光纤通信系统的基本构成

合集下载

简述光纤通信系统的组成和优点。

简述光纤通信系统的组成和优点。

简述光纤通信系统的组成和优点。

光纤通信系统由光源、光纤传输介质、光电转换器、光纤连接器和光纤收发器等组成。

1. 光源:产生光信号的装置,一般使用激光器或发光二极管。

2. 光纤传输介质:用于传输光信号的细长光纤,由玻璃或塑料制成。

3. 光电转换器:将光信号转换为电信号的装置,一般使用光电二极管或光电倍增管。

4. 光纤连接器:用于连接光纤的装置,保证光信号的传输。

5. 光纤收发器:将电信号转换为光信号并进行发送和接收的装置,一般包括光电转换器和光源。

光纤通信系统的优点包括:
1. 大带宽:光纤传输介质具有很高的传输带宽,可以同时传输大量的数据。

2. 低损耗:与传统的电缆相比,光纤传输的信号损耗很小,可以实现远距离传输。

3. 抗干扰性强:光纤通信系统对电磁干扰和信号衰减的抗干扰能力较强,传输质量稳定可靠。

4. 安全性高:光纤通信采用光信号传输,不会产生电磁辐射,不易被窃听和干扰,保障通信的安全性。

5. 体积小、重量轻:光纤通信系统的设备相对较小巧轻便,便于安装和维护。

6. 适用范围广:光纤通信系统适用于各种通信需求,包括电话、互联网、电视信号传输等。

光纤通信

光纤通信

第一章2、光纤通信系统的基本组成:(P2图1-3)目前采用比较多的系统形式是强度调制/直接检波(IM/DD)的光纤数字通信系统。

该系统主要由光发射机、光纤、光接收机以及长途干线上必须设置的光中继器组成。

息源电发射机光发射机光接收机电接收机信息宿基本光纤传输系统光纤线路接 收发 射电信号输入光信号输出光信号输入电信号输出1)在点对点的光纤通信系统中,信号的传输过程:由电发射机输出的脉码调制信号送入光接收机,光接收机将电信号转换成光信号耦合进光纤,光接收机将光纤送过来的光信号转换成电信号,然后经过对电信号的处理以后,使其恢复为原来的脉码调制信号送入电接收机,最后由信息宿恢复用户信息。

2)光发射机中的重要器件是能够完成电-光转换的半导体光源,目前主要采用半导体发光二极管(LED)和半导体激光二极管(LD)。

3)光接收机中的重要部件是能够完成光-电转换的光电检测器,目前主要采用光电二极管(PIN)和雪崩光电二极管(APD)。

特性参数:灵敏度3、光纤通信的特点:优点:(1),传输频带宽,通信容量大。

(2)传输损耗小,中继距离长(3)保密性能好(4)抗电磁干扰能力强(5)体积小、重量轻。

(6)原材料来源丰富、价格低廉。

缺点:1)不能远距离传输;2)传输过程易发生色散。

第二章光纤由涂覆层、纤芯、包层组成。

1)、按照光纤横截面折射率分布不同来划分:①阶跃型光纤②渐变型光纤2)按照纤芯中传输模式的数量划分:1多模光纤2单模光纤8、光纤的传输特性:第3章光纤通信器件1、半导体光源的种类:半导体激光器LD和半导体发光二极管LED。

光和物质的相互作用:1)自发辐射的特点:①在没有外界作用的条件下自发产生的过程②辐射光子的频率亦不同,频率范围很宽。

③电子的发射方向和相位也是各不相同的,是非相干光。

2)受激吸收的特点:①在外来光子的激发下发生跃迁过程②外来光子的能量等于电子跃迁的能级之差③受激跃迁是一个消耗外来光能的过程3)受激辐射的特点:①外来光子的能量等于跃迁的能级之差。

光纤通信系统的组成与工作原理

光纤通信系统的组成与工作原理

光纤通信系统的组成与工作原理首先是光信号的产生。

光信号可以通过激光二极管(LD)或者半导体激光器产生。

激光二极管是一种能够产生高亮度和高单频的光源,它通过电流注入产生激励态电子与基态电子的受激辐射而发光。

半导体激光器则是一种基于电流注入的PN结的半导体器件,它可以产生高亮度、高单频和窄线宽的激光光源。

接下来是光信号的传输。

光信号通过光纤进行传输。

光纤是一种由高折射率的纤维材料制成的细长物体,其核心是由折射率较低的材料组成,外包覆着一个折射率较高的包层。

光信号通过光纤的传输是基于全内反射的原理。

当光信号由光纤的尾部入射到光纤的头部时,当入射角小于临界角时,光信号会发生全内反射,沿着光纤一直传输到目的地。

最后是光信号的接收。

光信号到达目的地后,需要被光电器件转换成电信号。

光电器件通常使用光电二极管(PD)或者光电探测器来完成这一过程。

当光信号到达光电器件时,光能转化为电能,产生电流。

接收到的电流经放大和滤波处理后,就可以得到我们需要的信号。

光源是光信号的发射源,如激光二极管、半导体激光器等。

光源需要具备稳定的光功率、窄的光谱线宽和较小的时延,以保证光信号的传输质量。

光纤是光信号的传输介质,它是一种波导结构,能够将光信号进行高效的传输。

光纤需要具备低损耗、高带宽和低色散等特点,以提高光信号的传输质量。

光电器件是光信号的接收器件,如光电二极管、光电探测器等。

光电器件能够将光信号转换为电信号,并经过电子电路的处理从而得到所需的信息。

除了以上的主要组成部分,光纤通信系统还包括光纤连接器、光纤调制器、光纤分光器等其他辅助设备,以提供更加稳定和高效的光信号传输。

总之,光纤通信系统是一种利用光纤进行光信号传输的通信系统。

它的工作原理基于光的全内反射原理,通过光源产生光信号,光纤进行光信号的传输,并通过光电器件将光信号转换为电信号。

光纤通信系统的组成包括光源、光纤和光电器件等主要部分,还包括其他辅助设备。

光纤通信系统的应用广泛,使用光纤传输可以实现高速、大容量和低延时的信息传输。

简述光纤通信系统的组成和各部分的功能

简述光纤通信系统的组成和各部分的功能

简述光纤通信系统的组成和各部分的功能光纤通信系统由光纤、发射光源、光接收器、光纤连接器等多个部分组成。

下面将对各部分的功能和作用进行简述。

1. 光纤:光纤是光信号在通信系统中的传输介质。

它由玻璃或塑胶材料制成,具有高折射率和低损耗的特点,能够将光信号沿着纤芯内部传输,直到达到目的地。

光纤被广泛应用于数据中心、智能家居、广电行业等各种领域。

2. 发射光源:发射光源是光纤通信系统中的重要组成部分,它能够将电信号转换为光信号,从而应用于光纤的传输。

常见的发射光源有激光二极管(LD)、激光器等。

他们的作用是通过不同的波长和光功率来产生和调制不同信道的光信号。

3. 光接收器:光接收器主要负责将传输中的光信号接收到并转换为电信号。

它通常由光电二极管、光电转换器等器件构成。

由于通过纤芯传输的光信号很微弱,因此光接收器的灵敏度很高,能够可靠地将光信号转换为电信号进行后续处理。

光纤连接器主要用于连接两个或多个光纤,在光纤通信系统中起到很重要的作用。

光纤连接器通常是由附着于光纤末端的连接器腔组成。

连接器可以保证光信号传输的稳定性和可靠性,防止在传输过程中产生光损耗和反射现象。

在长距离传输中,光信号会逐渐减弱,并且出现信号失真、信号叠加等问题。

为了解决这些问题,光放大器被应用于光纤通信系统中。

光放大器通常由半导体材料制成,能够扩大光信号的强度、提高信噪比和增强信号的稳定性。

综上所述,光纤通信系统的组成主要包括光纤、发射光源、光接收器、光纤连接器和光放大器等多个部分,它们通过结合起来,为信息的传输提供了可靠、稳定的基础。

同时,随着科技的不断进步,光纤通信系统将会越来越普及和成熟,应用于更多的领域和场景中,为人们的生活和工作带来更加便捷和高效的体验。

光纤通信系统的组成

光纤通信系统的组成

光纤通信系统的组成
光纤通信系统是一种高速、高带宽、可靠性强的通信方式,由多个组件构成。

下面将介绍光纤通信系统的主要组成部分:
1. 光纤传输介质:光纤传输介质是光纤通信系统的核心,是传输光信号的媒介。

光纤通信系统中,采用的是光纤传输,光纤传输的优点是传输距离远、传输速度快、带宽大、信号损耗小等优点。

2. 光发射器:光发射器是将电信号转化为光信号的设备,它能将电信号通过调制方式转化成脉冲光信号,再通过光纤传输到接收端。

3. 光接收器:光接收器是将光信号转化为电信号的设备,它可以将光信号转化为电信号,再通过解调方式转化为原始的电信号。

4. 光纤收发器:光纤收发器是将光纤接收器和光发射器集成在一起的设备,将光信号转化为电信号,再通过光纤传输到接收端。

5. 光纤连接器:光纤连接器是将光纤连接在一起的设备,它可以将不同的光纤连接起来,实现光纤通信系统的扩展和连接。

6. 光纤交换机:光纤交换机是一种网络设备,它可以将光纤通信系统中不同的光信号进行转换、分发和管理,实现不同光纤之间的通信和交换。

以上是光纤通信系统的主要组成部分,其中光纤传输介质是光纤通信系统的核心,其他组件都是为了实现光信号的传输、转换和管理等功能而存在的。

随着技术的不断发展,光纤通信系统将会变得更加智能化、高速化和可靠化。

- 1 -。

光纤通信系统

光纤通信系统
包裹在一个保护套中,
形成光缆
5
中继器
中继器
由于光纤的传输损耗和散射 效应,光信号在传输过程中 会逐渐衰减,因此需要使用 中继器来放大和整形光信号,
以实现长距离传输
中继器通常由掺铒光纤放大 器(EDFA)和光-电-光转换器
组成
掺铒光纤放大器可以对光信 号进行放大,提高光信号的 能量
光纤通信系统主要由光发信机、 光收信机、光缆、中继器等组

2
光发信机
光发信机
光发信机是实现电信 号转换为光信号的设 备,主要由光源、驱 动电路和调制电路组

光源是发信机的核 心器件,目前常用 的光源有半导体激 光器和发光二极管
驱动电路的作用是 为光源提供足够的 电流,使其发出稳
定的光信号
调制电路的作用是 将电信号加载到光 信号上,实现电信
的可靠性和效率
5
绿色光纤:在光纤的制造和使用过程中,需要注重环保和 节能,推动光纤通信系统的绿色发展
光纤通信系统的关键技术和发展趋势
总的来说,光纤通信系统将继续向着高速、大容量、智 能化、环保等方向发展
未来,随着技术的不断进步和应用需求的不断增加,光 纤通信系统将会得到更加广泛的应用和推广,为人们提
光纤通信系统
-
1 概述 2 光发信机 3 光收信机 4 光缆 5 中继器 6 光纤通信系统的优点和缺点 7 光纤通信系统的应用和发展趋势 8 光纤通信系统的前景展望 9 光纤通信系统的关键技术和发展趋势
1
概述
概述
光纤通信系统是一种利用光波 在光纤中传输信息的通信方式
由于光纤具有传输容量大、抗 干扰能力强、传输距离长等优 点,光纤通信系统已成为现代 通信网的主要传输方式之一

简述光纤通信系统的结构和各部分功能

简述光纤通信系统的结构和各部分功能

简述光纤通信系统的结构和各部分功能光纤通信系统是一种基于光纤传输信号的通信系统,由多个部分组成,每个部分都有各自的功能。

下面将对光纤通信系统的结构和各部分功能进行简述。

一、光纤通信系统的结构光纤通信系统一般由光发射器、光纤传输介质、光接收器和光网络设备组成。

1. 光发射器:光发射器是光纤通信系统中的发送端,它将电信号转换成光信号并通过光纤传输介质发送出去。

光发射器的主要功能是将电信号转换为适合光纤传输的光信号,并能够调节光信号的强度和频率。

2. 光纤传输介质:光纤传输介质是光纤通信系统中的传输媒介,它能够将光信号传输到目标地点。

光纤传输介质具有高带宽、低损耗和抗干扰等特点,使得光信号能够在长距离传输过程中保持较高的质量。

3. 光接收器:光接收器是光纤通信系统中的接收端,它接收光纤传输介质中传输的光信号,并将其转换为电信号。

光接收器的主要功能是将光信号转换为电信号,并能够对电信号进行放大和解调等处理。

4. 光网络设备:光网络设备包括光纤交换机、光开关等,它们用于光纤通信系统的网络管理和控制。

光网络设备的主要功能是实现光信号的路由选择、调度和管理,以及对光信号进行调制和解调等处理。

二、各部分功能的详细描述1. 光发射器的功能:光发射器主要负责将电信号转换为适合光纤传输的光信号,并能够调节光信号的强度和频率。

它包括以下几个主要功能:- 光源发生器:产生光信号的光源,常见的有激光二极管、LED等。

- 调制电路:对电信号进行调制,将其转换为光信号。

- 驱动电路:控制光源的开关和调节光信号的强度。

2. 光纤传输介质的功能:光纤传输介质主要负责将光信号传输到目标地点,具有高带宽、低损耗和抗干扰等特点。

其主要功能包括:- 光纤芯:传输光信号的核心部分,由高折射率的材料构成。

- 光纤包层:包裹光纤芯,起到保护和传导光信号的作用。

- 光纤护套:保护光纤传输介质免受外界环境的影响。

3. 光接收器的功能:光接收器主要负责接收光纤传输介质中传输的光信号,并将其转换为电信号。

光纤通信系统的组成

光纤通信系统的组成

光纤通信系统的组成光纤通信系统是一种通过光纤传输信号的高速通信系统。

它由多个组成部分构成,每个部分都扮演着重要的角色,以确保数据的高速传输和可靠性。

下面将介绍光纤通信系统的组成部分。

1. 光源:光源是光纤通信系统的起点,它产生光信号并将其注入到光纤中。

常见的光源包括激光二极管和LED。

激光二极管产生的光束更为集中和稳定,适用于长距离传输,而LED则适用于短距离传输。

2. 光纤:光纤是光信号传输的媒介。

它由玻璃或塑料制成,具有高折射率和低损耗的特点。

光纤分为单模光纤和多模光纤两种类型。

单模光纤适用于长距离传输,而多模光纤适用于短距离传输。

3. 光纤连接器:光纤连接器用于连接光纤,确保光信号可以顺利地从一根光纤传输到另一根光纤。

光纤连接器的质量对光信号的传输质量有着重要的影响。

4. 光纤衰减器:光纤衰减器用于调节光信号的强度。

在信号传输过程中,光信号会因为光纤的损耗而逐渐减弱,光纤衰减器可以通过减小光信号的强度来补偿这种损耗。

5. 光纤放大器:光纤放大器可以增强光信号的强度。

在信号传输过程中,光信号会因为光纤的损耗而逐渐减弱,光纤放大器可以通过放大光信号的强度来弥补这种损耗。

6. 光纤分光器:光纤分光器用于将光信号分成多个通道进行传输。

它可以实现多路复用,提高光纤通信系统的传输能力。

7. 光纤接收器:光纤接收器用于接收光信号并将其转换为电信号。

光纤接收器通常由光电二极管或光电探测器组成。

8. 光纤交换机:光纤交换机用于控制光信号的路由和转发。

它可以根据需要将光信号从一个通道切换到另一个通道,实现灵活的数据传输。

以上是光纤通信系统的主要组成部分。

通过这些组成部分的协同工作,光纤通信系统能够实现高速、稳定和可靠的数据传输。

在现代通信领域,光纤通信系统已经成为主流技术,广泛应用于电话、互联网和电视等领域。

随着技术的不断进步和创新,光纤通信系统将会在未来发展出更多的应用和改进,为人们的通信需求提供更好的解决方案。

光纤通信系统的组成和各部分的功能

光纤通信系统的组成和各部分的功能

光纤通信系统的组成和各部分的功能光纤通信系统是一种高速、高容量、高可靠的通信技术,通过光纤传输光信号来实现数据传输和通信。

光纤通信系统由光源、光纤、接收器和信号处理器几个主要部分组成,每个部分都有着不同的功能。

首先,光源是整个系统的动力源,它能够将电信号转化为高速的光信号。

光源通常采用激光器或 LED 发光二极管,能够产生高强度、窄带宽、单一波长的光信号。

光源产生的光信号通过传输介质——光纤,进入到下一个部分。

其次,光纤是光信号传输的关键。

光纤是一种由高纯度的二氧化硅等物质制成的非导电材料,具有优良的光学性能。

它的主要功能是将光信号从发送端传输到接收端,同时保持信号的稳定和准确。

光纤通常分为单模光纤和多模光纤两种,单模光纤适合远距离、高速传输,而多模光纤适合短距离、低速传输,用户需要根据实际需要选择适合的光纤。

第三,接收器将从光纤中接收到的光信号转化为电信号,以便接下来的处理和利用。

接收器通常由光电探测器和前置放大器两个部分组成。

光电探测器的主要功能是将光信号转化为电信号,而前置放大器则负责放大电信号的弱信号以便进一步处理分析。

最后,信号处理器是光纤通信系统的最后一环,主要负责对接收到的电信号进行处理和分析,以便将数据转换为实际信息。

信号处理器通常采用微处理器、数字信号处理器等先进的处理技术,在保证数据传输质量的同时能够实现更高的数据处理能力和存储能力。

综上所述,光纤通信系统的四个主要部分组成一个完整的、高效的通信系统,各部分都起着不可或缺的作用。

在无线网络技术还没有普及时,光纤通信系统已经成为信息传输技术的主流,而在未来,光纤通信技术仍将继续发挥重要的作用,支持着我们现代社会的信息化建设。

简述光纤通信系统的组成和各部分的功能

简述光纤通信系统的组成和各部分的功能

简述光纤通信系统的组成和各部分的功能光纤通信系统是一种利用光纤传输信息的通信系统,由多个部分组成,每个部分都有其独特的功能。

光纤通信系统的组成主要包括光源、调制器、光纤、解调器和接收器。

光源是光纤通信系统的起点,它产生光信号并将其发送到调制器。

光源通常使用激光器或发光二极管,这些设备能够产生高强度、高频率的光信号。

调制器是光纤通信系统中的一个重要组成部分,它将电信号转换为光信号,并将其发送到光纤中。

调制器的主要功能是将电信号转换为光信号,并将其调制成数字信号,以便在光纤中传输。

光纤是光纤通信系统的核心部分,它是一种非常细的光导纤维,能够将光信号传输到远距离。

光纤的主要功能是将光信号传输到目标地点,同时保持信号的质量和强度。

解调器是光纤通信系统中的一个重要组成部分,它将光信号转换为电信号,并将其发送到接收器。

解调器的主要功能是将光信号转换为电信号,并将其解调成原始信号,以便在接收器中进行处理。

接收器是光纤通信系统中的最后一个组成部分,它接收解调器发送的电信号,并将其转换为可读的信息。

接收器的主要功能是将电信
号转换为可读的信息,并将其传输到目标设备中。

光纤通信系统是一种高效、可靠的通信系统,由多个部分组成,每个部分都有其独特的功能。

这些部分共同工作,使得光纤通信系统能够在长距离传输信息,并保持信号的质量和强度。

光通信系统、光缆、光纤知识

光通信系统、光缆、光纤知识

光通信系统
——通信光纤
(6)、关于在传输网络建设中的光纤选择等方面的相关建议 (一)G.652和G.655光纤的传输应用选择
目前,应用于长途骨干和城域网的光纤主要是G.652和G.655两种光纤。 对于基于2.5Gb/s及其以下速率的WDM系统,G.652光纤是最佳选择; G.652B/C/D和G.655光纤均能支持基于10Gb/s及更高速率的WDM系统; G.652C/D光纤在城域网中的优势明显。 通常G.652单模光纤在C波段1530~1565nm和L波段1565~1625nm的色散较大, 一般为17~22ps/nm·km。在开通高速率系统及基于单通路高速率的WDM系 统时,可采用色散补偿光纤(DCF)来进行色散补偿。但DCF同时引入较 大的衰减,因此它常与光放大器一起工作,DWDM波长范围越宽,补偿困 难越大。 G.655光纤的基本设计思想是在1550nm窗口工作波长区具有合理的较低的 色散,足以支持10Gb/s的长距离传输而无需色散补偿,同时,其色散值 又保持非零特性,具有一个起码的最小数值,足以抑制非线性影响,适 宜开通具有足够多波长的WDM系统。
光通信基础知识
——系统、光纤、光缆
主要内容
光通信系统概述 光纤知识 光缆知识
2
光通信系统概述
3
光通信系统
通信传输网常用的物理媒体——光纤、微波、电缆 以光纤为通信载体,可提供高速往外通道的光纤传输网已成为目前通 信传输网的主要部分。 一个基本的光纤通信系统由三大部分构成:光发射设备、光纤光缆、 光接收设备。
14
光通信系统
——通信光纤
(3)G.652D光纤的发展与应用 G.652光纤可细分为A、B、C、D四个子类。其中G.652A和 G.652B为常规单模光纤,其水峰处衰减未作优化;G.652C 和G.652D为低水峰单模光纤,永久地降低水峰的衰减。 几种G.652光纤的主要性能区别: 1、G.652C/D规定了1383NM衰减特性,并经氢老化试验, 使OH漂移出长波长,大于1700nm,不在光通信系统的工作 波长范围内 2、G.652B相对于G.652A,PMDQ链路值由0.5降低至0.2 3、G.652D相对于G.652B,降低了水峰衰减,相对于 G.652C降低了偏振模色散。

光纤通信系统的组成及各部分功能

光纤通信系统的组成及各部分功能

光纤通信系统的组成及各部分功能1. 光源(Light source):光源是将电能转化为光能的装置,其主要功能是产生具有特定频率和波长的光信号。

常用的光源有雷射器、电晕放电光源、发光二极管等。

不同光源产生的光信号有不同的功率和光频谱特性。

2. 光纤(Optical fiber):光纤是将光信号进行传输的介质,它由一根细长的光学纤维组成,具有高折射率和低传输损耗的特点。

光纤主要有芯、包层和包覆层组成,其主要功能是将光信号通过全内反射的方式进行传输。

3. 光纤连接器(Optical fiber connector):光纤连接器是用于连接光纤的装置,它将光纤的末端与光接收器或光源进行连接,以保证光信号的传输质量和稳定性。

光纤连接器一般包括光纤连接头和接插件两部分。

4. 光纤传输系统(Optical fiber transmission system):光纤传输系统是指将光信号在光纤中进行传输的装置和设备,它包括光纤放大器、光纤衰减器、光纤耦合器、光纤收发器、光纤开关等。

光纤传输系统的主要功能是对光信号进行放大、传输、分光和选择等处理。

5. 光接收器(Optical receiver):光接收器是将光信号转化为电信号的装置,其主要功能是将光信号转换为电流信号,并经过放大、滤波等处理,以恢复原始信号。

光接收器一般由光电转换器、放大器、滤波器和接收电路等组成。

6. 光纤终端设备(Optical fiber terminal equipment):光纤终端设备是指使用光纤进行通信的终端设备,包括光纤通信交换机、光纤调制解调器、光纤路由器、光纤终端机等。

光纤终端设备的主要功能是进行信号调制、解调、编码、解码和路由等操作,以实现数据的传输和交换。

除了以上主要组成部分外,光纤通信系统还包括光纤分配系统、光纤保护系统和光纤安全系统等。

光纤分配系统用于将光信号分配到不同的用户或设备上;光纤保护系统用于提供光路备份和故障切换功能,以确保通信的可靠性;光纤安全系统用于加密和保护传输的数据,以防止数据泄露和攻击。

光纤通信系统

光纤通信系统

基本光纤通信系统最基本的光纤通信系统由数据源、光发送端、光学信道和光接收机组成。

其中数据源包括所有的信号源,它们是话音、图象、数据等业务经过信源编码所得到的信号;光发送机和调制器则负责将信号转变成适合于在光纤上传输的光信号,先后用过的光波窗口有0.85、1.31和1.55。

光学信道包括最基本的光纤,还有中继放大器EDFA等;而光学接收机则接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。

下面是光通信系统图。

光通信系统图数字光纤通信系统光纤传输系统是数字通信的理想通道。

与模拟通信相比较,数字通信有很多的优点,灵敏度高、传输质量好。

因此,大容量长距离的光纤通信系统大多采用数字传输方式。

电发射端机主要任务是PCM编码和信号的多路复用。

多路复用是指将多路信号组合在一条物理信道上进行传输,到接收端再用专门的设备将各路信号分离出来,多路复用可以极大地提高通信线路的利用率。

在光纤通信系统中,光纤中传输的是二进制光脉冲"0"码和"1"码,它由二进制数字信号对光源进行通断调制而产生。

而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulse code modulation),即脉冲编码调制。

这种电的数字信号称为数字基带信号,由PCM电端机产生。

抽样是指从原始的时间和幅度连续的模拟信号中离散地抽取一部分样值,变换成时间和幅度都是离散的数字信号的过程。

(此处添加FLASH ,见sampling.jpg)抽样所得的信号幅度是无限多的,让这些幅度无限多的连续样值信号通过一个量化器,四舍五入,使这些幅度变为有限的M种(M为整数),这就是量化。

由于在量化的过程中幅度取了整数,所以量化后的信号与抽样信号之间有一个差值(称为量化误差),使接收端的信号与原信号间有一定的误差,这种误差表现为接收噪声,称为量化噪声。

码位数M越多,分级就越细,误差越小,量化噪声也越小。

光纤通信系统的组成和各部分的功能

光纤通信系统的组成和各部分的功能

光纤通信系统的组成和各部分的功能一、光纤通信系统的概述光纤通信系统是一种使用光纤传输信号的通信系统。

它由多个部分组成,每个部分都有着不同的功能和作用。

本文将深入探讨光纤通信系统的组成和各部分的功能,以便更好地理解和应用光纤通信技术。

二、光纤通信系统的组成光纤通信系统主要由以下几个部分组成:1. 光源光源是光纤通信系统的起点,它产生光信号并将其传输到光纤中。

光源的种类有很多,常见的有激光器和发光二极管。

激光器产生的光信号准直性好、单色性强,适用于长距离传输;而发光二极管则适用于短距离通信,成本较低。

2. 光纤光纤是光信号的传输介质,它由光纤芯和包层组成。

光纤芯是光信号传输的核心部分,其负责光信号的传输;而包层则用来保护光纤芯,减小光的损耗。

光纤具有传输距离远、带宽大、抗干扰能力强等优点,是现代通信的重要组成部分。

3. 光电转换器光电转换器的作用是将光信号转换成电信号,或者将电信号转换成光信号。

在发送端,光电转换器将电信号转换成光信号并输入光纤;在接收端,光电转换器将光信号转换成电信号,以供接收设备使用。

常见的光电转换器有光电二极管和光电探测器。

4. 光纤放大器光纤放大器是用于放大光信号的设备,它能够增加光信号的强度,使其能够在光纤中传输更远的距离。

常见的光纤放大器有掺铒光纤放大器和掺镱光纤放大器。

5. 光纤衰减器光纤衰减器是用来减小光信号强度的装置,它可以在光信号传输过程中调整光信号的强度,以便适应不同的传输距离和传输条件。

6. 光纤连接器和光纤接头光纤连接器和光纤接头是用来连接光纤的部件,它们能够保证光信号的传输质量。

光纤连接器主要用于连接不同光纤之间,而光纤接头则用于连接光纤与光电转换器等设备之间。

7. 光纤交换机和光纤路由器光纤交换机和光纤路由器是用于控制和管理光纤通信系统的设备。

光纤交换机用于在局域网内建立连接和切换光纤信号,而光纤路由器则用于在广域网中转发光纤信号。

三、各部分的功能和作用各部分在光纤通信系统中都有着不同的功能和作用。

光纤通信系统的基本组成

光纤通信系统的基本组成

1.3.2基本光纤传输系统
基本光纤传输系统作为独立的“光信道”单元,若配置
适当的接口设备,则可以插入现有的数字通信系统或模拟通
信系统, 或者有线通信系统或无线通信系统的发射与接收之 间光发射机、光纤线路和光接收机,若配置适当的光器件,
可以组成传输能力更强、功能更完善的光纤通信系统。例如,
在光纤线路中插入光纤放大器组成光中继长途系统,配置波 分复用器和解复用器,组成大容量波分复用系统,使用耦合
1.3光纤通信系统的基本组成
光纤通信系统可以传输数字信号,也可以传输模拟信号。 用户要传输的信息多种多样,一般有话音、图像、数据或多媒 体信息。 为叙述方便,这里仅以数字电话和模拟电视为例。 图 1.4 示出单向传输的光纤通信系统,包括发射、接收和作为
广义信道的基本光纤传输系统。
发 射 信 息 源 电 发 射 机 电信号 输入 光 发 射 机
器或光开关组成无源光网络,等等。
下面简要介绍基本光纤传输系统的三个组成部分。
1. 光发射机 光发射机的功能是把输入电信号转换为光信号,并用耦合 技术把光信号最大限度地注入光纤线路。光发射机由光源、 驱动器和调制器组成,光源是光发射机的核心。光发射机的性 能基本上取决于光源的特性,对光源的要求是输出光功率足够 大, 调制频率足够高,谱线宽度和光束发散角尽可能小,输 出功率和波长稳定, 器件寿命长。目前广泛使用的光源有半
为提高传输质量,通常把这种模拟基带信号转换为频率调 制(FM)、脉冲频率调制 (PFM) 或脉冲宽度调制 (PWM) 信号,最 后把这种已调信号输入光发射机。 还可以采用频分复用(FDM) 技术,用来自不同信息源的视频模拟基带信号(或数字基带信号) 分别调制指定的不同频率的射频(RF)电波,然后把多个这种带 有信息的 RF 信号组合成多路宽带信号,最后输入光发射机, 由光载波进行传输。 在这个过程中,受调制的RF电波称为副 载波,这种采用频分复用的多路电视传输技术, 称为副载波复 用(SCM)。

光纤通信系统的结构及各部分的作用

光纤通信系统的结构及各部分的作用

光纤通信系统的结构及各部分的作用一、引言光纤通信系统是指利用光纤作为传输介质的通信系统,具有高速、大带宽、抗干扰等优点,被广泛应用于现代通信领域。

本文将详细介绍光纤通信系统的结构及各部分的作用。

二、光纤通信系统的结构光纤通信系统主要由三部分组成:发送端、传输介质和接收端。

其中,发送端和接收端都包含了多个子模块。

1. 发送端发送端主要由以下几个子模块组成:(1)调制电路:将数字或模拟信号转换成适合光纤传输的电信号。

(2)激光器:产生高强度的激光束,将电信号转换成激光脉冲。

(3)调制器:将激光脉冲进行调制,使其能够传输数字或模拟信号。

(4)耦合器:将调制后的激光脉冲与光纤进行耦合,使其能够进入光纤中进行传输。

2. 传输介质传输介质即为光纤,是一种由玻璃或塑料材料制成的细长管道,用于传输光信号。

光纤主要由以下几个部分组成:(1)芯:光信号在其中传输的区域。

(2)包层:包裹芯的区域,用于保护芯。

(3)绝缘层:包裹包层的区域,用于保护整个光纤。

3. 接收端接收端主要由以下几个子模块组成:(1)解调器:将传输过来的激光脉冲进行解调,恢复出原始的数字或模拟信号。

(2)探测器:将激光脉冲转换成电信号。

(3)放大器:放大电信号以便进一步处理和使用。

三、各部分的作用1. 调制电路调制电路是将数字或模拟信号转换成适合光纤传输的电信号。

在数字通信中,调制电路通常采用PAM码或ASK码等技术;在模拟通信中,调制电路通常采用AM、FM或PM等技术。

调制电路的作用是将原始信号进行编码和调制,使其能够通过激光器产生激光脉冲。

2. 激光器激光器是产生高强度的激光束,将电信号转换成激光脉冲。

激光器的作用是将调制后的电信号转换成激光脉冲,以便进一步进行传输。

3. 调制器调制器是将激光脉冲进行调制,使其能够传输数字或模拟信号。

调制器的作用是将激光脉冲进行编码和调制,使其能够通过耦合器进入光纤中进行传输。

4. 耦合器耦合器是将调制后的激光脉冲与光纤进行耦合,使其能够进入光纤中进行传输。

光纤通信系统的组成及每部分的作用

光纤通信系统的组成及每部分的作用

光纤通信系统的组成及每部分的作用一、引言光纤通信是一种利用光纤作为传输介质的通信方式,具有大带宽、低损耗、抗干扰、安全可靠等优点,被广泛应用于现代通信领域。

光纤通信系统由多个组成部分构成,每个部分都起着不同的作用,下面将分别介绍。

二、光纤传输介质光纤传输介质是光纤通信系统的核心部分,它由光纤芯和包层组成。

光纤芯是光信号传输的通道,通常由高纯度的二氧化硅或玻璃制成,具有较高的折射率。

包层则是保护光纤芯的外层,通常由低折射率的材料制成,能够使光信号在光纤内部反射传输。

三、光源光源是光纤通信系统的信号发射器,它的作用是产生光信号并将其输入到光纤中进行传输。

常见的光源有激光二极管和发光二极管。

激光二极管具有窄谱宽、较高的功率和较长的寿命等优点,被广泛应用于光纤通信系统中。

四、调制器调制器是光纤通信系统中的信号调制器件,它的作用是将要传输的信息信号转换成适合光纤传输的光信号。

常见的调制器有电调制器和光调制器。

电调制器通过改变电信号的强度、频率或相位来调制光信号,而光调制器则通过改变光信号的强度、频率或相位来实现信号调制。

五、光纤放大器光纤放大器是光纤通信系统中的信号增强器件,它的作用是放大传输过程中衰减的光信号,以保证信号质量。

常见的光纤放大器有掺铒光纤放大器和掺镱光纤放大器。

掺铒光纤放大器适用于波长在1550纳米范围内的信号放大,而掺镱光纤放大器适用于波长在1300纳米范围内的信号放大。

六、光纤接收器光纤接收器是光纤通信系统中的信号接收器件,它的作用是接收光信号并将其转换成电信号。

光纤接收器通常由光电二极管或光电倍增管组成,能够将光信号转换为电信号并放大,以便后续的信号处理和解调。

七、光纤连接器光纤连接器是光纤通信系统中连接光纤的重要组件,它的作用是将不同的光纤连接起来,以实现光信号的传输。

光纤连接器通常采用FC、SC、ST等标准接口,能够保证连接的稳定性和可靠性。

八、光纤交叉连接设备光纤交叉连接设备是光纤通信系统中实现光信号交叉连接的重要设备,它的作用是根据需要将光信号从一个光纤路由到另一个光纤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档