are rich in G:C, with ~85% identity.
Upstream binding factor (UBF)
A specific DNA-binding protein that binds to UCE, as well as a different site in the upstream of the core element, causing the DNA to loop between the two sites. (two binding sites have no obvious similarity) •UBF is essential for high level of transcription, and low level of expression occurs in its absence.
Simple initiation
TIF -1(homolog of SL-1) binds to the promoter RNA Pol
I bind
TIF-1 remains bound and the RNA Pol I is
released for elongation.
RNA Pol III genes: 5S and tRNA transcription
4.The arrays of rRNA genes (rRNA cluster) loop together to form the nucleolus and are known as nucleolar organizer regions.
5. During active rRNA synthesis, the pre-rRNA transcripts are packaged along the rRNA genes, visualizing in the electronic microscope as “Christmas tree structures”.
2. Pre-rRNA transcription units are arranged in clusters in the genome as long tandem arrays separated by nontranscribed spacer squences.
3. Continuous transcription of multiple copies of rRNA genes by RNA Pol I is essential to produce sufficient rRNAs which are packaged into ribosomes.
Moderately sensitive
α-amanitin
The sensitivities of three kinds of RNA polymerases on αamanitin
RNA polymerase subunits
Each eukaryotic polymerase contains 12 or more subunits. –the two largest subunits are similar to each other and to the β’and β subunits of E. coli RNA Pol. –There is one other subunit in all three RNA Pol homologous to α subunit of E. coli RNA Pol. –Five additional subunits are common to all three polymerases. –Each RNA Pol contains additional four or seven specific subunit.
3. Three eukaryotic polymerases transcribe different sets of genes. The activities of these polymerases are distinguished by their sensitivities to the fungal toxin α-amanitin.
Selectivity factor 1 (SL1)
1. Does not bind to promoters by itself 2. Binds to and stabilizes the UBF-DNA complex. 3. Interacts with the free downstream part of the core element. 4. Recruit RNA Pol I to bind and to initiate the transcription.
4. In addition, eukaryotic cells contain additional RNA Pols in mitochondria and chloroplasts.
Three eukaryotic polymerases
Typeቤተ መጻሕፍቲ ባይዱ
Location Substrate
α-amanitin
Tyr-Ser-Pro-Thr-Ser-Pro-Ser 3. This repeated sequence is known as carboxyl terminal domain (CTD) 4. The CTD sequence may be phosphorylated at the serines and some tyrosines
Transcription in Eukaryotes
The three RNA Polymerases
characterization and function
Main Features of eukaryotic transcription
1.The mechanism of eukaryotic transcription is similar to that in prokaryotes. 2.A lot more proteins are associated with the eukaryotic transcription machinery, which results in the much more complicated transcription.
RNA polymerase activities
1. Transcription mechanism is similar to that of E. coli polymerase. Direction: 5’ 3’ 2.Different from bacterial polymerasae, they require accessory factors for DNA bind
相关文档
最新文档