气压制动系统的主要构造元件和工作原理

合集下载

气压制动器工作原理

气压制动器工作原理

气压制动器工作原理
一、气压制动器的概述
1.气压制动器的定义
2.气压制动器的作用
二、气压制动器的组成部分
1.气压制动器的主要组成部分
–气缸
–气阀
–制动鼓
–制动片
–制动蹄
–制动杆
2.气压制动器的工作原理
三、气压制动器的工作原理
1.制动工作时的步骤
–踩下制动踏板
–活塞产生力量
–释放制动时的步骤
–制动杆复位
–制动片与制动鼓分离
2.工作原理的详细解释
–制动气缸的工作原理
–制动阀的工作原理
–制动蹄的工作原理
–制动力的传递与释放
四、气压制动器的优缺点分析
1.优点
–制动力强大
–刹车距离短
–控制灵活
2.缺点
–维护成本高
–容易受到外界环境影响
五、气压制动器的应用领域
1.汽车行业
2.铁路行业
3.航空航天行业
六、气压制动器的发展趋势
1.智能化技术
2.节能环保技术
3.提高制动效率的技术创新
七、结语
总结气压制动器的工作原理和应用领域,展望其未来的发展趋势。

电动车的气压制动系统

电动车的气压制动系统

电动车的气压制动系统概述气压制动系统是电动车中一种常见的制动系统,其原理是利用气压将制动器施加在车轮上,实现制动效果。

本文将介绍电动车的气压制动系统的工作原理、组成局部以及维护保养方法等内容。

工作原理电动车的气压制动系统主要由制动阀、制动气缸、推杆、制动垫等组成。

当驾驶员踩下制动踏板时,制动阀会翻开,释放气压到制动气缸中。

制动气缸中的气压会推动推杆,使其连接的制动垫接触到车轮,产生摩擦力,从而实现制动效果。

组成局部1.制动阀:控制气压传递的设备,通常由踏板控制。

2.制动气缸:将气压转化为机械力的装置,通常有两个气缸,每个气缸连接一个车轮制动器。

3.推杆:通过气压推动制动垫与车轮接触的杆状装置,一般位于制动气缸与制动垫之间。

4.制动垫:与车轮接触并产生摩擦力的局部,通常由摩擦材料制成。

维护保养方法1.定期检查制动气缸的密封情况,确保气压不会泄漏。

2.检查制动阀的工作状态,确保能正常翻开和关闭。

3.观察制动垫的磨损情况,如发现磨损过大,及时更换。

4.检查推杆的工作状态,确保能顺利推动制动垫。

5.定期清洁和润滑制动器部件,以确保其正常工作。

优点1.气压制动系统具有较高的制动效果和稳定性,适用于各种行驶状态。

2.由于制动阻力相对较小,可以减少能量消耗。

3.气压制动系统可靠性高,维护本钱低。

缺点1.气压制动系统的制动力度通常较大,驾驶员在操控时需要有一定的经验和技巧。

2.系统复杂,维修和维护较为困难。

结论电动车的气压制动系统是一种常见的制动系统,通过利用气压将制动器施加在车轮上,实现制动效果。

该系统具有较高的制动效果和稳定性,同时具备可靠性高和维护本钱低的优点。

然而,驾驶员在操控时需要有一定的经验和技巧,并且系统的复杂性使得维修和维护较为困难。

因此,在使用气压制动系统的电动车时,驾驶员需要特别注意制动的力度和操控的技巧,同时定期进行维护保养,以确保制动系统的正常工作和平安行驶。

气压制动系统工作原理

气压制动系统工作原理

气压制动系统工作原理
气压制动系统是一种常用的车辆制动系统,它通过利用气压的力量来控制车辆的制动,以保证行车安全。

气压制动系统工作原理是基于气压传递和控制的,下面我们来详细了解一下它的工作原理。

气压制动系统主要由气压供应系统、制动器、控制阀和管路组成。

气压供应系统主要由压缩机、气罐、干燥器和过滤器组成,它们的作用是提供压缩空气并对其进行处理,以确保制动系统的正常工作。

当车辆进行制动时,制动踏板被踩下,通过控制阀将气压传递到制动器。

制动器是气压制动系统中重要的组成部分,它由活塞和制动鼓组成。

当气压进入制动器时,活塞被推动,制动鼓开始旋转,并产生制动力,以减缓车辆的速度。

制动器的制动力大小可以通过调节控制阀来控制。

气压制动系统的优点是它能够提供更强的制动力,并且具有制动稳定、可靠性高等特点。

此外,由于气压制动系统采用了气压传递和控制的原理,所以在一些特殊的工况下,例如在坡道上行驶或车辆发生故障时,驾驶员仍然能够通过控制系统来保证车辆的安全。

然而,气压制动系统也存在一些缺点。

由于其结构较为复杂,需要对其进行一定的维护和保养。

此外,气压制动系统在低温环境下容易出现冻结现象,影响制动性能。

气压制动系统是一种常用的车辆制动系统,其工作原理是通过气压传递和控制来实现的。

虽然其具有一些缺点,但在保证行车安全方面具有重要的作用。

因此,在日常驾驶中,我们需要对气压制动系统进行定期维护和保养,以确保其正常工作。

气压制动器工作原理

气压制动器工作原理

气压制动器工作原理
一、引言
气压制动器是一种常见的制动装置,广泛应用于各种机械设备和交通
工具中。

本文将详细介绍气压制动器的工作原理。

二、气压制动器的组成
气压制动器主要由以下几个部分组成:
1. 活塞:用于产生推力;
2. 弹簧:用于回弹;
3. 摩擦片:用于与摩擦面接触;
4. 气缸:用于存储和释放空气;
5. 阀门:用于控制空气流向。

三、气压制动器的工作原理
1. 制动过程中,当踏下刹车踏板时,空气从供应系统进入到制动阀中。

此时,阀门处于关闭状态,空气无法流入活塞室。

2. 当松开刹车踏板时,空气从供应系统进入到活塞室中。

此时,活塞
受到了推力,并将摩擦片与摩擦面接触。

3. 当需要停止运行时,驾驶员会踩下刹车踏板。

此时,阀门打开并释
放活塞室中的空气。

由于弹簧的作用,活塞会回到初始位置,并将摩
擦片与摩擦面分离。

4. 当需要启动时,驾驶员会松开刹车踏板。

此时,制动阀关闭并将空气从供应系统中引入到气缸中。

由于气缸内部的压力增加,活塞受到推力并将摩擦片与摩擦面接触。

四、气压制动器的优点
1. 操作简便:只需踩下或松开刹车踏板即可实现制动和解除制动;
2. 制动效果好:由于空气的压力大,所以制动效果比较稳定;
3. 适用范围广:气压制动器不仅适用于汽车、火车等交通工具,还可以应用于各种机械设备中。

五、总结
通过本文的介绍,我们了解了气压制动器的组成和工作原理,并了解了它的优点。

在实际应用中,我们需要根据具体情况选择合适的气压制动器,并注意维护和保养。

气压制动系统地主要构造元件和工作原理

气压制动系统地主要构造元件和工作原理

气压制动系统的主要构造元件和工作原理气压制动以压缩空气为制动源,制动踏板控制压缩空气进入车轮制动器,所以气压制动最大的优势是操纵轻便,提供大的制动力矩;气压制动的另一个优势是对长轴距、多轴和拖带半挂车、挂车等,实现异步分配制动有独特的优越性。

但是气压制动的缺点也很明显:相对于液压制动,气压制动结构要复杂的多;且制动不如液压式柔和、行驶舒适性差;所以气压制动因而一般只用于中、重型汽车上。

下面主要以斯太尔8X4载重汽车为例介绍气压制动传动装置主要部件的结构组成。

1.空气压缩机空气压缩机是全车制动系气路的气源,斯太尔6X4载重汽车空气压缩机为单缸混合冷却式,气缸体为风冷,气缸盖通过发动机冷却系统水冷。

它固定在发动机前端左侧的支架上,它的传动齿轮与其曲轴为高扭矩自锁连接,在正时齿轮室中悬臂安装,由发动机曲轴通过中间齿轮、喷油泵齿轮、空气压缩机传动轴驱动转动,其构造如图18. 5 所示,与汽车发动机机构相似,它主要由空气压缩机壳体1、活塞2、曲轴3、单向阀4等组成。

壳体由气缸体、气缸盖组成,壳体是铸铁的,外面带有用于空气冷却的散热筋片,里面是用于产生压缩空气的气缸。

进、排气阀门采用舌簧结构,进气口经气管通向空气滤清器;出气口则经气管通向空气干燥器。

润滑油由发动机主油道经油管、滚珠轴承,进入曲轴箱,然后经正时齿轮室回到油底壳。

活塞通过连杆与曲轴相连,连杆轴承合金直接浇注在连杆大头和连杆瓦盖上,活塞通过活塞环与气缸密封。

曲轴两端通过滚珠轴承支承在曲轴箱,前后有轴承盖,前端伸出盖外用半圆键及螺母固装传动齿轮,前端孔分另1J 装有防止漏油的油封。

发动机运转时,空气压缩机随之转动,当活塞下行时,进气阀门被打开,外界空气经空气滤清器、进气道进人气缸。

当活塞上行时,进气阀门被关闭,气缸空气被压缩,出气阀门在压缩空气的作用下被打开,压缩空气由空气压缩机出气口经管路、空气干燥器进人储气筒和四管路保护阀。

2.空气干燥器空气干燥器吸收压缩空气中的水,为制动气路提供清洁干燥的压缩空气。

气压制动系统的主要构造元件和工作原理

气压制动系统的主要构造元件和工作原理

气压制动系统的主要构造元件和工作原理气压制动系统是一种广泛应用于汽车、火车和飞机等交通工具中的重要安全装置。

它通过利用气体压力来实现车辆的制动,保证行驶过程中的安全性。

本文将介绍气压制动系统的主要构造元件和工作原理。

一、气压制动系统的构造元件1. 气压制动器:气压制动器是气压制动系统的核心部件之一。

它由气缸、活塞和制动鼓等组成。

当制动踏板被踩下时,制动液体通过管道传递到气缸中,推动活塞向外运动,使制动鼓受到压力,从而实现制动效果。

2. 空气压缩机:空气压缩机是气压制动系统的动力来源。

它通过压缩空气来提供系统所需的气压。

空气压缩机通常由发动机驱动,将外界空气经过滤清器后进行压缩,并将压缩空气送入气压制动系统中。

3. 空气储气罐:空气储气罐是气压制动系统的气源储存装置。

它通常由多个气缸组成,用于储存压缩空气,以便在需要时提供足够的气压。

空气储气罐还可以平衡气压系统的波动,保证制动系统的稳定性。

4. 制动阀门:制动阀门是气压制动系统的控制装置。

它根据驾驶员的操作指令,控制气压的流动和分配,从而实现制动的灵活控制。

常见的制动阀门包括制动踏板阀、制动缓冲阀和制动分配阀等。

二、气压制动系统的工作原理气压制动系统的工作原理基于气体的压力传递和释放。

下面将介绍气压制动系统的工作过程。

1. 制动准备阶段:当驾驶员踩下制动踏板时,制动液体从主缸流入气压制动器中,推动活塞向外运动。

同时,空气压缩机开始工作,将外界空气压缩并送入空气储气罐中。

2. 制动施加阶段:当制动踏板被踩下一定深度时,制动阀门打开,将储存在空气储气罐中的压缩空气送入气压制动器中。

气压推动活塞向外运动,使制动鼓受到压力,车辆开始减速或停止。

3. 制动释放阶段:当驾驶员松开制动踏板时,制动阀门关闭,制动器内的压缩空气被释放,活塞回到原位,制动鼓不再受到压力。

车辆恢复正常行驶状态。

总结起来,气压制动系统通过气压传递和释放来实现车辆的制动。

驾驶员通过操作制动踏板,控制制动阀门的开闭,从而调节气压的流动和分配,实现车辆的灵活制动。

气压制动系统的主要构造元件和工作原理

气压制动系统的主要构造元件和工作原理

气压制动系统的主要构造元件和工作原理气压制动系统是一种常见的车辆制动系统,它通过利用气压来实现制动功能。

气压制动系统主要由以下几个构造元件组成:空气压缩机、气压储气罐、制动阀组、制动踏板、制动缸、制动盘(或制动鼓)、制动片(或制动鞋)等。

1. 空气压缩机:空气压缩机是气压制动系统的核心部件之一,它负责将空气压缩成高压气体,并将其送入气压储气罐中。

常见的空气压缩机有活塞式和螺杆式两种。

2. 气压储气罐:气压储气罐是用来存储高压气体的容器,它起到平衡气压和缓冲气压波动的作用。

储气罐通常安装在车辆底盘上,数量根据车辆的需求而定。

3. 制动阀组:制动阀组是气压制动系统的控制中心,它由多个阀门组成,负责控制气压的流动和分配。

常见的制动阀有进气阀、排气阀、制动力调节阀等。

4. 制动踏板:制动踏板是驾驶员操作的部件,通过踩踏不同的力度来控制制动力的大小。

制动踏板通过连杆和制动阀组相连,将驾驶员的踩踏力量转化为制动力。

5. 制动缸:制动缸是将气压转化为机械力的装置,它分为主缸和从缸两部分。

主缸接受制动踏板的力量,并将其转化为推动从缸活塞的力量,从而实现制动效果。

6. 制动盘(或制动鼓):制动盘(或制动鼓)是气压制动系统的摩擦部件,它与车轮相连,通过制动片(或制动鞋)的摩擦来产生制动力。

制动盘通常由铸铁或钢铁制成,具有良好的散热性能和耐磨性能。

7. 制动片(或制动鞋):制动片(或制动鞋)是与制动盘(或制动鼓)接触的摩擦材料,它通过与制动盘(或制动鼓)的摩擦来实现制动效果。

制动片通常由摩擦材料、支撑材料和胶合剂组成。

气压制动系统的工作原理如下:1. 制动系统准备阶段:当驾驶员踩下制动踏板时,制动踏板的力量通过连杆传递给制动阀组。

制动阀组接收到信号后,将空气压力传递给制动缸。

2. 制动力传递阶段:制动缸接收到来自制动阀组的气压信号后,将气压转化为机械力,推动制动片(或制动鞋)与制动盘(或制动鼓)接触。

制动片与制动盘(或制动鼓)之间的摩擦产生制动力,使车辆减速或停止。

气压制动系的结构组成及工作原理

气压制动系的结构组成及工作原理

气压制动系的结构组成及工作原理以气压制动系的结构组成及工作原理为标题,我们来详细介绍一下。

一、结构组成气压制动系统主要由以下几个部分组成:1. 气压供应系统:包括气压发生器、压缩机、储气罐等。

气压发生器通过压缩机将空气压缩储存到储气罐中,以提供给制动系统使用。

2. 制动阀门系统:包括制动阀门和控制阀门等。

制动阀门用于控制气压的传递和释放,实现制动的开启和关闭。

控制阀门则根据驾驶员的操作信号来控制制动的力度和程度。

3. 制动执行器:包括制动缸和制动皮碗等。

制动缸是气压制动系统的核心部件,通过气压的作用使制动力传递到制动器上,从而实现制动效果。

制动皮碗则起到增加摩擦力的作用,提高制动效果。

4. 制动器:包括制动鼓和制动片等。

制动鼓固定在车轮上,制动片则与制动鼓相接触,通过摩擦产生制动力,使车辆减速或停止。

二、工作原理气压制动系统的工作原理是利用气压传递制动力,实现车辆制动的过程。

具体工作原理如下:1. 制动开启阶段:当驾驶员踩下制动踏板时,控制阀门接收到信号,打开制动阀门。

气压从储气罐中进入制动缸,使制动缸内的活塞向外运动。

同时,制动缸内的活塞推动制动皮碗向制动鼓施加压力。

制动鼓与制动片之间的摩擦力产生,使车辆减速。

2. 制动力调节阶段:根据驾驶员的制动力需求,控制阀门可以调节气压的大小,进而调节制动力的大小。

当驾驶员需要增加制动力时,控制阀门将更多的气压传递到制动缸,增加制动力的大小。

反之,当驾驶员需要减小制动力时,控制阀门降低气压传递到制动缸,减小制动力的大小。

3. 制动关闭阶段:当驾驶员松开制动踏板时,控制阀门关闭制动阀门。

此时,气压不再传递到制动缸,制动缸内的气压逐渐释放。

制动皮碗与制动鼓之间的接触力减小,车辆恢复正常行驶状态。

总结:气压制动系的结构组成主要包括气压供应系统、制动阀门系统、制动执行器和制动器等部分。

其工作原理是通过控制阀门调节气压的传递和释放,实现制动力的产生和调节。

通过这样的工作原理,气压制动系统能够有效地实现车辆的制动功能,提高行车安全性。

《气压制动系统》课件

《气压制动系统》课件

气压制动系统的维护与保养
气压制动系统的保养方 法
定期检查气压制动系统的气 路系统、制动器等部件,并 及时清洁和更换损坏的部件。
气压制动系统的常见故 障及处理方法
了解常见故障的原因,采取 相应的处理措施,确保气压 制动系统的正常运行。
气压制动系统Biblioteka 定期检 修为了保证气压制动系统的安 全和可靠性,定期进行全面 的检修和维护工作。
气压制动系统的发展与前景
1
气压制动系统的发展历程
气压制动系统已有数十年的历史,在过去的几十年里不断得到改进和完善。
2
气压制动系统的未来发展趋势
随着科技的发展,气压制动系统将更加智能化、安全可靠,并且在能源利用效率上有更大的 突破。
3
气压制动系统在工业与交通运输中的应用展望
气压制动系统将在工业和交通运输领域继续发挥重要作用,促进行业的发展和交通的安全。
气压制动系统的组成部 分
气压制动系统由气压发生器、 气路系统、制动器以及控制 装置等组成,每个部分都起 着重要的作用。
制动系统的安全性
1 制动系统的安全性重要性
可靠的制动系统对于车辆的安全至关重要,它保证了驾驶员在紧急情况下能够及时停车。
2 制动系统的故障检测
定期检查制动系统的工作状况,及时发现和解决故障,确保制动系统的正常运行。
3 制动系统的安全保障措施
制动系统还配备了安全保护装置,如制动助力器、防抱死系统等,提供额外的安全保障。
制动系统的优缺点
气压制动系统相对于其他制动系统的优势
相比于其他制动系统,气压制动系统具有更强的制 动力、更短的制动距离以及更好的耐用性。
气压制动系统相对于其他制动系统的不足
与其他制动系统相比,气压制动系统的维护成本较 高且需要专业的技术人员进行检修和维护。

气压制动原理

气压制动原理

气压制动原理
气压制动是一种常见的制动系统,常用于大型汽车、火车和飞机等。

其原理是利用压缩空气的力量来实现制动效果。

首先,气压制动系统由气压发生器、气压储存罐、气压控制阀和制动器等组成。

气压发生器将空气压缩使其达到一定压力,并将其储存到气压储存罐中。

当司机踩下制动踏板时,气压控制阀会打开,释放储存在气压储存罐中的气压。

这些气压将通过气管传递到制动器中。

制动器中的气压将对制动器的活塞施加压力,从而使制动器的摩擦片与制动盘或制动鼓接触。

摩擦片与制动盘或制动鼓之间的摩擦力将车辆的轮胎减速或停止。

当司机松开制动踏板时,气压控制阀关闭,停止释放气压。

此时,制动器中的气压会自动释放,使摩擦片与制动盘或制动鼓分离,车辆恢复行驶。

总之,气压制动利用气压的力量来实现制动效果。

通过控制气压的释放和施加,可以实现车辆的减速和停止。

这种制动系统具有可靠性高、制动效果稳定等优点,在大型车辆和机械设备中得到广泛应用。

气压制动的工作原理

气压制动的工作原理

气压制动的工作原理
气压制动是一种常用于汽车和大型货车的制动系统,它通过利用气压来实现制动操作。

其工作原理如下:
1. 压缩空气产生
气压制动系统利用了车辆发动机压缩空气产生的气压。

当发动机运转时,它会压缩进入汽缸内的空气,并将其推送到气压制动系统中的空气压缩机。

2. 储气罐储存气压
空气压缩机将压缩空气推送到储气罐中,以便将气压储存起来。

储气罐通常位于车辆底盘或车身的一个安全位置,并且可以容纳足够多的气压,以供汽车在需要的时候使用。

3. 制动器激活
当驾驶员踩下制动踏板时,气压制动系统中的气压会被释放出来,通过气压管路进入制动器。

4. 制动力产生
制动器内的气压通过活塞或其他机械装置产生力量,使制动盘或制动鼓受到压力。

这会导致制动盘或制动鼓与车轮接触,从而产生摩擦力,减低车辆的速度或使其停止。

5. 气压回收
当驾驶员释放制动踏板时,气压制动系统中的气压会自动回收。

气压回收装置会将气压回收到储气罐中,以便下一次制动时继续使用。

需要注意的是,气压制动系统需要保持正常的气压才能正常工作。

为了确保制动系统的可靠性,车辆需要定期检查气压,及时修理和更换相关的部件,以保持制动系统的良好状态。

汽车气动刹车原理

汽车气动刹车原理

汽车气动刹车原理
汽车气动刹车是一种运用气体压力控制刹车装置的制动系统。

它的工作原理是通过增加气体压力来实现刹车操作。

当驾驶员踩下刹车踏板时,气体压力被传递到刹车系统中的刹车主缸,主缸内的活塞就会向刹车鼓施加力。

在气动刹车系统中,刹车鼓是主要的执行器。

刹车鼓一般由弹簧和经过钢丝缠绕的活塞组成。

当气体压力传递到刹车鼓时,活塞就会向外移动,从而使刹车鼓与车轮摩擦,产生制动力。

为了提高刹车的效果和稳定性,气动刹车系统通常会配备一个恒定的压力控制器。

这个控制器可以保持气体的压力在一个恒定的范围内,从而使刹车力始终保持在一个稳定的水平上。

值得注意的是,气动刹车系统中的压力是由气体生成的。

这种气体通常是由车辆的压缩机或者压缩空气储存罐提供的。

在刹车操作时,气体会被释放出来,从而产生所需的刹车力。

总之,汽车气动刹车的原理是通过增加气体压力来实现刹车操作。

它的工作过程中需要刹车主缸、刹车鼓和压力控制器等部件的协同作用,以实现安全有效的制动效果。

气压盘式制动工作原理与构造

气压盘式制动工作原理与构造

17
工作原理介绍分以下7个阶段:如图2所示为自调机构 初始位置,调整套间隙槽的下侧面与拨销21为线接触,而 且调整套间隙槽尺寸比拨销21的直径大X,该X值即为正 常间隙C设计折算的拨销21转动量。 制动过程: 1、正常间隙C: 以支架14为主体,自调装置安装在主螺管6上,副螺 管1通过传动齿轮15与主螺管6保持同步运动。制动时,凸 轮22下压带动拨销21一起转动,而且,整个自调机构相对固 定基准面开始往下运动以消除正常间隙C,拨销21也开始
图1 制动器总成工作原理简图 1、副钳体 2、左制动块 3、右制动块 4、自调机构 5、气室 6、密封帽 7、主钳体 8、密封胶 9、制动盘 10、托架 11、滑销密封圈 12、滑销
浙江隆中气压盘式制动器工作原理
工作原理简介:参考图1所示,托架10在车桥上安装不 动,轴向固定的制动盘9在旋转中,当气室5输入压力F1时, 气室5的推杆推动自调机构4向左伸出,从而消除了右制 动块3与制动盘9右侧面的间隙,并开始输出压力F2传递给 右制动块3。此时,右制动块3将压力F2压在旋转的制动盘9 上,由于制动盘9的轴向移动受限制,因此制动盘9将F2的 反作用力经过自调机构4传回到主钳体7;同时,主钳体7又 把F2的反作用力通过联接螺栓传给副钳体1,使得副钳体1 受到一个向右侧的拉力并开始浮动;由于滑销12在托架 10上固定不动,并对主钳体7和副钳体1仅起支承、防转 动而不限制左右浮动的作用;随着自调机构4的不断伸出, 副钳体1和主钳体7都同时向右侧浮动,直到左制动块2与 制动盘9左侧面之间的间隙被消除为止。此时,副钳体1 就对左制动块2产生压力F3,这样左制动块2和右制动块3 就以F2=F3的制动力压在制动盘9的两侧面上,并产生制动 力矩T,最后将旋转的制动盘9刹住。
浙江隆中气压盘式制动器工作原理

气压盘式制动工作原理

气压盘式制动工作原理

气压盘式制动工作原理
气压盘式制动是一种常见的制动系统,广泛应用于大型商用车
辆和重型机械设备中。

它的工作原理是利用气压来产生制动力,从
而实现车辆或机械设备的安全停车。

气压盘式制动系统由几个主要部件组成,包括气压制动缸、制
动鼓、制动片和气压控制阀。

当司机踩下制动踏板时,气压控制阀
会释放气压到气压制动缸中。

气压制动缸中的气压会推动制动片与
制动鼓接触,从而产生摩擦力,使车辆或机械设备减速停止。

气压盘式制动系统的工作原理与传统的摩擦制动系统有所不同。

它利用气压传递力量,而不是直接通过踏板和液压系统传递力量。

这种设计使得气压盘式制动系统更适用于大型车辆和机械设备,因
为它可以产生更大的制动力,并且不容易受到高温和湿润环境的影响。

此外,气压盘式制动系统还具有自动调节制动力的功能。

当制
动片磨损时,气压制动缸会自动调整气压,以保持制动力的稳定性
和可靠性。

总的来说,气压盘式制动系统通过利用气压来产生制动力,从而实现车辆或机械设备的安全停车。

它的工作原理简单而有效,使得它成为大型车辆和机械设备中常用的制动系统之一。

《气压制动系统》课件

《气压制动系统》课件
工业机械
在工程机械、农业机械和其他工业机械中,气压 制动系统用于控制机械运动和提供制动保障。
气压制动系统的优缺点分析
优点
气压制动系统具有制动稳定、响应速度快、可靠性高等优点 ,能够满足不同领域的制动需求。
缺点
气压制动系统存在对气源的依赖,气源压力波动会影响制动 性能,同时维护成本相对较高。
气压制动系统的发展趋势与展望
2023-2026
ONE
KEEP VIEW
《气压制动系统》ppt 课件
REPORTING
CATALOGUE
目 录
• 气压制动系统概述 • 气压制动系统的部件 • 气压制动系统的操作与维护 • 气压制动系统的故障诊断与排除 • 气压制动系统的应用与发展趋势
PART 01
气压制动系统概述
定义与工作原理
将压缩空气转换成机械能,推动 制动器产生制动力。
制动器的种类
主要有鼓式、盘式等类型,根据车 辆类型和用途选择合适的制动器。
制动器的维护
定期检查制动片的磨损情况、制动 液的清洁度等,确保制动性能良好 。
储气罐
储气罐的功能
储存压缩空气,为气压制动系统 提供稳定的压力源。
储气罐的容量选择
根据车辆的用途和行驶里程,选 择合适容量的储气罐。
PART 04
气压制动系统的故障诊断 与排除
气压制动系统常见故障及原因
气压制动系统无法启动
可能是由于电源故障、启动电路故障或控制 阀故障等原因。
气压表显示异常
可能是由于传感器故障或线路故障等原因。
制动效果不佳
可能是由于制动蹄片磨损、制动管路漏气或 制动液不足等原因。
气瓶压力不足
可能是由于气瓶压力传感器故障或气瓶本身 故障等原因。

气压制动的工作原理

气压制动的工作原理

气压制动的工作原理
气压制动是一种使用气压原理来实现制动功能的系统。

其工作原理主要包括以下几个步骤:
1. 压缩空气供应:气压制动系统通过压缩空气为其提供动力。

一般来说,这些压缩空气通过发动机产生,经过压缩机加压,并通过管道输送到制动系统中。

2. 储气罐储存:由于需要稳定的气压供应,气压制动系统通常配备有储气罐。

这些储气罐可以储存一定的压缩空气,以应对突然的制动需求。

3. 制动踏板操作:当驾驶员踏下制动踏板时,压力通过管道传递到刹车阀。

刹车阀会打开,允许压缩空气进入制动器。

4. 制动器工作:制动器是气压制动系统的关键部分,用于实现制动功能。

根据车辆的不同部位,制动器可以分为车轮制动器(例如碟式刹车)和驻车制动器(例如手刹)等。

压缩空气进入制动器后,通过释放空气的方式产生制动力,使车辆减速甚至停止。

5. 制动力释放:当驾驶员释放制动踏板时,制动系统中的压缩空气会排出,制动器停止工作,车辆恢复正常行驶。

总体而言,气压制动的工作原理是通过压缩空气的力量驱动制动器工作,实现车辆制动的目的。

汽车气压制动系统结构分析及优化

汽车气压制动系统结构分析及优化

汽车气压制动系统结构分析及优化汽车气压制动系统是指利用气压作为能源的制动系统。

它主要由气压源、制动阀、制动缸、制动蹄片等构成。

本文将对汽车气压制动系统的结构进行分析,并提出一些优化的建议。

1. 气压源:汽车气压制动系统的能源是压缩空气,通常由气压泵提供。

气压源通常安装在车辆的发动机上,通过带动的方式产生压缩空气。

气压源的输出压力一般在6至12巴之间。

2. 制动阀:制动阀起到气压的调节和分配作用。

它通常由三个部分组成:主制动阀、挤压阀和分配阀。

主制动阀用于控制制动系统的气压供应和释放;挤压阀用于控制制动力的大小和平衡;分配阀用于分配气压到各个制动蹄片。

3. 制动缸:制动缸是将气压转化为制动力的关键部件。

它通常由气压驱动并带动制动蹄片。

制动缸的结构包括气缸和活塞。

当气压通过主制动阀和挤压阀到达制动缸时,活塞会受到气压的作用而向前移动,从而带动制动蹄片与制动盘或制动鼓接触,产生制动力。

4. 制动蹄片:制动蹄片是制动系统与制动盘或制动鼓接触的部分。

制动蹄片通常由摩擦材料制成,当制动力施加在制动蹄片上时,摩擦力会产生摩擦热,从而将动能转化为热能。

优化建议:1. 提高气压源的效率:气压源是制动系统的能源,提高气压源的效率可以提高制动系统的响应速度和制动效果。

可以通过改进气压泵的结构和动力装置,提高其输出压力和流量。

2. 优化制动阀的控制逻辑:制动阀的控制逻辑影响制动系统的响应速度和稳定性。

可以通过优化制动阀的控制算法和调整参数,提高制动系统对制动信号的响应速度和制动力的平衡性。

4. 优化制动蹄片的摩擦性能:制动蹄片的摩擦性能关系到制动系统的制动效果和寿命。

可以通过改进摩擦材料的成分和结构,提高制动蹄片的摩擦系数和磨损性能。

汽车气刹原理

汽车气刹原理

汽车气刹原理
汽车气刹是一种常见的制动系统,它通过利用气压来实现制动的目的。

汽车气刹系统的原理相对简单,但是却起着至关重要的作用。

下面我们将深入探讨汽车气刹的原理。

首先,汽车气刹系统的核心部件是气缸。

气缸是一个密封的容器,内部装有活塞。

当司机踩下制动踏板时,制动液会被挤压到气缸内,从而推动活塞向外移动。

这个过程会产生一定的气压,气压会传递到制动鼓或制动盘上,从而实现制动的效果。

其次,气缸内的活塞是如何实现向外移动的呢?这就涉及到了气缸内的气压变化。

当制动踏板被踩下时,制动液被挤压到气缸内,气缸内的气压会迅速增加。

由于气缸是密封的容器,活塞只能向外移动,这样就形成了一个推力,推动制动系统实现制动效果。

再者,气缸内的气压是如何释放的呢?当司机松开制动踏板时,气缸内的气压会迅速减小,这是因为制动液会回流到制动系统中。

气压的减小会导致活塞向内移动,从而释放掉制动系统的压力,汽车就会逐渐停止制动。

最后,汽车气刹系统的原理可以总结为,当司机踩下制动踏板时,制动液被压缩,推动活塞向外移动,产生气压,实现制动效果;当司机松开制动踏板时,气压减小,活塞向内移动,释放制动系统的压力,汽车停止制动。

总的来说,汽车气刹系统的原理相对简单,但是却是汽车制动系统中至关重要的一环。

了解汽车气刹系统的原理有助于我们更好地理解汽车的工作原理,同时也能够帮助我们更好地保养和维护汽车气刹系统,确保行车安全。

希望本文能够帮助读者更好地了解汽车气刹系统的原理,谢谢阅读!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气压制动系统的主要构造元件和工作原理————————————————————————————————作者:————————————————————————————————日期:气压制动系统的主要构造元件和工作原理气压制动以压缩空气为制动源,制动踏板控制压缩空气进入车轮制动器,所以气压制动最大的优势是操纵轻便,提供大的制动力矩;气压制动的另一个优势是对长轴距、多轴和拖带半挂车、挂车等,实现异步分配制动有独特的优越性。

但是气压制动的缺点也很明显:相对于液压制动,气压制动结构要复杂的多;且制动不如液压式柔和、行驶舒适性差;所以气压制动因而一般只用于中、重型汽车上。

下面主要以斯太尔8X4载重汽车为例介绍气压制动传动装置主要部件的结构组成。

1.空气压缩机空气压缩机是全车制动系气路的气源,斯太尔6X4载重汽车空气压缩机为单缸混合冷却式,气缸体为风冷,气缸盖通过发动机冷却系统水冷。

它固定在发动机前端左侧的支架上,它的传动齿轮与其曲轴为高扭矩自锁连接,在正时齿轮室中悬臂安装,由发动机曲轴通过中间齿轮、喷油泵齿轮、空气压缩机传动轴驱动转动,其构造如图18. 5所示,与汽车发动机机构相似,它主要由空气压缩机壳体1、活塞2、曲轴3、单向阀4等组成。

壳体由气缸体、气缸盖组成,壳体是铸铁的,外面带有用于空气冷却的散热筋片,里面是用于产生压缩空气的气缸。

进、排气阀门采用舌簧结构,进气口经气管通向空气滤清器;出气口则经气管通向空气干燥器。

润滑油由发动机主油道经油管、滚珠轴承,进入曲轴箱,然后经正时齿轮室回到油底壳。

活塞通过连杆与曲轴相连,连杆轴承合金直接浇注在连杆大头和连杆瓦盖上,活塞通过活塞环与气缸密封。

曲轴两端通过滚珠轴承支承在曲轴箱内,ﻫ前后有轴承盖,前端伸出盖外用半圆键及螺母固装传动齿轮,前端孔内分另1J装有防止漏油的油封。

发动机运转时,空气压缩机随之转动,当活塞下行时,进气阀门被打开,外界空气经空气滤清器、进气道进人气缸。

当活塞上行时,ﻫ进气阀门被关闭,气缸内空气被压缩,出气阀门在压缩空气的作用下被打开,压缩空气由空气压缩机出气口经管路、空气干燥器进人储气筒和四管路保护阀。

2.空气干燥器空气干燥器吸收压缩空气中的水,为制动气路提供清洁干燥的压缩空气。

A D-103型空气干燥器结构如图18. 6所示AD-103型空气干燥器利用分子筛作干燥剂,采用与卸荷调压阀一体的整体式结构,巧妙地利用了调节阀卸荷排气的动作过程,使再生储气筒中的干燥压缩空气反向通过干燥剂筒,将干燥剂表面吸附的水分带走排人大气,实现了分子筛的再生活化。

AD-103型空气干燥器能长期有效地吸收压缩空气中的水,提供清洁干燥的压缩空气ﻫ在充气过程中,由空压机输出的压缩空气经进气口9进人腔室8。

这时由于温度下降, 会产生冷凝水,冷凝水经过通道流到排水阀阀门6处。

ﻫ压缩空气经滤清器12和环形室达到干燥剂筒13上端。

当空气流经干燥剂筒13时,水分被吸收并滞留在干燥剂筒的上层。

干燥处理过的空气经过单向阀门10、接口21通向四管路保护阀,然后供应给整车气路;同时干燥的空气经过节流口11和接口22导向再生气$ﻫ当整个系统中的压力升高至预定卸荷值时,压缩空气推动活塞2移动,打开进气阀3,关闭排气阀1,压缩空气通过通道5到达卸荷阀7活塞的上端,推动活塞向下运动,从而使排水阀6阀门打开,从腔室8来的压缩空气和冷凝水经过打开的排水阀6排向大气,开始排气过程。

ﻫ来自再生储气筒的干净空气经节流口11、干燥罐的排气阀1排向大气。

当空气从下往上流经颗粒干燥罐时,将滞留在其表层的水分带走并排向大气,使分子筛再生ﻫ。

当21接口的压力下降至工作气压值时,活塞2在回位弹簧作用下运动,进气阀3关闭,排气阀1打开。

卸荷阀7活塞上端的空气经过通道5、排气阀1和小孔排出。

卸荷阀7活塞向上运动,排水阀6关闭,排气过程完成,下个充气过程又重新开始。

ﻫ通过调节螺栓可以调节卸荷气压值和关闭气压值。

空气干燥器还装有自动加热器,防止活塞被冻住,从而避免故障发生。

ﻫ3.四管路保护阀四管路保护阀是将全车气路分成4个既相互联系又相互独立的管路。

当任何一个管路发生故障时,不影响其他管路正常工作与充气。

如图18.7所示是四管路保护阀中的一个阀。

由空气干燥器来的压缩空气从进气4进入保护阀,当进气压力较低时阀门2在弹簧1 的作用下将阀座封闭,进气压力作用在阀中心面积“a”上。

当进气压力上升至7.0bar时,作用在“a”面积上的气压产生向上的推力足以克服弹簧1的预压力,使阀门2开始升起,打开管路充气口3的通道。

由于阀制成节流形式,ﻫ因此阀在向管路充气过程中不会时开时关而产生振动,延长了阀的使用寿命。

随管路不断充气,管路气压又作用在阀的环形面积“b”上。

4 因此,随管路气压不断升高,充气开启压力不断降低,直到管路气压达4.5bar时,阀门重新关闭。

这里称7. Obar为保护阀的开启压力;4.5bar为保护阀的关闭压力将4个阀组合在一起即为四管路保护阀,如图18.8所示。

全车气路在没有气的情况下,4个保护阀全部关闭,从空压机来的压缩空气进人保护阀。

当输人端气压达7.0bar时,4个阀分别开始向各自管路充气,当管路气压上升到4. 5bar时阀全部打开,直至全车气压达到调压阀所设定的7. 5!8.0bar气压值。

值得说明的是实际工作中4个阀并不是同时打开的,因为4个阀弹簧设定的压力不会完全一致;同时4个管路充气压力上升的速度也不尽相同,开启时间要视弹簧预紧力和管路气压上升的差异而定,这也是充气过程中双针气压表两指针往往不同步的原因。

当某一管路发生断、漏气故障时,如前制动管路断裂,该管路气压就急剧下降,全车气路都经21出口放气,气压同时下降。

当各管路下降至4. 5bar时,4个阀全部关闭。

此时无故障管路仍然保留有4.5bar气压, 而漏气管路将继续漏气直至气压下降为零。

此刻随空气压缩机继续供气,供气压力一旦回升至4.5bar气压时,解除故障,除管路阀继续关闭外,其余管路阀又都重新打开充气,直到同路气压上升到故障管路阀所设定的开启压力7.0bar,如此确保无故障管路正常工作和充气。

ﻫ在全车气压较低的情况下,为了首先向前、中、后制动储气筒充气,以确保制动的可靠性,常选用带有单向阀的四管路保护阀,结构如图18. 9所示。

该阀的停车制动和辅助用气管路的供气口是分别接在前制动和中后制动管路上的,且用两个单向阀加以隔离。

这样只有当前、中、后制动管路气压达到7.0bar才开始向停车制动和辅助用气管路充气。

ﻫ在正常情况下,四管路保护阀实际上是一个五通接头!只有在某一管路发生断、漏故障时才起保护作用。

4 .主制动控制阀主制动控制阀是用来操纵主制动系统工作的,且使制动气压与制动操纵力或踏板行程成一定比例关系的装置。

主制动控制阀目前常用到的有单列双腔膜片式和并列双腔膜片式,斯太尔汽车采用的是单列双腔膜片式主制动控制阀,东风EQ1092型汽车为并列双腔膜片式主制动控制阀。

ﻫ斯太尔汽车主制动控制阀结构属于单列双腔膜片式,如图18.10所示,分上下两腔室。

由中、后制动储气筒来接11接口,由前制动储气筒来接12接口。

上腔出气口21向中、后桥制动继动阀提供制动fg 号气压,22通向前制动气室。

制动时,制动踏板通过一套连接杠杆使主制动控制阀顶杆1向下移动,再通过橡胶弹簧2迫使活塞3克服回位弹簧弹力向下移动,当活塞3与阀杆5接触时,关闭排气口4,继续下移,进气口打开,使中、后轮制动。

在进气口打开向制动管路充气时,制动管路气压同时作用在活塞3上,当气压向上顶活塞的力与橡胶弹簧预压力相等时活塞开始向上回升到进气口关闭的平衡状态。

制动踏板行程越大,弹簧预紧力越大,从而输出到制动管路的气压也越高,这种制动气压与制动踏板行程成一定比例关系,具备制动随动性。

在上腔动作的同时,制动管路气压经小孔D通向B腔作用在活塞6上,迫使活塞下移,首先将关闭排气口9,进而打开进气口8,来自前制动储气筒的压缩气体经12接口和进气口8通过出气口22,使前轮制动。

当气压上升到与B腔气压相等时,活塞6又回升关闭进气口使制动管路气压不再升高,产生下一个与中、后桥制动同步的气压。

下腔输出气压与上腔输出气压按一定的比例关系同步增减,只是上腔输出气压总比下腔输出气压高出一'个数值。

双腔主制动阀能够保证某一管路失效时不影响另一管路正常工作。

由于主制动阀下腔是由上腔来控制的,因而下腔工作失效显然不影响上腔输出管路的工作。

如果上腔输出管! 21出断、! 1 打气7!21 不起气压!从而B腔也没有气压信号,但顶杆推动活塞3以及阀杆5继续下行使阀杆与活塞杆排气间隙消除之后,顶杆的下移会直接推动活塞6下移,从而打开下腔进气口实现输出管路制动。

此时的平衡关系将是下腔输出管路制动气压作用在活塞向上的力与橡胶弹簧弹力之间的平衡。

ﻫ制动解除时!作用在顶杆上的力消除,橡胶弹簧压力消失,活塞3在回位弹簧和管路气压的作用之下上行,首先关闭进气口7、进而打开排气口4,继动阀的输人气压经21接口和排气口4放空,制动气室的气压经继动阀放空,中、后桥制动解除。

与此同时,主制动阀下腔在管路气压作用下使活塞6上行,关闭进气口8,打开排气口9,前制动气室气压22排气9放空!制动解除。

ﻫ5.主制动继动阀主制动继动阀是缩短制动反应时间,对主制动气室起一个“快充”和“快放”的作用。

ﻫ对于轴距较长,汽车中后桥制动气室总容量又大,距主制动控制阀的距离又远的,当制动踏板被踩下时,到最远的那个制动气室气压达到相应数值的制动反应时间会过长。

为此,可在距中后桥制动气室最近的位置安装一个继动阀,由储气筒用一根较粗的主管路直接供气,再用一根较细的管路由主制动控制阀来控制。

主制动继动阀工作示意图,如图18. 11所示。

当主制动控制阀工作时,由主制动控制阀上腔输出一个与制动踏板行程相应的气压信号,进人继动阀的控制口,该气压使继动活塞1下行,首先使封闭排气阀2关闭,进而将进气阀3压下,打开进气口,经主气路的压缩空气迅速通过进气口向制动气室充气,如图18.11 (a)所示。

当制动气室气压上升到与控制动气压相等时,该气压作用在继动活塞1下面的力与控制气压作用在继动活塞上面的力平衡,继动活塞1回升重新关闭进气阀,如图18.11 (b)所示,使输出气压不再上升,达到与制动踏板行程同步随动效果。

当主制动阀解除制动时,主制动继动阀继动活塞1上方的输入气压经主制动阀放空, 制动气室管路气压迫使继动活塞迅速上升,重新打开排气阀,气室气压经由继动阀排气口放空,从而达到“快放”的目的,如图18.11")所示。

ﻫ6.前制动气室ﻫ向前制动气室输人不同的气压会产生不同的推力,并通过制动凸轮使制动器对前桥产生不同强度的制动。

现大多采用膜片式制动气室,其结构如图18. 12所示,它主要由进气口1、橡胶膜片3、壳体6、支承盘4、推杆8及回位弹簧5等组成。

相关文档
最新文档