初中数学七年级上学期期中考试试卷和答案
2022-2023学年江苏省南京市溧水区七年级上学期期中考试数学试卷带讲解
A. B. C. D.
【答案】C
【解析】
【分析】先根据有理数的加减乘除运算算出结果,再比较有理数的大小.
【详解】A选项 ,
B选项 ,
C选项 ,
D选项 ,
∵ ,
∴ 结果最小.
故选:C.
【点睛】本题考查有理数的加减乘除运算和比较大小,解题的关键是掌握有理数的运算法则和比较大小的方法.
【答案】9
【解析】
【分析】求这天的温差,即最高温度减去最低温度,再进一步根据有理数的减法法则进行计算.【详解】解:根据题意,得: ( ).
故答案为:9.
【点睛】此题考查了有理数的减法及正负数的应用,理解题意列式计算是解题关键.
13.若 与 是同类项,则 ______.
【答案】4
【解析】
【分析】根据同类项的定义即所含字母相同,并且相同字母的指数也相同,可得出m、n的值,进而代入代数式即可得出答案.
故选C.
【点睛】本题主要考查了列代数式,准确分析是解题的关键.
8.如图所示,数轴上点A、B对应的数分别为a、b,下列说法正确的是()
A. B. C. D.
【答案】D
【解析】
【分析】根据图示,可得 ,而且 ,据此逐项判断即可.
【详解】解:根据图示,可得 ,且 ,
∴ , , , ,
故选D.
【点睛】此题主要考查了数轴的特征和应用,有理数加减运算法则以及绝对值的含义,解答此题的关键是判断出: ,而且 .
【答案】4.39×105
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于439000有6位,所以可以确定n=6−1=5.
人教版初中数学七年级上期中考试数学试卷含答案!
人教版初中数学七年级上期中考试数学试卷含答案!一、选择题(本大题共15小题,每小题4分,共60分)7.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是()A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+18.如图是正方体的平面展开图,每个面上标有一个汉字,与“油”字相对的面上的字是()A.M或RB.N或PC.M或ND.P或R11.若﹣3x2my3与2x4yn是同类项,那么m﹣n=()A.0B.1C.﹣1D.﹣212.计算6a2﹣5a+3与5a2+2a﹣1的差,结果正确的是()A.a2﹣3a+4B.a2﹣3a+2C.a2﹣7a+2D.a2﹣7a+413.代数式x2+2x+7的值是6,则代数式4x2+8x﹣5的值是()A.﹣9B.9C.18D.﹣1814.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1B.1C.3D.﹣315.计算(﹣4)2012×(﹣)2011的结果是()A.4B.﹣4C.16D.﹣16二、填空题(本大题共5小题,每小题4分,共20分)四、化简求值题(本大题共2小题,共12分)22.化简:﹣2x2﹣5x+3﹣3x2+6x﹣1.23.(8分)先化简,后求值:3(a2﹣ab+7)﹣2(3ab﹣a2+1)+3,其中a=2,b=.1/3五、解答题(本大题共4小题,共42分)24.(8分)如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它的所有侧面的面积之和是多少?25.(10分)一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x2﹣2x+7,已知B=x2+3x ﹣2,求正确答案.26.(12分)如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度。
湘教版七年级上册数学期中考试试卷含答案
湘教版七年级上册数学期中考试试题一、单选题1.《九章算术》中注有“今两算得失相反,要令正负以名之”意思:今有两数若其意义相反,则分别叫做正数与负数.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A .+3℃B .+2℃C .3-℃D .2-℃2.下列5个数中:3-,0,2.0030003,53,π-.有理数的个数是()A .2B .3C .4D .53.数a 在数轴上对应点位置如图,若数b 满足b a <,则b 的值不可能是()A .4-B .1-C .0D .24.下列计算正确的是()A .()253--=-B .21134333--=-C .()()144-⨯-=-D .1362-÷=-5.下列各组代数式中,是同类项的是()A .23m n 与215mnB .26x y -与215yx C .25ax 与215yx D .32与3a 6.用科学记数法表示760万正确的是()A .77.610⨯B .70.7610⨯C .67.610⨯D .60.7610⨯7.用四舍五入法,把7.8446精确到百分位,取得的近似数是()A .7.8B .7.84C .7.845D .7.858.如果33m m -=-,那么m 的取值范围是()A .3m ≤B .3m <C .3m ≥D .3m >9.下列判断中正确的是()A .多项式2322x x π++-的常数项为2B .25m n不是整式C .单项式32x y -的次数是5D .22234x y xy -+是二次三项式10.按照如图所示的操作步骤,若输入值为3-,则输出的值为()A .0B .4C .60D .2411.当3x =时,代数式31px qx +-的值为4,则当3x =-时,31px qx +-的值是()A .4-B .6-C .4D .612.中国文化博大精深,汉字文化是中国古代文化流传下来的一份珍贵遗产.下列图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点,…,依此规律,则图⑨中共有圆点的个数是()A .63B .75C .88D .102二、填空题13.32-的值为________.14.单项式25m n -的系数是________.15.购买3个单价为a 元的面包和4瓶单价为b 元的牛奶,所需钱数为________元.16.若单项式212m x y 与32n x y -的和仍为单项式,则其和为__________.17.若m 、n 互为相反数,a 、b 互为倒数,5p =,则代数式27m n p ab p +-+的值为________.18.定义新运算:x y x y xy *=+-,例如:()()()2323235*-=+--⨯-=,那么当()()222x x -*-*=⎡⎤⎣⎦时,x =________.三、解答题19.计算:(1)112243-+(2)2513624⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭(3)()2611327⎡⎤--⨯--⎣⎦(4)()212123236⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭20.先化简,再求值:22233223x xy y x xy ---+,其中x 和y 满足:()2210x y ++-=.21.有理数a 、b 、c 的位置如图所示,且a b =.(1)填空:a+b 0;a+c 0;c a -0;c b -0.(2)化简式子:b a c b c a b +-+---.22.“滴滴”司机李师傅国庆节某一天下午以湘雅医院为出发地在南北方向的芙蓉路上营运,共连续运载十批乘客.若规定向南为正,向北为负.李师傅营运十批乘客里程如下:(单位:千米)+9、11-、5-、+12、7-、+10、16-、22-、+4、3-.(1)将最后一批乘客送到目的地时,李师傅在湘雅医院的南面还是北面?距离多少千米?(2)若出租车每公里耗油量为m 升,则这辆出租车这天下午耗油多少升?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元(不足1千米按1千米计费).则李师傅在这天下午一共收入多少元?23.如图,在一张长方形纸条上画一条数轴.(1)折叠纸条使数轴上表示﹣1的点与表示5的点重合,折痕与数轴的交点表示的数是;如果数轴上两点之间的距离为10,经过上述的折叠方式能够重合,那么左边这个点表示的数是;(2)如图2,点A 、B 表示的数分别是﹣2、4,数轴上有点C ,使点C 到点A 的距离是点C 到点B 距离的3倍,那么点C 表示的数是;(3)如图2,若将此纸条沿A 、B 两处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折5次后,再将其展开,求最右端的折痕与数轴的交点表示的数.24.观察下列三行数:﹣2,4,﹣8,16,﹣32,64,…;①﹣1,2,﹣4,8,﹣16,32,…;②0,6,﹣6,18,﹣30,66,…;③(1)第①行数中的第n 个数为(用含n 的式子表示)(2)取每行数的第n 个数,这三个数的和能否等于﹣318?如果能,求出n 的值;如果不能,请说明理由.(3)如图,用一个矩形方框框住六个数,左右移动方框,若方框中的六个数之和为﹣156,求方框中左上角的数.25.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB=a b -,线段AB 的中点表示的数为2a b +.如图,数轴上点A 表示的数为2-,点B 表示的数为8.【综合运用】(1)填空:A ,B 两点间的距离AB=,线段AB 的中点表示的数为;(2)若M 为该数轴上的一点,且满足MA+MB=12,求点M 所表示的数;(3)若点P 从点A 出发,以每秒1个单位长度的速度沿数轴向终点B 匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,Q 到达A 点后,再立即以同样的速度返回B 点,当点P 到达终点后,P 、Q 两点都停止运动,设运动时间为t 秒(0t >).当t 为何值时,P ,Q 两点间距离为4.参考答案1.D【解析】【分析】根据有理数的意义,表示相反意义的量可以用正负数表示,得出答案.【详解】解:根据正负数表示的意义得,如果温度上升3℃,记作+3℃,那么温度下降2℃记作2-℃,故选:D .【点睛】考查有理数的意义,具有相反意义的量一个用正数表示,则与之相反的量就用负数表示.2.C【解析】【分析】根据有理数和无理数的定义逐个判断每个数是否为有理数.【详解】解:有理数有3-,0,2.0030003,53,共4个,故选:C .【点睛】本题考查有理数的概念,如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数,熟悉相关性质是解题的关键.3.D【解析】【分析】根据数轴上a 的位置和b a <判断即可;【详解】解:∵12a <<,∴2b a <<,∴b 的值不可能是2;故选D .【点睛】本题主要考查了数轴上数的大小比较,准确分析判断是解题的关键.4.D【解析】【分析】根据有理数的加减乘除运算法则进行计算即可判断.【详解】A 、()252573--=+=≠-,故计算错误;B 、21213343333⎛⎫--=-+-=- ⎪⎝⎭,故计算错误;C 、()()144-⨯-=,故计算错误;D 、133262-÷=-⨯=-,故计算正确.故选:D .【点睛】本题考查了有理数的四则运算,掌握四则运算的运算法则是关键,另外要注意运算符号.5.B【解析】【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】解:A.相同字母的指数不同,故A 不是同类项;B.字母相同且相同字母的指数也相同,故B 是同类项;C.字母不同,故C 不是同类项;D.字母不同,故D 不是同类项.故选B.【点睛】本题考查了同类项,同类项是字母相同且相同字母的指数也相同.6.C【解析】【分析】根据科学记数法的一般书写格式的性质计算,即可得到答案.【详解】760万用科学记数法表示为:67.610⨯故选:C .【点睛】本题考查了科学记数法的知识;解题的关键是熟练掌握科学记数法的性质,从而完成求解.7.B【解析】【分析】根据题目中的数据可以写出把7.8446精确到百分位的近似数,本题得以解决.【详解】解:由题意得,7.8446≈7.84(精确到百分位),故选B【点睛】本题考查近似数,解答本题的关键是明确近似数的定义.8.A【解析】【分析】根据绝对值的非负性求解即可.【详解】解:∵33m m -=-,3m -是非负数,∴3m -是非负数,∴3m ≤,故选:A .【点睛】本题考查了绝对值非负数的性质,解题关键是明确绝对值的非负性.9.C【解析】【分析】根据整式的性质,对各个选项逐个分析,即可得到答案.【详解】解:∵多项式2322x x π++-的常数项为2π-∴选项A 错误;∵25m n 是整式∴选项B 错误;∵单项式32x y -的次数是5∴选项C 正确;∵22234x y xy -+是三次三项式∴选项D 错误;故选:C .【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式、单项式、多项式的定义,从而完成求解.10.C【解析】【分析】根据给出的程序框图计算即可;【详解】解:由题意得:当输入为3-时,()239312-=+=,12560⨯=;故选C .【点睛】本题主要考查了与程序框图有关的有理数运算,准确计算是解题的关键.11.B【解析】把3x =代入代数式31px qx +-,再把3x =-代入,可得到含有27p+3q 的式子,直接解答即可.【详解】解:当x=3时,代数式31px qx +-=27p+3q -1=4,即27p+3q=5,所以当x=−3时,代数式31px qx +-=−27p−3q -1=−(27p+3q)-1=−5-1=6-,故选:B .【点睛】考查代数式求值,解题关键是掌握整体代入法在解题中的应用.12.C【解析】【分析】观察并比较每两个相邻的“汉字”的相同与不同之处,得出每两个相邻的“汉字”中后一个“汉字”前半部分与前一个“汉字”的前半部分圆点数量相等,后一个“汉字”后半部分与前一个“汉字”的后半部分顶部加上图案序号多2个圆点与底部添加2个圆点,进而解决该题.【详解】设图①中圆点个数为112y =,图②中圆点个数为21618y y =+=,图③中圆点个数为32725y y =+=,图④中圆点个数为43833y y =+=,⋯,以此类推,图⑨中圆点个数为98765413(12)13(11)25(10)36(9)46335588y y y y y y =+=++=++=++=++=+=.故选:C .【点睛】本题考查图形的变化规律,根据图形观察规律写出表达式是解题的关键.13.8-【分析】根据有理数乘方的性质分析,即可得到答案.【详解】32-8=-故答案为:8-.【点睛】本题考查了有理数乘方的知识;解题的关键是熟练掌握有理数乘方运算的性质,从而完成求解.14.15-【解析】【分析】根据单项式中数字因数叫做单项式的系数即可得出答案.【详解】解:22155m n m n -=-,∴单项式25m n -的系数是15-.故答案为:15-.【点睛】本题考查单项式的系数,注意单项式中数字因数叫做单项式的系数.15.()34a b +##()43b a +【解析】【分析】根据题意单价乘以数量等于所需钱数列出代数式即可.【详解】购买3个单价为a 元的面包和4瓶单价为b 元的牛奶,所需钱数为()34a b +元.故答案为:()34a b +【点睛】本题考查了列代数式,根据题意列出代数式是解题的关键.16.2332x y -【解析】【分析】根据同类项的定义,先求出m 、n 的值,然后再合并同类项即可.【详解】解:∵单项式212m x y 与32n x y -的和仍为单项式,∴212m x y 与32n x y -是同类项,∴3m =,2n =,∴23232313(2)22x y x y x y +-=-;故答案为:2332x y -.【点睛】本题考查了合并同类项,以及同类项的定义,解题的关键是掌握运算法则,正确求出m 、n 的值.17.18【解析】【分析】根据相反数的定义、倒数的定义、绝对值运算求出0,1m n ab +==,5p =±分5p =和5p =﹣代入代数式中求解即可.【详解】解:由题意可知:0,1m n ab +==,5p =±∴当5p =时,27m n p ab p +-+=20711855-⨯+=,当5p =﹣时,27m n p ab p +-+=()20571185--⨯+=-,综上,代数式27m n p ab p+-+的值为18,故答案为:18.【点睛】本题考查了代数式求值、相反数的定义、倒数的定义、绝对值的性质,熟记定义和性质是解答的关键.18.4-【解析】【分析】由新运算定义,将()()222x x -*-*=⎡⎤⎣⎦从内向外依次化简,然后求解即可.【详解】解:∵()()2x -*-()()()()=22x x -+---⨯-22x x=---32x =--∴()322x --*()()=32+2322x x -----⨯=34x +又∵()()222x x-*-*=⎡⎤⎣⎦∴34=2x x+4x =-故答案为:4-【点睛】本题考查定义新运算,能够根据新运算的计算原则化简是解题的关键.19.(1)1112;(2)4;(3)67-;(4)7【解析】【分析】(1)根据有理数的加减法进行计算即可;(2)将除法转化为乘法,再根据乘法分配律进行计算即可;(3)(4)根据有理数的混合运算,先进行乘方计算,然后进行乘除运算,最后计算加减【详解】(1)112243-+212443=-+1243=+381212=+11=12(2)2513624⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭()252436⎛⎫=-⨯- ⎪⎝⎭=1620-+4=(3)()2611327⎡⎤--⨯--⎣⎦()11347=--⨯-117=-+67=-(4)()212123236⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭()12=62923⎛⎫-⨯-⨯-+ ⎪⎝⎭()12=6723⎛⎫-⨯-⨯ ⎪⎝⎭()12=4223⎛⎫-⨯- ⎪⎝⎭2128=-+7=【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.20.222x y -,2.【解析】【分析】先去括号、合并同类项化简原式,再根据非负数的性质得出x 和y 的值,继而代入求值可得.【详解】解:22233223x xy y x xy---+222x y =-∵()2210x y ++-=∴20x +=,10y -=,∴2x =-,1y =,∴原式()22221=--⨯42=-2=.【点睛】本题主要考查整式的加减-化简求值及非负数的性质,熟练掌握去括号、合并同类项的法则是解题的关键.21.(1)=,<,>,<;(2)b .【解析】【分析】(1)利用数轴a 、b 、c 的位置,进而得出各式的符号;(2)利用数轴a 、b 、c 的位置,进而得出各式的符号再去绝对值得出即可.【详解】解:(1)根据图中有理数a 、b 、c 的位置和a b =,可得:0a c b <<<,且c a b <-=,∴0a b +=,0a c +<,0c a ->,0c b -<,故答案是:=,<,>,<;(2)根据图中有理数a 、b 、c 的位置和a b =,可得:0b >,0a c -<,0b c ->,0a b -<,∴b a c b c a b+-+---()()()b a c b c a b =+--+----⎡⎤⎡⎤⎣⎦⎣⎦()()()=+--+----b ac b c a b⎡⎤⎡⎤⎣⎦⎣⎦=-++-+-b ac b c a bb=.【点睛】本题主要考查了绝对值的性质以及有理数的加减法等知识,根据数轴得出各式的符号是解题关键.22.(1)北面,29千米;(2)99m升;(3)218元【解析】【分析】(1)将题中数据直接相加,根据得出答案的正负来判断李师傅的位置;(2)将题中数据的绝对值相加,得出答案根据每公里耗油量为m升,即可得出答案;(3)按题中收费方式算出十批乘客的费用和即可.【详解】解:(1)根据题意:规定向南为正,向北为负,则将最后一批乘客送到目的地时距离湘雅医院的距离为:++-+-+++-+++-+-+++-=-,(9)(11)(5)(12)(7)(10)(16)(22)(4)(3)29∴将最后一批乘客送到目的地时,李师傅在湘雅医院的北面,距离29多少千米;(2)十批乘客共行走的路程为:++-+-+++-+++-+-+++-=(千米),91151271016224399则则这辆出租车这天下午耗油:99m升;+-⨯=元,(3)第一批乘客费用:8(93)220+-⨯=元,第二批乘客费用:8(113)224+-⨯=元,第三批乘客费用:8(53)212+-⨯=元,第四批乘客费用:8(123)226+-⨯=元,第五批乘客费用:8(73)216+-⨯=元,第六批乘客费用:8(103)222+-⨯=元,第七批乘客费用:8(163)234+-⨯=元,第八批乘客费用:8(223)246+-⨯=元,第九批乘客费用:8(43)210第十批乘客费用:8(33)28⨯-⨯=元,则十批乘客总费用为:2024122616223446108218+++++++++=元,则李师傅在这天下午一共收入218元.【点睛】此题考查了正负数在实际生活中的应用,解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.23.(1)2,3-;(2)2.5或7;(3)6116.【解析】【分析】(1)设折痕与数轴的交点表示的数为x ,根据折痕与数轴的交点是−1与5对应点的中点可得方程()15x x --=-,解方程即可求得答案;按照(1)的折叠方式,中点为2,两点之间的距离为10,则左边数到中点的距离为5个单位,可得方程12102x -=⨯,解方程即可求得答案;(2)要分点C 在A 、B 之间和B 点右侧两种情况;(3)A 、B 两点之间距离为()426--=,连续对折5次后,共有52段,每两条相邻折痕间的距离为()5423216--=,则最右端的折痕与数轴的交点为3416-,即可解得答案.【详解】解:(1)设折痕与数轴的交点表示的数为x ,则()15x x --=-,解得2x =,故答案为:2;设左边点表示的数为x ,则12102x -=⨯,解得3x =-,故答案为:3-;(2)设点C 表示的数为x ,∵3AC BC =,∴点C 离点B 较近,只有两种情况:①点C 在线段AB 上时,()()234x x --=-,解得: 2.5x =;②当点C 在点B 的右边数轴上时,()()24x x ---=3,解得:7x =.故答案为:2.5或7.(3)对折5次后,每两条相邻折痕间的距离()5423 216 --=,∴最右端的折痕与数轴的交点表示的数为361 41616 -=.【点睛】本题考查实数与数轴,解题的关键是掌握数轴上点的特点,以及理解图形对称的性质.24.(1)(﹣2)n;(2)n=7;(3)64.【解析】【分析】(1)第一行中,从第二个数起,每一个数与前一个数的比为﹣2,从而可表示出第一行中第n个数;(2)设第一行的第n个数为x,找出图中的数字规律,列出方程即可求出x的值;(3)设方框中左上角的数为x,根据题意列出方程即可求出答案.【详解】(1)第一行中,从第二个数起,每一个数与前一个数的比为﹣2,∴第n个数为:﹣2×(﹣2)n﹣1=(﹣2)n,(2)设第一行的第n个数为x,则:x 12+x+(x+2)=﹣318x=﹣128=(﹣2)7,∴n=7,答:n=7时满足题意;(3)设方框中左上角的数为x,则:x+(﹣2x)12+x+(﹣x)+(x+2)+(﹣2x+2)=﹣156x=64答:方框中左上角的数为64.【点睛】本题考查了一元一次方程,解答本题的关键是正确找出题中的等量关系,本题属于基础题型.25.(1)10,3;(2)3-或9;(3)t为2s或143s或6s时,P,Q两点间距离为4【解析】【分析】(1)根据题意即可得到结论;(2)设点M 所表示的数为x ,分2x -≤和28x -<<和8x >三种情况讨论即可;(3)分情况讨论,当P ,Q 未相遇时,点P 表示的数为2+t -,点Q 表示的数为82t -,则()8221034PQ t t t =---+=-=,求解即可;当P ,Q 相遇后,点Q 在向点A 运动时,()2821034PQ t t t =-+--=-+=,求解即可;当P ,Q 相遇后,点Q 在向点B 返回时,点Q 表示的数为()225212t t -+⨯-=-,点P 表示的数为2t -+,()2212104PQ t t t =-+--=-+=,求解即可.【详解】解:(1)A 、B 两点间的距离AB =|−2−8|=10,线段AB 的中点表示的数为:822-=3.故答案是:10,3;(2)设点M 所表示的数为x ,∴28MA x MB x =+=-,,当2x -≤时,282612MA MB x x x +=---+=-+=,∴3x =-,当28x -<<时,MA+MB=()2812x x --+-=,无解,当8x >时,MA+MB=()2812x x --+-=,解得:9x =,综上,点M 所表示的数为-3或9.(3)当P ,Q 未相遇时,1003t <<,点P 表示的数为2+t -,点Q 表示的数为82t -,∴()8221034PQ t t t =---+=-=,∴2t =,当P ,Q 相遇后,1053t <<,点Q 在向点A 运动时,()2821034PQ t t t =-+--=-+=,∴143t =,当P ,Q 相遇后,点Q 在向点B 返回时,510t <<,点Q 表示的数为()225212t t -+⨯-=-,点P 表示的数为2t -+,∴()2212104PQ t t t =-+--=-+=,∴6t ,综上,t为2s或143s或6s时,P,Q两点间距离为4.。
2024学年秋季学期初中数学七年级上册期中考试模拟试卷
2024学年秋季学期初中数学七年级上册期中考试模拟试卷1.中国是世界上最早使用负数概念的国家.数学家刘徽在《九章算术》注文中指出“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若水位升高3m时记作+3m,则﹣5m表示水位()A.下降5m B.升高3m C.升高5m D.下降3m2.12024的相反数是()A.−12024B.2024C.±2024D.−20243.下列化简不正确的是()A.−(−4.9)=+4.9B.−(+4.9)=−4.9C.−[+(−4.9)]=+4.9D.+[−(+4.9)]=+4.94.春节期间冰雪旅游大热,杭州的小明同学准备去旅游,考虑温差准备着装时,他查询气温,杭州的气温是19℃,哈尔滨的气温是−4°C,则此刻两地的温差是()A.23℃B.19℃C.4℃D.15℃5.2024年春运期间,泸州市道路客运共投放客运班车2336辆,营业性运输累计发送旅客374万人次.将数据374万用科学记数法表示的是()A.3.74×105B.3.74×106C.0.374×107D.3.74×1076.代数式x2,st,1x+y,20%•x,√ab,√2ab,2a+b3中,多项式有()个A.0B.1C.2D.37.下列关于多项式5ab2−2a2bc−1的说法中,正确的是()A.它是三次三项式B.它是二次四项式C.它的最高次项是−2a2bc D.它的常数项是18.下列去括号正确的是()A.−3(x+y)=−3x+3y B.−(−a−b)=a+bC.a−2(b−c)=a−2b+c D.x−(3y+m)=x−3y+m9.下列运算正确的是()A.a3−a2=a B.−a+5a=4a C.a+a2=a3D.ab2+a2b=ab2 10.多项式1+2xy-3xy2的次数为()A.1B.2C.3D.511.一辆汽车以60 千米/时的速度行驶,从A城到B城需t小时,如果该车的速度每小时增加v千米,那么从A城到B城需要()A.60t v小时B.60tv+60小时C.vtv+60小时D.vt60小时12.比较大小:(1)−(−2)−|−2.5|,(2)−78−67.13.计算:−6÷(−5)×(−15)=.14.我国某次人口普查结果公布,全国总人口为1443497378人.把横线上的数改写成用“万”作单位,省略“万”后面的尾数是万.15.如图,线段AB=8cm,点C为线段AB上一点,BC=2cm,点D,E分别为AC和AB的中点,则线段DE的长为cm.16.写出一个与﹣2x2y是同类项的单项式为.17.有理数a、b、c在数轴上的位置如图所示,则|a|−3|a+b|+2|c−a|+4|b+c|可化简为.18.计算(134−78−712)÷(﹣78)+ 87÷(134−78−712)的结果为.19.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形⋯按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).20.计算:−14+30÷22×(−13)+12.21.先化简,再求值:x 2y ﹣2( 14 xy 2﹣3x 2y )+(﹣ 12 xy 2﹣x 2y ),其中|x ﹣ 32 |+(y+2)2=0.22. 先化简,再求值:已知a 2−1=0,求(5a 2+2a −1)−2(a +a 2)的值.23.74÷78−23×(−6) .24.先化简,再求值:3x 2y -[2x 2y -3(2xy -x 2y)-xy],其中x =- 12 ,y =2.25.(1)计算2(3ab 2−a 2b )−3(2a 2b −ab 2);(2)先化简,再求值:8a2−2[3a−(4a−1)+4a2],其中a=−2.26.如图所示,学校有一块宽20m,长40m的空闲长方形场地,中间有两条横纵相交且宽度相等的小道,为了美化校园环境,生物部的同学准备在场地上种植一些植被,若小道的宽为xm.(1)用含有x的代数式表示种植植被的面积;(2)当x=2时,计算种植植被的面积.。
浙教版初中数学七年级上册期中测试卷(标准难度)(含答案解析)
浙教版初中数学七年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.把有理数a代入|a+4|−10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=11,经过第2020次操作后得到的是( )A. −7B. −1C. 5D. 112.绝对值不小于2且不大于4的所有正整数的和为( )A. 3B. 5C. 7D. 93.如图,实数−3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是( )A. MB. NC. PD. Q4.下列计算中,错误的是( )A. (−1)2021×12022=−1B. 2÷3×12=3C. −5−(−6)×16=−4 D. −2+(−15)×(−5)2=−75.某种细菌的分裂速度非常快,1个细菌经过1分钟分裂为2个,再过1分钟又分别分裂为2个,即总共分裂为4个⋯⋯照这样的分裂速度,一个细菌分裂为满满一小瓶恰好需要1小时.同样的细菌,同样的分裂速度,同样的小瓶,如果开始时瓶内装有2个细菌,那么恰好分裂为满满一小瓶需要( )A. 15分钟B. 30分钟C. 45分钟D. 59分钟6.计算634+(−514)+(+1.2)+(−2.75)+1.8+(−634),所得结果是( )A. −3B. 3C. −5D. 57.实数a、b在数轴上的位置如图所示,化简√(a+1)2+√(b−1)2−√(a−b)2的结果是( )A. −2B. 0C. −2aD. 2b8. 若a <10−√13<b ,且a ,b 是两个连续的整数,则a +b 的值为( )A. 11B. 12C. 13D. 149. 下列各组数中,互为相反数的是( )A. −2与−12 B. √(−2)2与√−83.C. |−√2|与√2.D. √−83与−√83.10. 下列四个数轴上的点A 都表示数a ,其中,一定满足|a|>|−2|的是( )A. ①③B. ②③C. ①④D. ②④11. 马小虎在学习有理数的运算时,做了如下6道填空题:①(−5)+5=0;②−5−(−3)=−8;③(−3)×(−4)=12;④(−78)×(−87)=1;⑤(−12)÷(−23)=13.你认为他做对了( ) A. 5题 B. 4题 C. 3题 D. 2题12. 已知a 是√81的平方根,b =√16,c 是−8的立方根,则a +b −c 的值为( )A. 15B. 15或−3C. 9D. 9或3第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 若x 是有理数,则|x −2|+|x −4|+|x −6|+|x −8|+⋯+|x −2022|的最小值是__________.14. 观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是____.15. 如图是一个简单的数值计算程序,当输入的x 的值为5时,则输出的结果为_________.16. 如果一个数的立方根等于它的平方根,那么这个数为 .三、解答题(本大题共9小题,共72.0分。
七年级数学上册期中考试卷及答案
七年级数学上册期中考试卷及答案虽然在学习的过程中会遇到许多不顺心的事,但古人说得好——吃一堑,长一智。
多了一次失败,就多了一次教训;多了一次挫折,就多了一次经验。
下面给大家分享一些关于七年级数学上册期中考试卷及答案,希望对大家有所帮助。
一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号哦字母填入题后括号内1.如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作( )A.﹣3mB.3mC.6mD.﹣6m【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:因为上升记为+,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.【点评】考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.在0,﹣2,5,,﹣0.3中,负数的个数是( )A.1B.2C.3D.4【考点】正数和负数.【分析】根据小于0的是负数即可求解.【解答】解:在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,故选:B.【点评】本题主要考查了正数和负数,熟记概念是解题的关键.注意0既不是正数也不是负数.3.在数轴上表示﹣2的点与表示3的点之间的距离是( )A.5B.﹣5C.1D.﹣1【考点】数轴.【分析】根据正负数的运算方法,用3减去﹣2,求出在数轴上表示﹣2的点与表示3的点之间的距离为多少即可.【解答】解:3﹣(﹣2)=2+3=5.所以在数轴上表示﹣2的点与表示3的点之间的距离为5.故选A【点评】此题主要考查了正负数的运算方法,关键是根据在数轴上表示﹣2的点与表示3的点之间的距离列出式子.4.|﹣ |的相反数是( )A. B.﹣ C.3 D.﹣3【考点】绝对值;相反数.【专题】常规题型.【分析】一个负数的绝对值是它的相反数,求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:∵|﹣ |= ,∴ 的相反数是﹣ .故选:B.【点评】本题考查了相反数的意义,求一个数的相反数就是在这个数前面添上“﹣”号,不要把相反数的意义与倒数的意义混淆.同时考查了绝对值的性质:一个负数的绝对值是它的相反数.5.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为( )A.11×104B.0.11×107C.1.1×106D.1.1×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1 时,n是负数.【解答】解:110000=1.1×105,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.下列说法错误的是( )A.3.14×103是精确到十位B.4.609万精确到万位C.近似数0.8和0.80表示的意义不同D.用科学记数法表示的数2.5×104,其原数是25000【考点】近似数和有效数字;科学记数法—原数.【分析】根据近似数的精确度对A、B、C进行判断;根据科学记数法对D进行判断.【解答】解:A、.14×103是精确到十位,所以A选项的说法正确;B、4.609万精确到十位,所以B选项的说法错误;C、近似数0.8精确到十分位,0.80精确到百分位,所以C选项的说法正确;D、用科学记数法表示的数2.5×104,其原数为25000,所以,D 选项的说法正确.故选B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.7.下列说法中,正确的是( )A. 不是整式B.﹣的系数是﹣3,次数是3C.3是单项式D.多项式2x2y﹣xy是五次二项式【考点】整式;单项式;多项式.【分析】利用单项式、多项式及整式的定义判定即可.【解答】解:A、是整式,错误;B、﹣的系数是﹣,次数是3,错误;C、3是单项式,正确;D、多项式2x2y﹣xy是三次二项式,错误;故选C【点评】本题主要考查了单项式、多项式及整式,解题的关键是熟记单项式、多项式及整式的定义.8.在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A.4,2,1B.2,1,4C.1,4,2D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.二、填空题(每小题3分,共21分)9.有理数中,的负整数是﹣1.【考点】有理数.【分析】根据小于零的整数是负整数,再根据的负整数,可得答案.【解答】解:有理数中,的负整数是﹣1,故答案为:﹣1.【点评】本题考查了有理数,根据定义解题是解题关键.10.如图,数轴的单位长度为1,如果R表示的数是﹣1,则数轴上表示相反数的两点是P,Q.【考点】相反数;数轴.【分析】首先根据R表示的数是﹣1,求出P、Q、T三点表示的数各是多少;然后根据相反数的含义,判断出数轴上表示相反数的两点是多少即可.【解答】解:∵R表示的数是﹣1,∴P点表示的数是(﹣3,0),Q点表示的数是(3,0),T点表示的数是(4,0),∵﹣3和3互为相反数,∴数轴上表示相反数的两点是:P,Q.故答案为:P,Q.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”,并能求出P、Q、T三点表示的数各是多少.11.在数1,0,﹣1,|﹣2|中,最小的数是﹣1.【考点】有理数大小比较.【专题】计算题.【分析】利用绝对值的代数意义化简后,找出最小的数即可.【解答】解:在数1,0,﹣1,|﹣2|=2中,最小的数是﹣1.故答案为:﹣ 1.【点评】此题考查了有理数的大小比较,弄清有理数的比较方法是解本题的关键.12.已知|a+2|与(b﹣3)2互为相反数,则ab=﹣8.【考点】非负数的性质:偶次方;相反数;非负数的性质:绝对值.【分析】根据非负数的性质解答.有限个非负数的和为零,那么每一个加数也必为零,即若a1,a2,…,an为非负数,且a1+a2+…+an=0,则必有a1=a2=…=an=0.【解答】解:∵|a+2|与(b﹣3)2互为相反数,∴|a+2|+(b﹣3)2=0,则a+2=0,a=﹣2;b﹣3=0,b=3.故ab=(﹣2)3=﹣8.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.13.在式子,﹣1,x2﹣3x,,中,是整式的有3个.【考点】整式.【分析】单项式和多项式统称整式,准确理解其含义再去判断是否为整式,式子,中,分母中含有字母,故不是整式.问题可求.【解答】解:式子,和x2﹣3x是多项式,﹣1是单项式,三个都是整式;,中,分母有字母,故不是整式.因此整式有3个.【点评】判断是否为整式,关键是看分母是否含有字母,有则不是;圆周率π或另有说明的除外,如就是整式.14.一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此规律排列,则第7个单项式为﹣13x8.【考点】单项式.【专题】规律型.【分析】根据规律,系数是从1开始的连续奇数且第奇数个是负数,第偶数个是正数,x的指数是从2开始的连续自然数,然后求解即可.【解答】解:第7个单项式的系数为﹣(2×7﹣1)=﹣13,x的指数为8,所以,第7个单项式为﹣13x8.故答案为:﹣13x8.【点评】本题考查了单项式,此类题目,难点在于根据单项式的定义从多个方面考虑求解.15.多项式 x+7是关于x的二次三项式,则m=2.【考点】多项式.【分析】由于多项式是关于x的二次三项式,所以|m|=2,但﹣(m+2)≠0,根据以上两点可以确定m的值.【解答】解:∵多项式是关于x的二次三项式,∴|m|=2,∴m=±2,但﹣(m+2)≠0,即m≠﹣2,综上所述,m=2,故填空答案:2.【点评】本题解答时容易忽略条件﹣(m+2)≠0,从而误解为m=±2.三、解答题(本大题共8小题,满分65分)16.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来.|﹣3|,﹣5,,0,﹣2.5,﹣22,﹣(﹣1).【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【解答】解:如图所示,,由图可知,|﹣3|>﹣(﹣1)> >0>﹣2.5>﹣22>﹣5.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.17.单项式 x2ym与多项式x2y2+ y4+ 的次数相同,求m的值.【考点】多项式;单项式.【分析】利用多项式及单项式的次数列出方程求解即可.【解答】解:∵单项式 x2ym与多项式x2y2+ y4+ 的次数相同,∴2+m=7,解得m=5.故m的值是5.【点评】本题主要考查了多项式及单项式,解题的关键是熟记多项式及单项式的次数.18.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:售出件数 7 6 7 8 2售价(元) +5 +1 0 ﹣2 ﹣5请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?【考点】正数和负数.【分析】首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.【解答】解:7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元),答:共赚了555元.【点评】本题主要考查有理数的混合运算,关键在于根据表格计算出一共卖了多少钱.19.将多项式按字母X的降幂排列.【考点】多项式.【专题】计算题.【分析】按x的降幂排列就是看x的指数从大到小的顺序把多项式的各个项排列即可,【解答】解:将多项式按字母x的降幂排列为:﹣7x4y2+3x2y﹣ xy3+ .【点评】本题考查了对多项式的有关知识的理解和运用,注意按字母排列是要带着各个项的符号.20.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25(4) .【考点】有理数的混合运算.【分析】(1)先化简,再计算加减法;(2)按照有理数混合运算的顺序,先乘除后算加减,有括号的先算括号里面的;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4),先将乘法变为乘法,再运用乘法的分配律计算.【解答】解:(1)原式=﹣4+1﹣3=﹣6;=﹣3.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.21.已知ab2<0,a+b>0,且|a|=1,|b|=2,求的值.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下1组.a=﹣1,b=2,所以原式=|﹣1﹣ |+(2﹣1)2= .【解答】解:∵ab2<0,a+b>0,∴a<0,b>0,且b的绝对值大于a的绝对值,∵|a|=1,|b|=2,∴a=﹣1,b=2,∴原式=|﹣1﹣ |+(2﹣1)2= .【点评】本题是绝对值性质的逆向运用,此类题要注意两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下1组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.22.观察:4×6=24,14×16=224,24×26=624,34×36=1224…,(1)上面两数相乘后,其末尾的两位数有什么规律?(2)如果按照上面的规律计算:124×126(请写出计算过程).(3)请借助代数式表示这一规律!【考点】规律型:数字的变化类.【分析】(1)仔细观察后直接写出答案即可;(2)将124×126写成12×(12+1)×100+24后计算即可;(3)分别表示出两个因数后即可写出这一规律.【解答】解:(1)末尾都是24;(2)124×126=12×(12+1)×100+24=15600+24=15624;(3)(10a+4)(10a+6)=100a2+100a+24=100a(a+1)+24.【点评】本题考查了数字的变化类问题,仔细观察算式发现规律是解答本题的关键.23.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1.∴a※(b+c)+1=a※b+a※c.【点评】解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.。
初中七年级数学上期中考试试卷
初中七年级数学上期中考试试卷做题是做容易提高数学成绩的一种方法,下面小编就给大家整理一下七年级数学,希望大家能有一个好的成绩有关七年级数学上期中试卷一、选择题(每题3分)1.(3分)用一个平面去截一个正方体,所得截面不可能为( )A.五边形B.三角形C.梯形D.圆2.(3分)﹣2017的相反数是( )A.﹣2017B.﹣C.D.20173.(3分)在有理数(﹣1)2、(﹣)、﹣|﹣2|、(﹣2)3﹣22中负数有( )个.A.4B.3C.2D.14.(3分)一个数在数轴上所对应的点向左平移6个单位后,得到它的相反数的点,则这个数为( )A.3B.﹣3C.6D.﹣65.(3分)下列说法错误的是( )A.图①中直线l经过点AB.图②中直线a、b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点6.(3分)从新华网获悉:商务部5月27日发布的数据显示,一季度,中国与“一带一路”沿线国家在经贸合作领域保持良好发展势头,双边货物贸易总额超过16553亿元人民币,16553亿用科学记数法表示为( )A.1.6553×108B.1.6553×1011C.1.6553×1012D.1.6553×10137.(3分)要反映青岛市一天内气温的变化情况宜采用( )A.条形统计图B.扇形统计图C.频数分布图D.折线统计图8.(3分)若a为有理数,且满足|a|+a=0,则( )A.a>0B.a≥0C.a<0D.a≤09.(3分)下列计算结果正确的是( )A.1+(﹣24 )÷(﹣6)=﹣3B.﹣3.5÷ ×(﹣ )﹣2=﹣5C.(﹣)÷(﹣)×16=D.3﹣(﹣6)÷(﹣4)÷1 =10.(3分)下列调查中,适合用普查方式的是( )A.调查聊城市市民的吸烟情况B.调查中央电视台某节目的收视率C.调查聊城市市民家庭日常生活支出情况D.调查聊城市市某校某班学生对“聊城市创建文明城市活动”的知晓率11.(3分)若|x|=7,|y|=9,则x﹣y为( )A.±2B.±16C.﹣2和﹣16D.±2和±1612.(3分)观察下列等式:21=2;22=4;23=8;24=16;25=32; …通过观察,用你所发现的规律确定22017的个位数字是( )A.2B.4C.6D.8二、填空题(每题4分)13.(4分)如图,在与国际友好学校交流活动中,小敏打算制作一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是.14.(4分)如图是校园花圃一角,有的同学为了省时间图方便,在花圃中踩出了一条小道,这些同学这样做的数学道理是.15.(4分)绝对值大于1而小于4的整数是,它们的和是,它们的积是.16.(4分)如图是七年级(21)班学生上学的不同方式的扇形统计图,若步行人数所占的圆心角的度数为72°,坐车的人数占40%,骑车人数为20人,则该班人数为人.17.(4分)若|a﹣2|+(b+1)2=0,则ba= .18.(4分)有理数a、b在数轴上分别对应的点为M、N,则下列式子结果为正数的是①a+b;②a﹣b;③﹣a+ b;④﹣a﹣b;⑤ab;⑥ ;⑦a3b3.三、解答题19.(6分)已知:线段a,b求作:线段AB,使AB=2a+b(用直尺、圆规作图,不写作法,但要保留作图痕迹)20.(6分)在数轴上把下列各数表示出来,并用“<”连接起来:﹣(﹣5),﹣(+3),4,0,﹣2 ,﹣22,|﹣0.5|.21.(20分)计算题:(1)﹣8+1 2﹣16﹣23;(2)2×(﹣5)+23÷ ;(3)32×(﹣ )3﹣0.52×(﹣2)3;(4)﹣14﹣(2﹣0.5)× ×[(﹣ )2﹣( )3].22.(8分)某中学进行体育教学改革,同时开设篮球、排球、足球、体操课、学生可根据自己的爱好任选其一,体育老师根据七年级学生的报名情况进行了统计,并绘制了下面尚未完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)该校七年级共有多少名学生?(2)将两个统计图补充完整;(3)从统计图中你还能得到哪些信息?(写出两条即可)23.(10分)(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,求线段MN的长度.(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜出MN的长度吗?请你用一句简洁的话表述你发现的规律.(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm,BC=4cm,点C在直线AB上,点M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.24.(10分)小车司机李师傅某天下午的营运全是在东西走向的振兴路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+14,﹣3,+7,﹣3,+11,﹣4,﹣3,+11,+6,﹣7,+9(1)李师傅这天最后到达目的地时,在下午出车点的什么位置?(2)李师傅这天下午共行车多少千米?(3)若李师傅的车平均行驶每千米耗油0.1升,则这天下午李师傅用了多少升油?参考答案与试题解析一、选择题(每题3分)1.(3分)用一个平面去截一个正方体,所得截面不可能为( )A.五边形 B .三角形 C.梯形 D.圆【解答】解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,所以截面可能为三角形、四边形(梯形,矩形,正方形)、五边形、六边形,而不可能是圆.故选D.2.(3分)﹣2017的相反数是( )A.﹣2017B.﹣C.D.2017【解答】解:﹣2017的相反数是2017.故选:D.3.(3分)在有理数(﹣1)2、(﹣)、﹣|﹣2|、(﹣2)3﹣22中负数有( )个.A.4B.3C.2D.1【解答】解:(﹣1)2=1,(﹣)=﹣、﹣|﹣2|=﹣2、(﹣2)3﹣22=﹣8﹣4=﹣12,则负数有3个,故选B4.(3分)一个数在数轴上所对应的点向左平移6个单位后,得到它的相反数的点,则这个数为( )A.3B.﹣3C.6D.﹣6【解答】解:由题意可得:a﹣6=﹣a,解得a=3.故选A.5.(3分)下列说法错误的是( )A.图①中直线l经过点AB.图②中直线a、b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点【解答】解:A、图①中直线l经过点A,正确;B、图②中直线a、b相交于点A,正确;C、图③中点C在线段AB外,故本选项错误;D、图④中射线CD与线段AB有公共点,正确;故选C.6.(3分)从新华网获悉:商务部5月27日发布的数据显示,一季度,中国与“一带一路”沿线国家在经贸合作领域保持良好发展势头,双边货物贸易总额超过16553亿元人民币,16553亿用科学记数法表示为( )A.1.6553×108B.1.6553×1011C.1.6553×1012D.1.6553×1013【解答】解:将16553亿用科学记数法表示为:1.6553×1012.故选:C.7.(3分)要反映青岛市一天内气温的变化情况宜采用( )A.条形统计图B.扇形统计图C.频数分布图D.折线统计图【解答】解:要反映青岛市一天内气温的变化情况宜采用折线统计图;故选D.8.(3分)若a为有理数,且满足|a|+a=0,则( )A.a>0B.a≥0C.a<0D.a≤0【解答】解:∵|a|+a=0,∴|a|=﹣a,∴a≤0,即a为负数或0.故选D.9.(3分)下列计算结果正确的是( )A.1+(﹣24 )÷(﹣6)=﹣3B.﹣3.5÷ ×(﹣ )﹣2=﹣5C.(﹣)÷(﹣)×16=D.3﹣(﹣6)÷(﹣4)÷1 =【解答】解:A、原式=1+(﹣)×(﹣ )=1+ = ,不符合题意;B、原式= × × ﹣2=3﹣2=1,不符合题意;C、原式= × ×16= ,不符合题意;D、原式=3﹣× =3﹣ = ,符合题意,故选D.10.(3分)下列调查中,适合用普查方式的是( )A.调查聊城市市民的吸烟情况B.调查中央电视台某节目的收视率C.调查聊城市市民家庭日常生活支出情况D.调查聊城市市某校某班学生对“聊城市创建文明城市活动”的知晓率【解答】解:A、调查聊城市市民的吸烟情况适合用抽样调查方式;B、调查中央电视台某节目的收视率适合用抽样调查方式;C、调查聊城市市民家庭日常生活支出情况适合用抽样调查方式;D、调查聊城市市某校某班学生对“聊城市创建文明城市活动”的知晓率适合用普查方式,故选:D.11.(3分)若|x|=7,|y|=9,则x﹣y为( )A.±2B.±16C.﹣2和﹣16D.±2和±16【解答】解:∵|x|=7,|y|=9,∴x=﹣7,y=9;x=﹣7,y=﹣9;x=7,y=9;x=7,y=﹣9;则x﹣y=﹣16或2或﹣2或16.故选:D.12.(3分)观察下列等式:21=2;22=4;23=8;24=16;25=32; …通过观察,用你所发现的规律确定22017的个位数字是( )A.2B.4C.6D.8【解答】解:以2为底的幂的末位数字是2,4,8,6依次循环的,∵2017÷4=504…1,∴22017的个位数字是2.故选A二、填空题(每题4分)13.(4分)如图,在与国际友好学校交流活动中,小敏打算制作一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是义.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“仁”与“孝”是相对面,“义”与“礼”是相对面,“信”与“智”是相对面,故答案为:义.14.(4分)如图是校园花圃一角,有的同学为了省时间图方便,在花圃中踩出了一条小道,这些同学这样做的数学道理是两点之间线段最短.【解答】解:校园花圃一角,有的同学为了省时间图方便,在花圃中踩出了一条小道,这些同学这样做的数学道理是两点之间线段最短,故答案为:两点之间线段最短.15.(4分)绝对值大于1而小于4的整数是2,﹣2,3,﹣3 ,它们的和是0 ,它们的积是36 .【解答】解:由题意知:绝对值大于1而小于4的整数有2,﹣2,3,﹣3;它们的和为:2+(﹣2)+3+(﹣3)=0;它们的积为:2×(﹣2)×3×(﹣3)=2×2×3×3=36.故答案为:2,﹣2,3,﹣3;0;36.16.(4分)如图是七年级(21)班学生上学的不同方式的扇形统计图,若步行人数所占的圆心角的度数为72°,坐车的人数占40%,骑车人数为20人,则该班人数为50 人.【解答】解:∵步行的人数占总人数的百分比为×100%=20%,∴骑车人数占总人数的百分比为1﹣40%﹣20%=40%,∵骑车人数为20人,∴该班人数为20÷40%=50(人),故答案为:50.17.(4分)若|a﹣2|+(b+1)2=0,则ba= 1 .【解答】解:由题意得,a﹣2=0,b+1=0,解得a=2,b=﹣1,所以,ba=(﹣1)2=1.故答案为:1.18.(4分)有理数a、b在数轴上分别对应的点为M、N,则下列式子结果为正数的是③④①a+b;②a﹣b;③﹣a+b;④﹣a﹣b;⑤ab;⑥ ;⑦a3b3.【解答】解:观察数轴,可知:a<0,b>0,|a|>|b|,∴a<﹣b<0∴①a+b<0;②a﹣b<0;③﹣a+b>0;④﹣a﹣b>0;⑤ab<0;⑥ <0;⑦a3b3=(ab)3<0.故答案为:③④.三、解答题19.(6分)已知:线段a,b求作:线段AB,使AB=2a+b(用直尺、圆规作图,不写作法,但要保留作图痕迹)【解答】解:如图:,线段AB即为所求.20.(6分)在数轴上把下列各数表示出来,并用“<”连接起来:﹣(﹣5),﹣(+3),4,0,﹣2 ,﹣22,|﹣0.5|.【解答】解:﹣22<﹣(﹣3)<﹣2 <0<|﹣0.5|<4<﹣(﹣5).21.(20分)计算题:(1)﹣8+12﹣16﹣23;(2)2×(﹣5)+23÷ ;(3)32×(﹣ )3﹣0.52×(﹣2)3;(4)﹣14﹣(2﹣0.5)× ×[(﹣ )2﹣( )3].【解答】解:(1)﹣8+12﹣16﹣23=﹣35;(2)2×(﹣5)+23÷ =﹣10+16=6;(3)32×(﹣ )3﹣0.52×(﹣2)3=4+2=6;(4)﹣14﹣(2﹣0.5)× ×[(﹣ )2﹣( )3]=﹣1﹣2× =﹣ .22.(8分)某中学进行体育教学改革,同时开设篮球、排球、足球、体操课、学生可根据自己的爱好任选其一,体育老师根据七年级学生的报名情况进行了统计,并绘制了下面尚未完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)该校七年级共有多少名学生?(2)将两个统计图补充完整;(3)从统计图中你还能得到哪些信息?(写出两条即可)【解答】解:(1)由统计图得,108÷30%=360,故该校九年级共有360名学生.(2)补全的两个统计图如下:(3)1、七年级学生选学体操的人数最多;2、七年级学生选学排球的人数最少;3、选学篮球的人数是九年级学生总人数的25%(或 );4、选学足球的人数是九年级学生总人数的25%(或 ).23.(10分)(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,求线段MN的长度.(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜出MN的长度吗?请你用一句简洁的话表述你发现的规律.(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm,BC=4cm,点C在直线AB上,点M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.【解答】解:(1)∵AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,∴MN= (AC+CB)= ×10=5cm;(2)MN= ,直线上相邻两线段中点间的距离为两线段长度和的一半;(3)如图,有变化,会出现两种情况:①当点C在线段AB上时,MN= (AC+BC)=5cm;②当点C在AB或BA的延长线上时,MN= (AC﹣BC)=1cm.24.(10分)小车司机李师傅某天下午的营运全是在东西走向的振兴路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+14,﹣3,+7,﹣3,+11,﹣4,﹣3,+11,+6,﹣7,+9(1)李师傅这天最后到达目的地时,在下午出车点的什么位置?(2)李师傅这天下午共行车多少千米?(3)若李师傅的车平均行驶每千米耗油0.1升,则这天下午李师傅用了多少升油?【解答】解:(1)14﹣3+7﹣3+11﹣4﹣3+11+6﹣7+9=38(千米).答:李师傅这天最后到达目的地时,在下午出车点的东边38千米;(2)14+3+7+3+11+4+3+11+6+7+9=78(千米).答:李师傅这天下午共行车78千米;(3)78×0.1=7.8(升).答:这天下午李师傅用了7.8升油.初中生七年级数学上期中试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题所给出的四个答案中有且只有一个答案是正确的.)1.(4分)2016的相反数是( )A. B.﹣C.±2016 D.﹣20162.(4分)如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是( )A.圆B.长方形C.椭圆D.平行四边形3.(4分)如图,将正方体的平面展开图重新折成正方体后,“快”字对面的字是( )A.新B.年C.祝D.乐4.(4分)今年中秋节假期间,雁荡山世界地质公园共接待旅客约为184500人次,此数用科学记数法表示是( )A.1.845×105B.0.1845×106C.18.45×104D.1.845×1065.(4分)在﹣,﹣|12|,﹣20,0,﹣(﹣5)中,负数的个数有( )A.2个B.3个C.4个D.5个6.(4分)下列各组代数式中,属于同类项的是( )A. a2b与 ab2B.x2y与x2zC.2mnp与 2mnD. pq 与qp7.(4分)下面关于有理数的说法正确的是( )A.整数和分数统称为有理数B.正整数集合与负整数集合合在一起就构成整数集合C.有限小数和无限循环小数不是有理数D.正数、负数和零统称为有理数8.(4分)如图,数轴上点A、B分别对应实数a、b,则下列结论正确的是( )A.a>bB.|a|>|b|C.a+b>0D.﹣a>b9.(4分)如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少要有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是( )A.7B.6C.5D.410.(4分)如图,图案均是用长度相等的小木棒,按一定规律拼撘而成,第一个图案需4根小木棒,则第4个图案小木棒根数是( )A.18B.24C.28D.30二.填空题(共6小题,每小题4分,满分24分,请将答案填入答题卡的相应位置)11.(4分)如果向东走2km记作+2km,那么﹣3km表示.12.(4分)代数式﹣πx2的系数是.次数是.13.(4分)比较大小:﹣2 ﹣2.3.(填“>”、“<”或“=”)14.(4分)一个棱柱有12个顶点,所有侧棱长的和是48cm,则每条侧棱长是cm.15.(4分)一个长方形周长为30,若一边长用字母x表示,则此长方形的面积表示为.16.(4分)如图是一数值转换机,若输入x的值为﹣3,y的值为﹣1,则输出的结果为= .三、解答题(共8大题,满分86分,请将答案填入答题卡的相应位置)17.(6分)把下列各数填入相应的空格中:+1,﹣3.1,0,﹣3 ,﹣1.314,﹣17, .负数:;正整数:;整数:;负分数:.18.(16分)计算:(1)7+(﹣28)﹣(﹣9).(2)(﹣2)×6﹣6÷3.(3) .(4)﹣24﹣16×| |.19.(14分)化简(1)2x2﹣5x+x2+4x(2)3b+5a﹣(2a﹣4b)(3)先化简,再求值:4(x﹣1)﹣2(x2+1)+ (4x2﹣2x),其中x=﹣3.20.(6分)如图是由6个相同的小正方体组成的几何体.请在指定的位置画出从正面、左面、上面看到的这个几何体的形状图.21.(8分)已知有理数a,b,其中数a在如图的数轴上对应的点M,b是负数,且b在数轴上对应的点与原点的距离为3.5.(1)a= ,b= .(2)将﹣,0,﹣2,b在如图的数轴上表示出来,并用“<”连接这些数.22.(8分)正兴学校七年一班10名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣7,﹣10,+9,+2,﹣1,+5,﹣8,+10,+4,+6(1)填空:最高分是分和最低分是分(2)求他们的平均成绩.23.(9分)按下图方式摆放餐桌和椅子,(1)1张长方形餐桌可坐4人,2张长方形餐桌拼在一起可坐人.(2)按照上图的方式继续排列餐桌,完成下表.桌子张数 3 4 5 n可坐人数(3)一家餐厅有40张这样的长方形餐桌,某用餐单位要求餐厅按照上图方式每8张长方形餐桌拼成1张大桌子,则该餐厅此时能容纳多少人用餐?24.(12分)如图1是边长为20cm的正方形薄铁片,小明将其四角各剪去一个相同的小正方形(图中阴影部分)后,发现剩余的部分能折成一个无盖的长方体盒子,图2为盒子的示意图(铁片的厚度忽略不计).(1)设剪去的小正方形的边长为x(cm),折成的长方体盒子的容积为V(cm3),用只含字母x的式子表示这个盒子的高为cm,底面积为cm2,盒子的容积V为cm3;(2)为探究盒子的体积与剪去的小正方形的边长x之间的关系,小明列表分析:x(cm) 1 2 3 4 5 6 7 8V(cm3) 324 588 576 500 252 128请将表中数据补充完整,并根据表格中的数据写出当x的值逐渐增大时,V的值如何变化?25.(7分)根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣,﹣3观察数轴,与点A的距离为3的点表示的数是,B,C两点之间的距离为;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是 ;若此数轴上M,N两点之间的距离为2016(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M ,N ;(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P ,Q (用含m,n的式子表示这两个数).参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题所给出的四个答案中有且只有一个答案是正确的.)1.(4分)2016的相反数是( )A. B.﹣C.±2016 D.﹣2016【解答】解:2016的相反数是﹣2016,故选:D.2.(4分)如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是( )A.圆B.长方形C.椭圆D.平行四边形【解答】解:由水平面与圆柱的底面垂直,得水面的形状是长方形.故选:B.3.(4分)如图,将正方体的平面展开图重新折成正方体后,“快”字对面的字是( )A.新B.年C.祝D.乐【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“快”与“乐”是相对面,“祝”与“新”是相对面,“你”与“年”是相对面.故选D.4.(4分)今年中秋节假期间,雁荡山世界地质公园共接待旅客约为184500人次,此数用科学记数法表示是( )A.1.845×105B.0.1845×106C.18.45×1 04D.1.845×106【解答】解:将184500用科学记数法表示为1.845×105.故选A.5.(4分)在﹣,﹣|12|,﹣20,0,﹣(﹣5)中,负数的个数有( )A.2个B.3个C.4个D.5个【解答】解:﹣是负数,﹣|﹣12|=﹣12是负数,﹣20是负数,0既不是正数也不是负数,﹣(﹣5)=5,是正数.负数有3个,故选B.6.(4分)下列各组代数式中,属于同类项的是( )A. a2b与 ab2B.x2y与x2zC.2mnp与 2mnD. p q 与qp【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同的项不是同类项,故B错误;C、字母不同的项不是同类项,故C错误;D、字母相同且相同字母的指数也相同,故D正确;故选:D.7.(4分)下面关于有理数的说法正确的是( )A.整数和分数统称为有理数B.正整数集合与负整数集合合在一起就构成整数集合C.有限小数和无限循环小数不是有理数D.正数、负数和零统称为有理数【解答】解:A、正确;B、正整数集合与负整数集合以及0合在一起就构成整数集合,故命题错误;C、有限小数和无限循环小数是有理数,故命题错误;D、正有理数、负有理数和零统称为有理数,故命题错误.故选A.8.(4分)如图,数轴上点A、B分别对应实数a、b,则下列结论正确的是( )A.a>bB.|a|>|b|C.a+b>0D.﹣a>b【解答】解:A、aB、|a|<|b|,故错误;C、正确;D、﹣a故选:C.9.(4分)如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少要有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是( )A.7B.6C.5D.4【解答】解:根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5.故选C.10.(4分)如图,图案均是用长度相等的小木棒,按一定规律拼撘而成,第一个图案需4根小木棒,则第4个图案小木棒根数是( )A.18B.24C.28D.30【解答】解:拼搭第1个图案需4=1×(1+3)根小木棒,拼搭第2个图案需10=2×(2+3)根小木棒,拼搭第3个图案需18=3×(3+3)根小木棒,拼搭第4个图案需4×(4+3)=28根小木棒,故选C二.填空题(共6小题,每小题4分,满分24分,请将答案填入答题卡的相应位置)11.(4分)如果向东走2km记作+2km,那么﹣3km表示向西走3km .【解答】解:向东走2km记作+2km,那么向﹣3km表示向西走3km,故答案为:向西走3km.12.(4分)代数式﹣πx2的系数是﹣π.次数是 2 .【解答】解:代数式﹣πx2的系数是﹣π.次数是 2.故答案是: ;2.13.(4分)比较大小:﹣2 < ﹣2.3.(填“>”、“<”或“=”)【解答】解:∵|﹣2 |=2 ≈2.33,|﹣2.3|=2.3,2.33>2.3,∴﹣2.33<﹣2.3,∴﹣2 <﹣2.3.故答案为:<.14.(4分)一个棱柱有12个顶点,所有侧棱长的和是48cm,则每条侧棱长是8 cm.【解答】解:根据以上分析一个棱柱有12个顶点,所以它是六棱柱,即有6条侧棱,又因为所有侧棱长的和是48cm,所以每条侧棱长是48÷6=8cm.故答案为8.15.(4分)一个长方形周长为30,若一边长用字母x表示,则此长方形的面积表示为x(15﹣x) .【解答】解:周长是30,则相邻两边的和是15,因而一边是x,则另一边是15﹣x.则面积是:x(15﹣x).故答案为:x(15﹣x).16.(4分)如图是一数值转换机,若输入x的值为﹣3,y的值为﹣1,则输出的结果为= ﹣.【解答】解:把x=﹣3,y=﹣1代入(2x+y2)÷2得(2x+2y2)÷2=(﹣6+1)÷2=﹣ .故答案为﹣ .三、解答题(共8大题,满分86分,请将答案填入答题卡的相应位置)17.(6分)把下列各数填入相应的空格中:+1,﹣3.1,0,﹣3 ,﹣1.314,﹣17, .负数:﹣3.1,﹣3 ,﹣1.314,﹣17 ;正整数:+1 ;整数:+1,0,﹣17 ;负分数:﹣3.1,﹣3 ,﹣1.314 .【解答】解:负数:﹣3.1,﹣3 ,﹣1.314,﹣17;正整数:+1;整数:+1,0,﹣17;负分数:﹣3.1,﹣3 ,﹣1.314.故答案为:﹣3.1,﹣3 ,﹣1.314,﹣17;+1;+1,0,﹣17;﹣3.1,﹣3 ,﹣1.314.18.(16分)计算:(1)7+(﹣28)﹣(﹣9).(2)(﹣2)×6﹣6÷3.(3) .(4)﹣24﹣16×| |.【解答】解:(1)原式=7﹣28+9=16﹣28=﹣12;(2)原式=﹣12﹣2=﹣14;(3)原式=﹣6+9﹣1=﹣7+9=2;(4)原式=﹣16﹣16× =﹣16﹣4=﹣20.19.(14分)化简(1)2x2﹣5x+x2+4x(2)3b+5a﹣(2a﹣4b)(3)先化简,再求值:4(x﹣1)﹣2(x2+1)+ (4x2﹣2x),其中x=﹣3.【解答】解:(1)2x2﹣5x+x2+4x=3x2﹣x;(2)3b+5a﹣(2a﹣4b)=3b+5a﹣2a+4b=3a+7b;(3)4(x﹣1)﹣2(x2+1)+ (4x2﹣2x)=4x﹣4﹣2x2﹣2+2x2﹣x=3x﹣6,当x=﹣3时,原式=﹣15.20.(6分)如图是由6个相同的小正方体组成的几何体.请在指定的位置画出从正面、左面、上面看到的这个几何体的形状图.【解答】解:如图所示:.21.(8分)已知有理数a,b,其中数a在如图的数轴上对应的点M,b是负数,且b在数轴上对应的点与原点的距离为3.5.(1)a= 2 ,b= ﹣3.5 .(2)将﹣,0,﹣2,b在如图的数轴上表示出来,并用“<”连接这些数.【解答】解:(1)∵由图可知,点M在2处,∴a=2;∵b在数轴上对应的点与原点的距离为3.5且b为负数,∴b=﹣.3.5.故答案为:2,﹣3.5;(2)如图所示.,故b<﹣2<﹣ <0.22.(8分)正兴学校七年一班10名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣7,﹣10,+9,+2,﹣1,+5,﹣8,+10,+4,+6(1)填空:最高分是100 分和最低分是80 分(2)求他们的平均成绩.【解答】解:(1)最高分是100分和最低分是80分;(2)解:∵(﹣7﹣10+9+2﹣1+5﹣8+10+4+6)÷10=1,∴他们的平均成绩=1+90=91(分),答:他们的平均成绩是91分.23.(9分)按下图方式摆放餐桌和椅子,(1)1张长方形餐桌可坐4人,2张长方形餐桌拼在一起可坐 6人.(2)按照上图的方式继续排列餐桌,完成下表.桌子张数 3 4 5 n可坐人数8 10 12 2n+2(3)一家餐厅有40张这样的长方形餐桌,某用餐单位要求餐厅按照上图方式每8张长方形餐桌拼成1张大桌子,则该餐厅此时能容纳多少人用餐?【解答】解:(1)观察发现:2张长方形餐桌拼在一起可坐6人;(2)填表如下:桌子张数 3 4 5 n可坐人数 8 10 12 2n+2(3)当n=8时,2n+2=2×8+2=18,18×(40÷8)=90(人).答:该餐厅此时能容纳90人用餐.24.(12分)如图1是边长为20cm的正方形薄铁片,小明将其四角各剪去一个相同的小正方形(图中阴影部分)后,发现剩余的部分能折成一个无盖的长方体盒子,图2为盒子的示意图(铁片的厚度忽略不计).(1)设剪去的小正方形的边长为x(cm),折成的长方体盒子的容积为V(cm3),用只含字母x的式子表示这个盒子的高为x cm,底面积为(20﹣2x)2 cm2,盒子的容积V为x(20﹣2x)2 cm3;(2)为探究盒子的体积与剪去的小正方形的边长x之间的关系,小明列表分析:x(cm) 1 2 3 4 5 6 7 8V(cm3) 324 512 588 576 500 500 252 128请将表中数据补充完整,并根据表格中的数据写出当x的值逐渐增大时,V的值如何变化?【解答】解:(1)设剪去的小正方形的边长为x(cm),折成的长方体盒子的容积为V(cm3),用只含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,盒子的容积V为x(20﹣2x)2cm3;故答案为:x,(20﹣2x)2,x(20﹣2x)2.(2)当x=2时,V=2×(20﹣2×2)2=512,当x=5时,V=5×(20﹣2×5)2=500,故答案为:512,500,当x的值逐渐增大时,V的值先增大后减小.25.(7分)根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣,﹣3观察数轴,与点A的距离为3的点表示的数是4或﹣2 ,B,C两点之间的距离为;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是 ;若此数轴上M,N两点之间的距离为2016(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M 1009 ,N 1007 ;(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P ,Q (用含m,n的式子表示这两个数).【解答】解:(1)点A的距离为3的点表示的数是1+3=4或1﹣3=﹣2;B, C两点之间的距离为﹣﹣(﹣3)= ;(2)B点重合的点表示的数是:﹣1+[﹣1﹣(﹣ )]= ;M=﹣1﹣ =﹣1009,n=﹣1+ =1007;(3)P=n﹣,Q=n+ .故答案为:4或﹣2, ; ,﹣1009,1007;n﹣,n+ .第一学期七年级上期中数学试卷一、选择题(本大题共12小题,每小题2分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)﹣的倒数是( )[来源:学&科&网]A.2B.﹣2C.D.2.(2分)下面四个数3,0,﹣1,﹣3中,最小的数是( )A.3B.0C.﹣1D.﹣33.(2分)多项式x2﹣2xy3﹣ y﹣1的次数是( )A.一次B.二次C.三次D.四次4.(2分)下列各数2π,﹣5,0.4,﹣3.14,0中,负数有( )A.1个B.2个C.3个D.4个5.(2分)把91000写成a×10n(1≤a<10,n为整数)的形式,则a=( )A.9B.﹣9C.0.91D.9.16.(2分)如图,在数轴上表示互为相反数的两数的点是( )A.点A和点CB.点B和点AC.点C和点BD.点D和点B[来源:学+科+网]7.(2分)下列说法正确的是( )A.正数和负数统称为有理数B.绝对值等于它本身的数一定是正数C.负数就是有负号的数D.互为相反数的两数之和为零8.(2分)某服装店新开张,第一天销售服装a件,第二天比第一天少销售14件,第三天的销售量是第二天的2倍多10件,则这三天销售了( )件.A.3a﹣42B.3a+42C.4a﹣32D.3a+329.(2分)多项式2x3﹣5x2+x﹣1与多项式3x3+(2m﹣1)x2﹣5x+3的和不含二次项,则m=( )A.2B.3C.4D.510.(2分)下列去括号正确的是( )A.a+(﹣2b+c)=a+2b+cB.a﹣(﹣2b+c)=a+2b﹣cC.a﹣2(﹣2b+c)=a+4b+2cD.a﹣2(﹣2b+c)=a+4b﹣c11.(2分)若方程2x+1=1的解是关于x的方程1﹣2(x﹣a)=2的解,则a=( )A.﹣1B.1C.D.﹣12.(2分)已知a2+2a=1,则代数式1﹣2(a2+2a) 的值为( )A.0B.1C.﹣1D.﹣2二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)比较两数的大小:﹣﹣ .(填“>”“<”或“=”)14.(3分)如果a2=9,那么a= .15.(3分)计算﹣ = .16.(3分)单项式的次数是,系数是.17.(3分)已知7xmy3和﹣ x2yn是同类项,则﹣nm= .18.(3分)在下表从左到右的每个小格子中填入一个有理数,使得其中任意四个相邻格子中所填的有理数之和都为﹣5,则第2018个格子中应填入的有理数是.a ﹣7b ﹣4cdef 2 …三、解答题(本大题共8小题,共58分)19.(8分)计算:(1)23﹣6×(﹣3)+2×(﹣4);(2)﹣(1﹣0.5)÷ ×[2+(﹣4)2].20.(6分)规定一种运算:a*b= ;计算:[(﹣1)*2]*3的值.21.(7分)已知多项式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).(1)若多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.22.(6分)老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:3(x﹣1)+ =x2﹣5x+1.(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.23.(7分)解方程:﹣1= .24.(7分)探索规律,观察下面算式,解答问题.1+3=4=22;1+3+5=9=32;1+3+5+7=16=421+3+5+7+9=25=52…。
人教版数学七年级上册《期中考试卷》(含答案)
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017-3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33< 4.下列各式中,等号不成立的是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab 7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.10.单项式 35ab -8的系数是__,次数是__. 11.若315k y x 与3873x y -是同类项,则k=_____. 12.我国2006年参加高考报名总人数约为950万人,则该人数可用科学记数法表示为_____人. 13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).14.已知单项式3a m b 2与423n a b -和是单项式,那么m=_____,n=_____. 15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48. (3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78. (4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m 2n ﹣5mn)﹣(4m 2n ﹣5mn) (6)13(9a ﹣3)+2(a +1). 四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=ab a b+,试求2*(﹣4)的值. 19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?21.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.答案与解析一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元【答案】B【解析】试题分析:若规定收入为“+”,则“﹣”表示与之相反的意义,即支出.解:∵收入用“+”表示,∴﹣50元表示支出50元,故选B .考点:正数和负数.2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017- 【答案】D【解析】分析】根据乘积为1的两个数互为倒数,可得答案.【详解】解:-2017的倒数是12017-.故选D.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33<【答案】C【解析】【分析】(1)根据两个负数,绝对值大的其值反而小作答;(2)根据负数都小于0作答;(3)根据两个负数,绝对值大的其值反而小作答;(4)根据两个正数,绝对值大的数较大作答.【详解】A.∵|−6|<|−8|,∴−6>−8,错误;B.∵11000-−11000是负数,∴11000-<0,错误; C.∵11,57->- ∴1157--<,正确; D.1 3>0.3,错误.故选C.【点睛】考查有理数的大小比较,掌握正数都大于0,负数都小于0,正数大于负数,两个负数,绝对值大的反而小是解题的关键.4.下列各式中,等号不成立是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 【答案】B【解析】试题分析:正数绝对值等于它本身,负数的绝对值等于它的相反数,零的绝对值为零.444-==,则本题不成立的是B .5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项【答案】D【解析】试题分析:由同类项的定义可知,D 选项中的两个单项式所含字母m 、n 相同,并且相同字母的指数也相等,因此本题选D.考点:同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab【答案】B【解析】【详解】解:A 选项不是同类项,无法进行加减法计算;B 选项计算正确;C 、原式=2x ;D 选项不是同类项,无法进行加减法计算.故选B .【点睛】本题主要考查的就是合并同类项的计算,属于简单题目.对于同类项的加减法,我们只需要将同类项的系数进行相加减,字母和字母的指数不变即可得出答案,很多同学会将字母的指数也进行相加减,这样就会出错.如果两个单项式不是同类项,我们无法进行加减法计算,这一点很多同学会出错.7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1) 【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A :0.05019精确到0.1是0.1,正确;B :0.05019精确到百分位是0.05,正确;C :0.05019精确到千分位是0.050,错误;D :0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元 【答案】D【解析】 由题意得0.7a 元,所以选D. 点睛:涨价,降价与折扣一个物品价格为a ,涨价b %,现价 为a (1+b %),一个物品价格为a ,降价b %,现价 为a (1-b %),一个物品价格为a ,9折出售,现价为90%a.二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.【答案】(t +15)【解析】(t +15).10.单项式 35ab -8的系数是__,次数是__. 【答案】 (1). 58- (2). 4【解析】 因为单项式的系数是指字母前数字因数,所以358ab -的系数是58-,单项式的次数是指所含字母指数之和,所以358ab -的次数是4,故答案为5 8-,4. 11.若315k y x 与3873x y -是同类项,则k=_____. 【答案】8【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:k=8.12.我国2006年参加高考报名的总人数约为950万人,则该人数可用科学记数法表示为_____人.【答案】9.5×106【解析】试题分析:科学计数法是指将一个数字表示成a 10n ⨯的形式,其中1≤a <10,n 为原数的整数位数减一,则950万人=9500000人=69.510⨯人.13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).【答案】不合格【解析】【分析】根据正负数的意义,求得合格零件的直径的范围,再进一步分析.【详解】解:根据题意,得该零件直径最小是20-0.02=19.98(mm ),最大是20+0.02=20.02(mm ),因为19.9<19.98,所以该零件不合格.故答案为不合格.【点睛】此题考查了正、负数在实际生活中的意义,±0.02表示和标准相比,超过或不足0.02. 14.已知单项式3a m b 2与423n a b -的和是单项式,那么m=_____,n=_____. 【答案】 (1). 4 (2). 2【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:m=4,n=2.15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.【答案】0或﹣6.【解析】试题分析:在数轴上两点所表示的数的差的绝对值为这两个点之间的距离.设这个点表示的数为x ,则()33x --=,则x 33+=±,解得:x=0或-6,即这个点表示的数为0或-6.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.【答案】5或1.【解析】试题分析:根据绝对值的计算方法可得:a 3=±,b 2=±,根据a b >可得:a=3,b 2=±,则a+b=3+2=5或a+b=3+(-2)=1.点睛:正数的绝对值等于它本身,负数的绝对值等于它的相反数,零的相反数为零;互为相反数的两个数的绝对值相等.本题首先根据绝对值的性质求出a 和b 的值,然后根据有理数的大小比较方法确认a 和b 的值,然后进行计算得出答案.这种题目有的时候还是会出现平方根,根据平方根的性质得出答案.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48.(3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78.(4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m2n﹣5mn)﹣(4m2n﹣5mn)(6)13(9a﹣3)+2(a+1).【答案】(1)﹣1;(2)24;(3)﹣1;(4)19;(5)3m2n;(6)5a+1【解析】试题分析:(1)、首先将同号的进行相加,然后再进行异号的加法计算;(2)、利用乘法分配律进行简便计算;(3)、首先进行绝对值和去括号计算,然后将同分母的放在一起进行计算,最后进行整数之间的计算;(4)、先进行幂的计算,然后进行加减法计算;(5)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案;(6)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案.试题解析:解:(1)、原式=﹣23+22=﹣1;(2)、原式=﹣8+36﹣4=24;(3)、原式=0.75﹣3+0.25+18+78=1﹣3+1=﹣1;(4)、原式=﹣4+3×1+20=﹣4+3+20=19;(5)、原式=7m2n﹣5mn﹣4m2n+5mn=3m2n;(6)、原式=3a﹣1+2a+2=5a+1四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=aba b+,试求2*(﹣4)的值.【答案】4【解析】【分析】根据给出的新定义的计算法则将数字分别代入公式计算即可得出答案.【详解】2*(﹣4)=()()248 244⨯--=+--=4.【点睛】考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.【答案】6.【解析】试题分析:首先根据去括号的法则将括号去掉,然后再进行合并同类项计算,最后将x 和y 的值代入化简后的式子进行计算即可得出答案.试题解析:解:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y)=2x 2y ﹣4xy 2+3xy 2﹣x 2y=x 2y ﹣xy 2,当x=﹣1,y=2时,原式=(﹣1)2×2﹣(﹣1)×22=1×2+1×4=2+4=6.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?【答案】(1)A 处在岗亭南方,距离岗亭14千米;(2)34L【解析】【分析】(1)由已知,把所有数据相加,如果得数是正数,则A 处在岗亭北方,否则在北方.所得数的绝对值就是离岗亭的距离.(2)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油0.5升,那么乘以0.5就是一天共耗油的量.【详解】解:(1)(+10)+(-8)+( +7)+(-15)+(+6)+(-16)+(+4)+(-2) 1分=-14答:停留时,A 处在岗亭的南方,距离14千米(2)()108715616420.5+++++++++++⨯---- ()108715616420.5=+++++++⨯680.5=⨯34=答:这一天共耗油34升考点:正数和负数.21.已知:m,x,y 满足:(1)23(x -5)2+5|m|=0;(2)-2a 2b y +1与7b 3a 2是同类项. 求:代数式2x 2-6y 2+m(xy -9y 2)-(3x 2-3xy +7y 2)的值.【答案】-47.【解析】【分析】根据几个非负数的和为零,则每一个非负数都是零的性质求出x 和m 的值;根据同类项的定义求出y 的值,然后将x 、y 和m 的值代入所求的代数式得出答案. 【详解】解:∵()225503x m -+=,(x ﹣5)2≥0,|m |≥0, ∴(x ﹣5)2=0,|m |=0, ∴x ﹣5=0,m=0,∴x=5∵﹣2a 2b y +1与7b 3a 2是同类项∴y +1=3,∴y=2∴2x 2﹣6y 2+m(xy ﹣9y 2)﹣(3x 2﹣3xy +7y 2)=2x 2﹣6y 2+mxy ﹣9my 2﹣3x 2+3xy ﹣7y 2=﹣x 2﹣13y 2﹣9my 2+mxy +3xy=﹣52﹣13×22﹣9×0×22+0×5×2+3×5×2=﹣47.【点睛】本题主要考查的就是非负数的性质、同类项的定义以及代数式的化简求值问题.计算结果为非负数的我们在初中阶段学过三种:平方、绝对值、算术平方根.这种题目经常会在考试当中出现,我们一定要引起重视.对于同类项,我们一定要明确同类项的定义,根据定义可以得出未知数的值.。
人教版初中数学七年级上期中考试--数学(解析版) (5)
七年级上学期期中考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.有理数的相反数是()A.﹣B.﹣3C.D.32.单项式﹣3xy2的系数和次数分别为()A.3,1B.﹣3,1C.3,3D.﹣3,33.下列计算正确的是()A.﹣(+3)=3B.﹣|﹣2|=2C.(﹣3)2=﹣9D.﹣(﹣5)=54.下面计算正确的是()A.6a﹣5a=1B.a+2a2=3a2C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b5.如图,三角尺(阴影部分)的面积为()A.ab﹣2πr B.C.ab﹣πr2D.6.长方形的一边长等于3a+2b,另一边比它大a﹣b,那么这个长方形的周长是()A.14a+6b B.7a+3b C.10a+10b D.12a+8b7.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b|C.a+b>0D.<08.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)9.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a10.把几个不同的数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2};{1,4,7};…我们称之为集合,其中的每一个数称为该集合的元素.规定:当整数x是集合的一个元素时,100﹣x也必是这个集合的元素,这样的集合又称为黄金集合,例如{﹣1,101}就是一个黄金集合.若一个黄金集合所有元素之和为整数m,且1180<m<1260,则该黄金集的元素的个数是()A.23B.24C.24或25D.26二、填空题(本大题共6个小题,每小题3分,共18分)11.用四舍五入法把数2.685精确到0.01约等于.12.中国的陆地面积约为9600000km2,用科学记数法将9600000表示为.13.若单项式﹣5x2y a与﹣2x b y5的和仍为单项式,则这两个单项式的和为.14.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为.15.若a+b+c=0,abc<0,则的值为16.对于一个大于1的正整数n进行如下操作:①将n拆分为两个正整数a、b的和,并计算乘积a×b②对于正整数a、b分别重复此操作,得到另外两个乘积③重复上述过程,直至不能再拆分为止(即拆分到正整数1)当n=6时,所有的乘积的和为,当n=100时,所有的乘积的和为三、解答题(共8题,共72分)17.(8分)计算:(1)(﹣8)+10+(﹣3)+2(2)(3)(4)18.(8分)先化简下式,再求值:,其中19.(8分)甲、乙两船从同一个港口同时出发反向而行,甲船顺水航行了6小时,乙船逆水行了3小时,两船在静水中的速度都是50km/h,水流速度是akm/h(1)两船一共航行了多少千米;(2)甲船比乙船多航行多少千米?20.(8分)某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:班级1班2班3班4班实际购买量(本)a33c21实际购买量与计划购数量的差值(本)+12b﹣8﹣9(1)直接写出a=,b=,c=(2)根据记录的数据可知4个班实际购书共本(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书售价为30元,请计算这4个班整体购书的最低总花费是多少元?21.(8分)某市居民使用自来水按如下标准收费(水费按月缴纳)户月用水量单价不超过12m3的部分2元/m3超过12m3但不超过20m3的部分3元/m3超过20m3的部分4元/m3(1)某用户一个月用了14m3水,求该用户这个月应缴纳的水费(2)某户月用水量为n立方米(12<n≤20),该用户缴纳的水费是39元,列方程求n的值(3)甲、乙两用户一个月共用水40m3,设甲用户用水量为xm3,且12<x≤28①当12<x≤20时,甲、乙两用户一个月共缴纳的水费为元(用含x的整式表示)②当20<x≤28时,甲、乙两用户一个月共缴纳的水费为元(用含x的整式表示)22.(10分)将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.(1)数表中从小到大排列的第9个数是17,第40个数是,第100个数是,第n个数是.(2)数71排在数表的第行,从左往右的第个数.(3)设T字框内处于中间且靠上方的数是整个数表中从小到大排列的第n个数,请你用含n的代数式表示T 字框中的四个数的和.(4)若将T字框上下左右移动,框住的四个数的和能等于406吗?如能,求出这四个数,如不能,说明理由.23.(10分)已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c (1)填空:abc0,a+b ac,ab﹣ac0;(填“>”,“=”或“<”)(2)若|a|=2,且点B到点A、C的距离相等①当b2=16时,求c的值②求b、c之间的数量关系③P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,求b的值24.(12分)数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y﹣2xy+5的二次项系数为a,常数项为b(1)直接写出:a=,b=(2)数轴上点P对应的数为x,若P A+PB=20,求x的值(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度参考答案与试题解析1.【解答】解:的相反数是﹣,故选:A.2.【解答】解:单项式﹣3xy2的系数和次数分别为:﹣3,3.故选:D.3.【解答】解:(A)原式=﹣3,故选项A错误;(B)原式=﹣2,故选项B错误;(C)原式=9,故选项C错误;故选:D.4.【解答】解:A、6a﹣5a=a,故此选项错误;B、a+2a2无法计算,故此选项错误;C、﹣(a﹣b)=﹣a+b,正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.5.【解答】解:阴影部分的面积为:S△﹣S圆=ab﹣πr2,故选:D.6.【解答】解:由题意知,长方形的另一边长等于(3a+2b)+(a﹣b)=3a+2b+a﹣b=4a+b,所以这个长方形的周长是2(3a+2b+4a+b)=2(7a+3b)=14a+6b.故选:A.7.【解答】解:由图可得:﹣2<a<﹣1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;<0,故D正确;故选:D.8.【解答】解:根据题意可得:(1﹣15%)(x+20),故选:D.9.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.10.【解答】解:在黄金集合中一个整数是x,则必有另一个整数是100﹣x,∴两个整数的和为x+100﹣x=100,由题意可知,1180<m<1260时,100×12=1200,100×13=1300,∴这个黄金集合的个数是24或25个;故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解答】解:用四舍五入法把数2.685精确到0.01约等于2.69,故答案为:2.69.12.【解答】解:将960 0000用科学记数法表示为9.6×106.故答案为:9.6×10613.【解答】解:∵单项式﹣5x2y a与﹣2x b y5的和仍为单项式,∴b=2,a=5,∴﹣5x2y a+(﹣2x b y5)=﹣5x2y5+(﹣2x2y5)=﹣7x2y5.故答案是:﹣7x2y5.14.【解答】解:第①个图形中五角星的个数为2=2×12;第②个图形中五角星的个数为2+4+2=8=2×4=2×22;第③个图形中五角星的个数为2+4+6+4+2=18=2×32;第④个图形中五角星的个数为2×42;所以第⑥个图形中五角星的个数为2×62=2×36=72.故答案为72.15.【解答】解:已知a+b+c=0,abc<0.所以b+c=﹣a,a+c=﹣b,a+b=﹣c,a,b,c两正一负,所以=+﹣,当a<0或者b<0时,原式=1﹣1+1=1;当c<0时,原式=﹣1﹣1﹣1=﹣3;故原式=﹣3或1.故答案为:﹣3或1.16.【解答】解:根据题意,可进行如图操作,得2×4+1×1+2×2+1×1+1×1=15.所以得到当n=6时,所有乘积的和为15=×6×5;当n=100时,所有乘积的和为×100×99=4950.故答案为15、4950.三、解答题(共8题,共72分)17.【解答】解:(1)原式=﹣11+12=1;(2)原式=6﹣20+9=﹣5;(3)原式=﹣8﹣5=﹣13;(4)原式=﹣1+16﹣1=14.18.【解答】原式=﹣x﹣2x+y2+x﹣y2=﹣3x﹣y2,当x=﹣2,y=﹣时,原式=6﹣=5.19.【解答】解:(1)∵甲船顺水航行了6小时,乙船逆水行了3小时,两船在静水中的速度都是50km/h,水流速度是akm/h,∴甲船顺水的速度是:(50+a)akm/h,乙船逆水的速度是:(50﹣a)akm/h,∴两船一共航行了:6(50+a)+3(50﹣a)=300+6a+150﹣3a=(450+3a)km,答:两船一共航行了(450+3a)千米;(2)由两船的速度可得:6(50+a)﹣3(50﹣a)=300+6a﹣150+3a=(150+9a)km,答:甲船比乙船多航行了(150+9a)千米.20.【解答】解:(1)a=21+9+12=42,b=33﹣30=3,c=30﹣8=22,故答案为:42,+3,22;(2)4个班一共购买数量=42+33+22+21=118本;故答案为:118;(3)如果每次购买15本,则可以购买7次,且最后还剩13本书单独购买,即最低总花费=30×(15﹣2)×7+30×13=3120元.21.【解答】解:(1)由题意可得:2×12+3×(14﹣12)=30元,答:该用户这个月应缴纳30元水费.(2)由题意可得,2×12+3(n﹣12)=39,解得n=17;(3)①∵12<x≤20,∴乙用户用水量20≤40﹣x<28,∴12×2+3(x﹣12)+12×2+3×8+4(40﹣x﹣20)=(116﹣x)元;②∵20<x≤28,∴乙用户用水量12≤40﹣x<20,∴12×2+3×8+4(x﹣20)+12×2+3(40﹣x﹣12)=(x+76)元;故答案为(116﹣x)元,(x+76)元.22.【解答】解:(1)∵连续的奇数1、3、5、7、…、,∴第40个数是40×2﹣1=79,第100个数是100×2﹣1=199,第n个数是2n﹣1;故答案为:79,199,2n﹣1;(2)∵2n﹣1=71,∴n=36,∴数71在第36个数,∵每排有5个数,∴数71排在数表的第8行,从左往右的第1个数,故答案为:8,1;(3)由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.(4)由题意,令框住的四个数的和为406,则有:8n+6=406,解得n=50.由于数2n﹣1=99,排在数表的第10行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.故框住的四个数的和不能等于406.23.【解答】解:(1)根据数轴上A、B、C三点的位置,可知a<0<b<c,|a|<|b|<|c|所以abc<0,a+b>ac,ab﹣ac>0.故答案为<,>,>.(2)①∵|a|=2且a<0,∴a=﹣2,∵b2=16且b>0,∴b=4.∵点B到点A,C的距离相等,∴c﹣b=b﹣a∴c﹣4=4﹣(﹣2),∴c=10答:c的值为10.②∵c﹣b=b﹣a,a=﹣2,∴c=2b+2,答:b、c之间的数量关系为c=2b+2.③依题意,得x﹣c<0,x+a>0∴|x﹣c|=c﹣x,|x+a|=x+a∴原式=bx+cx+c﹣x﹣10(x+a)=bx+cx+c﹣x﹣10x﹣10a=(b+c﹣11)x+c﹣10a∵c=2b+2∴原式=(b+2b+2﹣11)x+c﹣10×(﹣2)=(3b﹣9)x+c+20∵当P点在运动过程中,原式的值保持不变,即原式的值与x无关∴3b﹣9=0,∴b=3.答:b的值为3.24.【解答】解:(1)∵多项式6x3y﹣2xy+5的二次项系数为a,常数项为b,∴a=﹣2,b=5,故答案为:﹣2,5;(2)①当点P在点A左边,由P A+PB=20得:(﹣2﹣x)+(5﹣x)=20,∴x=﹣8.5②当点P在点A右边,在点B左边,由P A+PB=20得:x﹣(﹣2 )+(5﹣x)=20,∴7=20,不成立;③当点P在点B右边,由P A+PB=20得:x﹣(﹣2 )+(x﹣5),∴x=11.5.∴x=﹣8.5或11.5;(3)设经过t秒后,M、N两点相距1个单位长度,由运动知,AM=t,BN=2t,(法一)①当点N到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,t+1+2t=5+2,所以,t=2秒.Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,t+2t﹣1=5+2,所以,t=秒.②当点N到达点A之后时,Ⅰ、当N未追上M时,M、N两点相距1个单位长度,t﹣[2t﹣(5+2)]=1,所以,t=6秒;Ⅱ、当N追上M后时,M、N两点相距1个单位长度,[2t﹣(5+2)]﹣t=1,所以,t=8秒;即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.(法二)当点N到达点A之前时,|(﹣2+t)﹣(5﹣2t)|=1,所以t1=2,t2=当点N到达点A之后时,|(﹣2+t)﹣(﹣2+2t﹣7)|=1,所以t3=6,t4=8即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.。
北师大版七年级上册数学期中考试试卷及答案
北师大版七年级上册数学期中考试试题一、单选题1.下列说法正确的个数有()①0是整数;② 1.2-是负分数;③1π是分数;④自然数一定是正数;⑤负分数一定是负有理数.A .1个B .2个C .3个D .4个2.3-的倒数是()A .3B .13C .13-D .3-3.有下列式子:①2;②2a ;③31x -;④39s t+;⑤12S ab =;⑥4x y +>;⑦2x .其中代数式有()A .4个B .5个C .6个D .7个4.在﹣(﹣8),(﹣1)2017,﹣32,0,﹣|﹣1|,﹣23中,负数的个数有()A .2个B .3个C .4个D .5个5.如图,是一个正方体的平面展开图,把展开图折成正方体后,“党”字一面相对的字是()A .一B .百C .周D .年6.近年来,我国5G 发展取得明显成效,截至2020年2月底,全国建设开通5G 基站达16.4万个,将数据16.4万用科学记数法表示为()A .316410⨯B .416.410⨯C .51.6410⨯D .60.16410⨯7.下面图形经过折叠不能围成棱柱的是()A .B .C .D .8.数轴上,到原点距离是8的点表示的数是()A .8和﹣8B .0和﹣8C .0和8D .﹣4和49.下列各组数中,数值相等的是()A .-22和(-2)2B .212-和212⎛⎫- ⎪⎝⎭C .(-2)2和22D .212⎛⎫-- ⎪⎝⎭和212-10.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为()A .4B .﹣2C .8D .311.如图,将小正方体切去一个角后再展开,其平面展开图正确的是()A .B .C .D .12.已知()29320x y z -++++=,则2x y z-+=()A .4B .6C .10D .13二、填空题13.如果一个棱柱共有15条棱,那么它一定是______棱柱.14.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作______.15.对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:a ⊕b=ab+(a ﹣b),例如:3⊕2=3×2+(3﹣2)=7,则(﹣4)⊕5=____.16.如果用c 表示摄氏温度(℃),f 表示华氏温度(℉),c 和f 的关系是:()5329c f =-,某日兰州和银川的最高气温分别是72℉和88℉,则他们的摄氏温度分别是:______℃和______℃.三、解答题17.计算:(1)()281510---+;(2)22523963⎛⎫-⨯+-⎪⎝⎭;(3)331122⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(4)()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭;18.如图所示,a 、b 是有理数,请化简式子|a|﹣|b|+|a+b|+|b ﹣a|.19.a 的绝对值2b+1,b 的相反数是其本身,c 与d 互为倒数,求23cd a b ++的值.20.人体血液的质量约占人体体重的6%-7.5%.(1)如果某人体重是a kg ,那么他的血液质量大约在什么范围?(2)亮亮体重是35kg ,他的血液质量大约在什么范围?21.商店出售甲、乙两种书包,甲种书包每个38元,乙种书包每个26元,现已售出甲种书包a 个,乙种书包b 个.(1)用代数式表示销售这两种书包的总金额;(2)当a=2,b=10时,求销售总金额.22.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m-6)2+|n-8|=0,求出该广场的面积.23.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.2升,那么这辆货车此次送货共耗油多少升?24.一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A地出发,晚上到达B地.约定向北为正,向南为负,当天记录如下:(单位:千米)﹣18.3,﹣9.5,+7.1,﹣14,﹣6.2,+13,﹣6.8,﹣8.5(1)问B地在A地何处,相距多少千米?(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?25.某公司仓库一周内货物进出的吨数记录如下:(“+”表示进库,“-”表示出库)日期星期日星期一星期二星期三星期四星期五星期六吨数+22-29-15+37-25-21-19(1)若星期日开始时仓库内有货物465吨,则星期六结束时仓库内还有货物多少吨?(2)如果该仓库货物进出的装卸费都是每吨5元,那么这一周内共需付多少元装卸费?26.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A 点、B 点表示的数为a 、b ,则A ,B 两点之间的距离AB a b =-,若a>b ,则可简化为AB a b =-;线段AB 的中点M 表示的数为2a b+.【问题情境】已知数轴上有A 、B 两点,分别表示的数为10-,8,点A 以每秒3个单位的速度沿数轴向右匀速运动,点B 以每秒2个单位向左匀速运动.设运动时间为t 秒(t>0).【综合运用】(1)运动开始前,A 、B 两点的距离S 为多少;线段AB 的中点M 所表示的数是多少?(2)点A 运动t 秒后所在位置的点C 表示的数为多少;点B 运动t 秒后所在位置的点D 表示的数为多少;(用含t 的式子表示)(3)它们按上述方式运动,A 、B 两点经过多少秒会相距4个单位长度?27.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是下部分①面积的一半,部分③是部分②面积的一半,依次类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出611112482++++ 的值吗?参考答案1.C 【解析】【分析】根据有理数的意义,逐一判断即可.【详解】①0是整数,故①正确;②-1.2是负分数,故②正确;③1π是无理数,故③错误;④自然数一定是非负数,故④错误;⑤负分数一定是负有理数,故⑤正确;综上,正确的有3个,故选:C .【点睛】本题考查了有理数的分类,熟记有理数的意义是解题关键.2.C 【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】解:∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C 3.B 【解析】【分析】根据代数式的定义,即可求解.【详解】解:代数式有2;2a ;31x -;39s t+;2x ,共5个.故选:B 【点睛】本题主要考查了代数式的定义,熟练掌握用基本的运算符号把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式是解题的关键.4.C 【解析】【分析】先根据有理数的乘方、绝对值、相反数化简,再根据负数的定义即可.【详解】解:-(-8)=8,(-1)2017=-1,-32=-9,-|-1|=-1,负数有:(-1)2017,-32,-|-1|,23-,负数的个数有4个,故选:C .【点睛】本题考查了有理数的乘方、绝对值、相反数和负数,解决本题的关键是先根据有理数的乘方、绝对值、相反数化简.5.B 【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定隔着一个正方形,据此作答即可.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“周”是相对面,“党”与“百”是相对面,“一”与“年”是相对面.故选:B .【点睛】本题考查了正方体的展开图,解题的关键是从相对面入手进行分析及解答问题.6.C 【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:16.4万=51.6410 ,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.D 【解析】【详解】A 可以围成四棱柱,B 可以围成五棱柱,C 可以围成三棱柱,D 选项侧面上只有三个长方形,而两个底面都是长方形,因此从图形中看少了一个侧面,故不能围成长方体,故选D .【点睛】本题考查了展开图,解决此题的关键是要有一定的空间想象能力.8.A 【解析】【分析】根据数轴上的点到原点的距离的意义解答.数a 到原点的距离为a .【详解】解:数轴上距离原点是8的点有两个,表示﹣8的点和表示+8的点.故选:A .【点睛】本题考查了数轴上点到原点的距离,根据数轴的意义解答.9.C 【解析】根据有理数的乘方的运算方法,求出每组中的两个算式的值各是多少,判断出各组数中,数值相等的是哪个即可.【详解】解:224-=- ,2(2)4-=,222(2)-≠-,∴选项A 不符合题意;21122-=- ,211(24-=,2211(22-≠-,∴选项B 不符合题意;2(2)4-= ,224=,22(2)2-=,∴选项C 符合题意;211(24--=- ,21122-=-,2211(22--≠-,∴选项D 不符合题意.故选:C .【点睛】此题主要考查了有理数的乘方的运算方法,要熟练掌握.10.A 【解析】【详解】根据题意中的计算程序,可直接计算为:12×2-4=-2<0,把-2输入可得(-2)2×2-4=4>0,所以输出的数y=4.故选A.11.D 【解析】【详解】只有D,可以还原回去,所以选D.12.D 【解析】【分析】根据题意可知,()29320x y z -++++=,所以|x-9|=0,|y+3|=0,(z+2)2=0,分别求出x,y,z 的值,然后代入2x y z -+求值.【详解】根据题意可知,()29320x y z -++++=,所以|x-9|=0,|y+3|=0,(z+2)2=0,所以x=9,y=-3,z=-2,2x y z -+=9-2×(-3)+(-2)=13,故选:D.【点睛】本题考查了绝对值和平方的非负性以及代数式求值,熟练掌握非负数和为0的解题方法是本题的解题关键.13.五【解析】【分析】根据棱柱的概念和定义,可知有15条棱的棱柱是五楼柱.【详解】解:一个棱柱共有15条棱,那么它是五棱柱,故答案为:五【点睛】本题主要考查了认识立体图形,关键是掌握五棱柱的构造特征.14.-0.15米【解析】【分析】根据多于标准记为正,可得少于标准记为负.【详解】解:∵以4.00米为标准,若小东跳出了4.22米,可记做+0.22,∴小东跳出了3.85米,记作-0.15米,故答案为:-0.15米.【点睛】本题考查了正数和负数,注意高于标准用正数表示,低于标准用负数表示.15.﹣2916.20092809【解析】【分析】把兰州和银川的最高气温的华氏温度代入c 和f 的关系式()5329c f =-,即可求出最高气温的摄氏温度.【详解】当f=72℉时,()5329c f =-=()572329-=2009,当f=88℉时,()5329c f =-=()588329-=2809,所以兰州和银川的最高摄氏温度分别是2009℃和2809℃.【点睛】本题考查了代数式的求值,会进行代数式的代入求值是本题的解题关键.17.(1)3-(2)72-(3)0(4)16【解析】(1)解:28(15)10---+281510=-++3=-(2)解:22523963⎛⎫-⨯+- ⎪⎝⎭415129181818⎛⎫=-⨯+- ⎝⎭7918=-⨯72=-(3)331122⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭1188⎛⎫=-+ ⎪⎝⎭0=(4)()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭()113292=--÷⨯-()11372=--÷⨯-()111723=--⨯⨯-761=-+16=【点睛】本题考查有理数的加、减、乘、除、乘方运算,熟练掌握运算顺序和运算法则是解决本题的关键.18.b ﹣a【解析】【分析】先根据a 、b 两点在数轴上的位置判断出其取值范围,再根据绝对值的性质进行解答即可.【详解】∵由数轴上a 、b 两点的位置可知,﹣1<a <0,b >1,∴a+b >0,b ﹣a >0,∴原式=﹣a ﹣b+a+b+b ﹣a=b ﹣a .【点睛】本题考查了绝对值与数轴的知识点,解题的关键是根据数轴确定取值范围去绝对值.19.1或3【解析】【分析】根据题意可知:b=0,所以|a|=1,又因为cd=1,分别代入原式即可求出答案.【详解】解:由题意可知:cd =1,b =0,∴|a|=2b+1=1,∴a =±1,当a =1时,∴原式=2+1+0=3,当a =-1时,∴原式=2-1=1【点睛】本题考查代数式求值,涉及绝对值,相反数与倒数的性质.20.(1)0.06a kg -0.075a kg(2)2.1kg -2.625kg【解析】【分析】(1)根据人体血液的质量占人体体重的6%-7.5%,再根据人体体重a kg ,分别相乘即可.(2)根据人体血液的质量占人体体重的6%-7.5%,再根据亮亮体重35kg ,分别相乘求解即可.(1)解:6%0.06a a ⨯=,7.5%0.075a a⨯=答:血液质量大约在0.06a kg -0.075a kg 范围.(2)解:356% 2.1kg ⨯=,357.5% 2.625kg⨯=答:血液质量大约在2.1kg -2.625kg 范围.【点睛】本题主要考查列代数式的问题,解题关键是找出所求量的等量关系.21.(1)(38a+26b )元;(2)336元.【解析】【分析】(1)根据“销售总金额=销售甲种书包的金额+销售乙种书包的金额”列代数式即可;(2)将a,b的值代入(1)中代数式求解即可.【详解】解:(1)根据题意得,销售这两种书包的总金额为:(38a+26b)元;(2)将a=2,b=10代入38a+26b得,38a+26b=38×2+26×10=336.答:销售总金额为336元.【点睛】本题主要考查列代数式以及求代数式的值,解题关键是根据题意正确列出代数式.22.(1)3.5mn;(2)168.【解析】【分析】(1)由广场的面积等于大矩形面积减去小矩形面积表示出S即可;(2)利用非负数的性质求出m与n的值,代入S中计算即可得到结果.【详解】(1)S=2m×2n–m(2n–n–0.5n)=4mn–0.5mn=3.5mn;(2)由题意得m–6=0,n–8=0,∴m=6,n=8,∴原式=3.5×6×8=168.【点睛】此题考查了整式的加减-化简求值,非负数的性质,不规则图形的面积等知识,解本题的关键是学会利用分割法求不规则图形的面积.23.(1)见解析(2)7千米(3)3.4【解析】【分析】(1)根据题意可直接进行求解;(2)由(1)可直接进行求解;(3)先求出货车总的路程,然后再进行求解即可.(1)解:如图所示:(2)解:由(1)数轴可知:小明家与小刚家相距:4-(-3)=7(千米);答:小明家与小刚家相距7千米(3)解:这辆货车此次送货共耗油:(4+1.5+8.5+3)×0.2=3.4(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油3.4升.【点睛】本题主要考查数轴及有理数混合运算的应用,熟练掌握数轴上数的表示及有理数的运算是解题的关键.24.(1)B地在A地南方,相距43.2千米;(2)这一天共耗油16.68升.【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得答案.【详解】解:(1)-18.3+(-9.5)+7.1+(-14)+(-6.2)+13+(-6.8)+(-8.5)=-43.2(km),答:B地在A地南方,相距43.2千米;(2)(|-18.3|+|-9.5|+7.1+|-14|+|-6.2|+13+|-6.8|+|-8.5|)×0.4=83.4×0.2=16.68(升).答:这一天共耗油16.68升.【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是注意理解相反意义的量的含义,耗油量=行使的路程×单位耗油量.25.(1)415吨(2)840元【解析】【分析】(1)首先计算出表格中的数据的和,再利用465加上表格中的数据的和即可;(2)首先计算出表格中数据绝对值的和,再乘以5元即可.(1)22-29-15+37-25-21-19=-50(吨),465-50=415(吨).答:星期六结束时仓库内还有货物415吨;(2)5×(22+|-29|+|-15|+37+|-25|+|-21|+|-19|)=840(元).答:这一周内共需付840元装卸费.【点睛】此题主要考查了正负数,关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.(1)18,1-(2)103t-+;8-2t(3)2.8秒或4.4秒【解析】【分析】(1)根据数轴两点距离求AB的距离,利用数轴中点坐标公式计算即可;(2)先求距离,再利用起点表示的数加或减距离即可求解;(3)根据相遇前与相遇后的等量关系分类讨论列一元一次方程,解方程即可.(1)解:S=|-10-8|=18∵1081 2-+=-∴M表示的数是:-1;(2)解:AC=3t,BD=2t,C表示的数:-10+3t,D表示的数:8-2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时∶依题意列式,得3t+2t=18-4,解得t=2.8;当点A在点B右侧时∶3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.【点睛】本题考查数轴上点数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程,数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程是解题关键.27.(1)164;(2)6364.【解析】【分析】(1)根据题意可以写出前几部分的面积,从而可以发现各部分面积的变化规律,再根据图形可知阴影部分的面积和部分⑥的面积相等,从而可以解答本题;(2)根据(1)中发现的规律和题目中的式子,可以计算出相应的结果.【详解】解:(1)由题意可知,部分①面积是1 2,部分②面积是(12)2,部分③面积是(12)3,…,则阴影部分的面积是(12)6=164,阴影部分的面积是1 64;(2)原式=12+23456611111163122222264 ++++=-=.。
江苏省泰州市兴化市2024年七年级上学期期中数学试题(含答案)
2023年秋学期初中学生阶段性评价七年级数学试卷(考试用时:120分钟满分:150分)说明:1.本试卷考试用时120分钟,满分150分,共6页.2.答题前,考生务必将本人的学校、班级、姓名、考试号填写在答题纸相应位置上.3.考生答题必须用05毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.的倒数是()A .2023B .C .D .2.下列各数比-2小的数是()A . B .C .D .23.在(每相陁两个1之间0的个数依次增加1个)这些数中,无理数有()A .1个 B .2个C .3个D .4个4.计算:,其值为()A .0 B .C .2D .5.下列说法正确的是()A .0不是整式B .单项式的系数为C .多项式有三项,常数项是1D .多项式是三次三项式6.数轴上的三点表示的数分别为,其中,下列说法正确的是()A .点与点的距离一定小于点与点的距离B .点与点的距离一定大于点与点的距离C .点与点的距离一定小于点与点的距离D .点与点的距离一定大于点与点的距离二、填空题(本大题共10小题,每小题3分,共30分.请将答案直接填写在答题卡相应位置上)7.如果向东走,记作,那么表示___________.8.华为推出的mate60系列手机成功突破美国1500多天的制裁,展现了中国在科技领域的实力和竞争力,为中国的科技发展和国际地位提供了坚实的支撑.华为mate60Pro 采用7纳米麒芯片,下载速度甚至达到,约为.则820000用科学记数法表示为___________.2023-1202312023-2023-3- 1.5-1-1220,3.14,,,0.121212,0.101001000127π 20232024(1)(1)---1-2-12ab π1221a a --2122xy x y ---,,A B C ,4,1a b b a --+2a b -<A C B C A C B C A B B C A B B C 3km 3km +5km -9000s 800Mbps 820000kbps9.已知与的和为一个单项式,则的值是___________.10.如图是一个计算程序图,若输入的值为,则输出的值为___________.11.若的值为3,则代数式的值为___________.12.若,则的值为___________.13.一个两位数,还有一个两位数,若把放在前面,组成一个四位数,则这个四位数为___________.(用含的代数式表示)14.若,且,则的值为___________15.有10个朋友在一起,每两人握一次手,他们一共握了___________次手.16.桌子上若有5只杯口朝上的茶杯,每次翻转3只,经过至少3次翻转可使所有杯子的杯口全部朝下;若有6只杯口朝上的茶杯,每次翻转3只,经过至少2次翻转可使所有杯子的杯口全部朝下;若有7只杯口朝上的茶杯,每次翻转3只,经过至少3次翻转可使所有杯子的杯口全部朝下;……;若有2023只杯口朝上的茶杯,每次翻转3只,经过至少___________次翻转可使所有杯子的杯口朝下.三、解答题(本大题共10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分12分)计算:(1);(2);(3);(4).18.(本题满分8分)计算:(1);(2).19.(本题满分8分)把下列各数填在相应的大括号内:①;②;③0.275;④0;⑤;⑥;⑦;⑧;⑨;⑩;注意:请将序号垻入相应集合内正数集合:{…};212a x y 24xy a x 2-y 221x x -+224x x -23(2)0y x -++=x y +x y x y ,x y 2,3x y ==0,0xy x y >+<2x y -()()1218915--+--()2213 1.237 2.7733⎛⎫-+-++- ⎪⎝⎭()15524468⎛⎫-+-⨯- ⎪⎝⎭420232463(1)-+--÷-2534a b a b -+--()()22223422a b ab ab a b +--()3--34+1.2- 2(3)--π100-12-2-整数集合:{…};负分数集合:{…};非负有理数集合:{…};20.(本题满分8分)先化简,再求值:,其中.21.(本题满分8分)为体现社会对老人的尊重,农历九月九重阳节这天上午出租车司机小王从家出发,在东西方向的公路上免费接送老人,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):.(1)通过计算说明小王最后离家多远?在家的什么方向?(2)若出租车每行驶100千米耗油10升,每升汽油7元,则出租车司机这天上午的油费是多少元?22.(本题满分10分)有理数在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:___________0;___________0;___________0.(2)化简:.23.(本题满分10分)小明同学做一道题:“已知两个多项式,计算.”小明同学误将看作,求得结果是.若多项式.(1)请你帮助小明同学求出的正确答案;(2)若的值与的取值无关,求的值.24.(本题满分12分)下列是用火柴棒拼出的几组图形.第1组第2组第3组仔细观察,找出规律,解答下列各题:(1)第1组中,第个图形中共有根火柴(用含的式子表示);(2)第2组中,第个图形中共有根火柴(用含的式子表示);(3)第3组中,第个图形中共有根火柴(用含的式子表示);(4)第组中,第个图形中共有根火柴(用含的式子表示).25.(本题满分12分)数轴是一个非常重要的数学工具,它把数和数轴上的点建立了对应关系,形象地揭示了数与数轴上的点之间的内在联系,是数形结合的基础.小明在一条长方形纸带上画了一条数轴,进行如下操作探究:()()2222633x x y x y x y +-+-1,3x y =-=-15,4,13,10,12,3,13,17+-+--+--a b c 、、c b -a b +a c -2c b a b a c -++--,A B 2A B -2A B -2A B +441xy y -+22A x xy y =--2A B -2A B -y x n n n n n n m n ,m n(1)操作1:折叠纸带,使数轴上表示3的点与表示的点重合,则表示数的点与表示数___________的点重合,表示数的点与表示数___________(用含的式子表示)的点重合;(2)操作2:在计算满足的的值时,也可以通过折叠数轴的方法来解决:先在数轴上取表示的点,然后沿着该点折叠数轴,最后找到距离该点3个单位长度的点,读取数据得___________;利用该方法求出满足的的取值范围为___________;(3)操作3:在数轴上两点对应的数分别为,数轴上一点对应的数为,数轴上一点与点始终保持18个单位长度(点位于点的左侧).折叠数轴,使得重合,且折叠后两点之间的距离为10,求出的值.26.(本题满分14分)【课本探究】小明在学习《苏科版七上·数学》课本第31页“数学实验室”中碰到如下问题:如图,把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“”的位置上.用算式可以将结果表示为:.【深度思考】小明运用“由特殊到一般”的数学思想方法,得出结论:若表示数的点向左平移个单位长度,得到的点表示的数为;向右平移个单位长度,得到的点表示的数为.【实际应用】数轴上四点表示的数分别为,且点向右移动1个单位长度到点位置,点向右移动个单位长度到点位置,点向右移动个单位长度到点位置,(1)当时,则___________;___________;___________.(2)在(1)的条件下,若两点分别以2个单位长度每秒的速度向右运动,同时两点分别以1个单位长度每秒的速度向左运动,设运动时间为秒,当两点中至少有一个点落在之间时(不包含两点),求运动时间的取值范围是多少?(3)若这四个数的和与其中的三个数的和相等,.求出可能的值.(4)若这四个数的积为正数,且这四个数的和与其中的两个数的和相等.当为任意正整数时,始终为整数.求此时与之间的数量关系式.1-6-1a -a 13x +=x 1-38x +≤x A B 、4020-、C x D C D C C D 、A B 、x 2-()()0532+-++=-m (0)n n >()m n +-(0)n n >m n +A B C D 、、、,,,a b c d A B B (0)n n >C C 1n +D 8,2a n =-=b =c =d =A B 、C D 、A B 、C D 、C D 、,,,a b c d 0a n +>a ,,,a b c d n a a n2023年秋学期初中学生阶段性评价七年级数学参考答案一、选择题123456CA B D D A 二、填空题7.向西走5km 8.9. 1 10. 511. 4 12. 113. 14.15. 4516.675三、解答题17.(本题满分12分)计算:(1); (2);(3); (4).18.(本题满分8分)计算:(1);(2). =7a 2b +10ab 219. 正数集合:{①②③⑦⑩ …};……………………2分(多选漏选不得分)整数集合:{①④⑥⑧⑩ …};……………………2分(多选漏选不得分)负分数集合:{⑤⑨ …};……………………2分(多选漏选不得分)非负有理数集合:{①②③④⑩…}; …………………2分(多选漏选不得分)20.…………………………………………… 4分当x =―1,y =―3时,原式==…………………8分21.(1)(千米) ………………………………2分58.210⨯100x y +1-1218915=+--原式22137 1.23 2.7733=-++--原式6=64=--10=-155242424468=-⨯-+⨯--⨯-原式1623=-++原式62015=-+11=-1=2354a a b b =--+-原式222231224a b ab ab a b =+-+原式5a b =-+222242x x y x y x y =+---原式22x y y =--22133-⨯-⨯---63=+91541310123131725-+--+--=-答:小王最后在家的西边,离家25千米处. …………………………………4分(2)(千米)(元) …………………………………………………………7分答:出租车司机这天上午的油费是60.9元…………………………………8分22. (1)<<>; ………………………………………………………………… 6分(2)因为< 0;< 0;>0, ………………………………………… 7分所以所以 …………………………………… 8分…………………………………………………………10分23.(1)由题意得:…………………………………………………………2分所以 ………………………………………………………5分(2)………………………………………………………7分∵ 2A -B 的值与y 的取值无关∴,即∴ x 的值为………………………………………………………………………10分24.(1)();(2)(); (3)(); (4)()备注:每空3分,第(4)问 只要化简后结果相同即给分25.(1) 8 ;…………………………………………………………4分(2) 2和―4;…………………………………………………………8分(3) ① 折叠后点A 靠近折痕位置时,∵折叠后A 、B 两点之间的距离为10∴折叠前后点A 表示的数分别为―40、10∴折痕处表示的数为―15∵点D 与点C 的距离为18个单位长度,且折叠后C 、D 重合∴点C 到折痕的距离为9个单位长度,∵点D 位于点C 的左侧1541310123131787+++++++=1087760.9100⨯⨯=c b -a b +a c -;;c b c b a b a b a c a c -=--+=-+-=-2c b a b a c =---+--原式22c b a b a c=-+---+3a c =-+4412B xy y A=-+-244122xy y x xy y=-+---2621xy x =-+22222621A B x xy y xy x -=----+24841x xy y =---2244211A B x y x -=-++210x +=12x =-12-21n +31n +41n +1mn n ++3a -115x -≤≤∴点C 所表示的数为―15+9=―6,即x 的值为―6② 折叠后点B 靠近折痕位置时,∵折叠后A 、B 两点之间的距离为10∴折叠前后点A 表示的数分别为―40、30∴折痕处表示的数为―5∵点D 与点C 的距离为18个单位长度,且折叠后C 、D 重合∴点C 到折痕的距离为9个单位长度,∵点D 位于点C 的左侧∴点C 所表示的数为―5+9=4,即x 的值为4综上所述:x 的值为―6或4……………………………… 12分(答案正确,过程合理即给分)26.(1)―7;―5;―2. …………………………………………3分(2)秒后,A 、B 、C 、D 四点表示的数分别为当点B 与点C 重合时,,解得;………………………………… 5分当点A 与点D 重合时,,解得;………………………………… 7分∴当A 、B 两点中至少有一个点落在C 、D 之间时(不包含C 、D 两点),的取值范围是. ………………………………… 8分(3)由题意得,,∵,,,这四个数的和与其中的三个数的和相等∴,,,这四个数中有一个数为0∵,∴,∴或∴的值为0或―1…………………………………………………………………12分(4)由题意得,,∵,,,这四个数的积为正数,且∴或或∵,,,这四个数的和与其中的两个数的和相等∴且,,,中有两个数的和为0①若,则,即,②若,则,即,此时c =0,不满足题意;③若,则,即,④若,则,即,当n 为正整数时,a 不是整数;综上所述:当n 为正奇数时,a 与n 的关系式为 当n 为正偶数时,a 与n 的关系式为 ……………………14分b =c =d =82,72,5,2t t t t-+-+----725t t -+=--23t =822t t -+=--2t =223t <<1b a =+1c a n =++22d a n =++a b c d a b c d 0a n +>0n >10c a n =++≠2220d a n a n n =++=+++≠0a =10b a =+=a 1b a =+1c a n =++22d a n =++a b c d a b c d<<<0,0,0,0a b c d <<<<0,0,0,0a b c d <<>>0,0,0,0a b c d >>>>a b c d 0,0,0,0a b c d <<>>a b c d 0a c +=10a a n +++=210a n ++=0a d +=220a a n +++=10a n ++=0b c +=110a a n ++++=220a n ++=0b d +=1220a a n ++++=2230a n ++=210a n ++=220a n ++=(最后一问计2分,有分类讨论意识得1分;以上四个关系式中正确写出一个得1分,是否舍去都不扣分)。
七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试【含答案】
22.小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140 个,平均每天
生产 20 个,但由于种种原因,实际每天生产量与计划量相比有出入,下表是小明妈妈某周
的生产情况(超 产记为正、减产记为负):
星期 一 二 三 四 五 六 日
增减产值 +10 -12 -4 +8 -1 +6 0 (1)根据记录的数据求出小明妈妈星期三生产玩具的个数; (2)根据记录的数据求小明妈妈本周实际生产玩具多少个; (3)该厂实行“每周计件工资制”,每生产一个玩具可得工资 5 元,若超额完成任务,则超过部 分每个另奖 3 元;少生产一个则倒扣 3 元,那么小明妈妈这一周的工资总额是多少元? 23.已知有理数 a,b,c 在数轴上对应点的位置如图所示:
2024-2025 学年七年级数学上学期期中模拟卷
注意事项:
(考试时间:120 分钟 试卷满分:120 分)
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案 标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上
D. - 2m2n 的系数是 - 2
5
5
6.已知有理数 a,b 在数轴上的位置如图所示,则下列关系不正确的是( )
A. a + b < 0
B. a + b > 0
C. ab < 0
D. a - b < 0
试卷第 1 页,共 7 页
7.下列去括号正确的是( )
A. x - 4 y - 2 = x - 4 y - 2 C. x + y - 3 = x + y - 3
人教版七年级上册数学《期中考试试卷》及答案解析
人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数2.下列不是正有理数的是( )A. ﹣3.14B. 0.6C. 73D. 33. 与原点距离是2.5个单位长度的点所表示的有理数是( )A 2.5 B. -2.5 C. ±2.5 D. 这个数无法确定4.计算(2)--的值是()A. -2B. 2C. 2±D. 45.﹣3的绝对值是( )A ﹣3 B. 3 C. -13D.136.单项式7πa2b3的次数是( )A. 4B. 5C. 6D. 77.下列各组中的两个单项式中,是同类项的是()A. a2和-2aB. 2m2n和3nm2C. -5ab和-5abcD. x3和238.化简5(2x-3)+4(3-2x)结果为( )A 2x-3 B. 2x+9 C. 8x-3 D. 18x-39.加上3m -等于2535m m --的式子是( ) A. 25(1)m -B. 2565m m --C. 25(1)m +D. 2(565)m m -+-10. 拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为 A. 0.5×1011千克B. 50×109千克C. 5×109千克D. 5×1010千克二、填空题(每题4分,满分28分,将答案填在答题纸上)11.数轴上原点右边的点表示的数都大于_____. 12.30+(﹣20)=_____.13.计算:2(3)-=__________;23-=__________. 14.当2x =-时,代数式221x x -+-=__________.15.若单项式﹣223x y的系数是m ,次数是n ,则mn 的值等于_____. 16.3xy 2﹣7xy 2=_____.17.一名足球守门员练习折返跑,从球门线出发,向前为正,返回为负,他的记录如下(单位:米):+5,﹣3,+10,﹣8,+4,﹣6,+8,﹣10.守门员全部练习结束后,他共跑了__米.三、解答题一(每题6分,共18分)18.计算:﹣2×4﹣6+(﹣15)﹣4519.计算:|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| 20.合并同类项:2x 2﹣3x +4x 2﹣6x ﹣5四、解答题二(每题8分,共24分)21.先化简,再求值:22211(21)()(33)33x x x x x -----+-,其中32x = 22.若|a +5|+|b ﹣2|+|c +4|=0,求a b ÷bc的值. 23.根据下面给出数轴,解答下列问题:(1)A 、B 两点之间的距离是多少?(2)画出与点A 的距离为2的点(用不同于A 、B 的字母在所给的数轴上表示). (3)数轴上,线段AB 的中点表示的数是多少?五、解答题三(每题10分,共20分)24.大客车上原有(3m ﹣n )人,中途有一半人下车,又上车若干人,此时车上共有乘客(8m ﹣5n )人, (1)请问中途上车的共有多少人?(2)当m =10,n =8时,中途上车的乘客有多少人?25.已知:是最小的正整数,且、满足|6|||0c a b -++=,请回答问题: (1)请直接写出、、的值.a = ,b = ,c = .(2)、、所对应的点分别为、、,点为一动点,其对应的数为,点在、之间运动时,请化简式子:|1||1|2|5|x x x +---+(请写出化简过程)(3)在(1)(2)的条件下,点、、开始在数轴上运动,若点以每秒(0)n n >个单位长度的速度向左运动,同时,点和点分别以每秒2n 个单位长度和5n 个单位长度的速度向右运动,假设经过秒钟过后,若点与点之间的距离表示为BC ,点与点之间的距离表示为AB .请问:BC AB -的值是否随着时间的变化而改变?若变化,请说明理由:若不变,请求其值.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数数一定是负数,不是负数的数一定是正数【答案】B【解析】本题考查的是正、负数的意义根据正、负数的定义即可解答,零既不是正数也不是负数,故A、C错误,B正确,而不是正数的数是0和负数,不是负数的数是0和正数,故D错误,故选B.2.下列不是正有理数的是( )A. ﹣3.14B. 0.6C. 73D. 3【答案】A【解析】【分析】根据题意,在选项中寻找负有理数或零即可.【详解】解:不是正有理数,则为负有理数或零,而A中的﹣3.14是负数故选A.【点睛】本题考查有理数;能够理解题意,掌握有理数的分类是解题的关键.3. 与原点距离是2.5个单位长度的点所表示的有理数是( )A. 2.5B. -2.5C. ±2.5D. 这个数无法确定【答案】C【解析】试题分析:根据数轴上的点表示的数即可判断.与原点距离是2.5个单位长度的点所表示的有理数是±2.5,故选C.考点:数轴点评:分类思想是初中数学学习中一个非常重要的思想,是学生对所学知识是否熟练掌握的很重要的一个体现,因而此类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需特别注意.4.计算(2)--的值是()A. -2B. 2C. 2±D. 4【答案】B【解析】【分析】根据去括号法则求解即可.【详解】(2)2--=故选:B.【点睛】本题考查了去括号法则,熟记法则是解题关键.5.﹣3的绝对值是( )A. ﹣3B. 3C. -13D.13【答案】B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.6.单项式7πa2b3的次数是( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】利用单项式次数求解即可. 【详解】单项式7πa 2b 3的次数是5. 故选B .【点睛】本题主要考查了单项式,解题的关键是熟记单项式的定义,注意π是常数. 7.下列各组中的两个单项式中,是同类项的是( ) A. a 2和-2a B. 2m 2n 和3nm 2 C. -5ab 和-5abc D. x 3和23【答案】B 【解析】试题分析:同类项是指:单项式中所含的字母相同,且相同字母的指数也完全相同.ACD 都不属于同类项. 考点:同类项的定义.8.化简5(2x-3)+4(3-2x)的结果为( ) A. 2x-3 B. 2x+9 C. 8x-3 D. 18x-3【答案】A 【解析】试题分析:根据整式的混合运算,结合合并同类项法则可求解:5(2x-3)+4(3-2x)=5(2x-3)-4(2x-3)=2x-3. 故选A考点:合并同类项9.加上3m -等于2535m m --的式子是( ) A. 25(1)m - B. 2565m m --C. 25(1)m +D. 2(565)m m -+-【答案】A 【解析】 【分析】根据整式的加减法则即可得.【详解】由题意得:所求的式子为2535(3)m m m ----25353m m m =--+ 255m =-25(1)m =-故选:A .【点睛】本题考查了整式的加减运算,理解题意,正确列出所求的式子是解题关键.10. 拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为 A. 0.5×1011千克 B. 50×109千克C. 5×109千克D. 5×1010千克【答案】D 【解析】 【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1. 【详解】解:50 000 000 000一共11位,从而50 000 000 000=5×1010. 故选D .二、填空题(每题4分,满分28分,将答案填在答题纸上)11.数轴上原点右边的点表示的数都大于_____. 【答案】0. 【解析】 【分析】根据数轴上数字的表示可得答案.【详解】数轴上以原点为界限,右边的数都大于0,左边的数都小于0,原点表示0. 故答案为0.【点睛】本题考查了数轴上点所表示的数,非常简单. 12.30+(﹣20)=_____. 【答案】10. 【解析】 【分析】根据有理数加法法则计算即可. 【详解】30+(﹣20)=30﹣20=10. 故答案为10【点睛】本题主要考查了有理数的加法,熟记有理数的加法法则是解答本题的关键.13.计算:2(3)-=__________;23-=__________.【答案】 (1). 9 (2). -9 【解析】 【分析】根据有理数的幂运算法则即可得. 【详解】2(3)(3)(3)9-=-⨯-=23339-=-⨯=-故答案为:;9-.【点睛】本题考查了有理数的幂运算,熟记运算法则是解题关键. 14.当2x =-时,代数式221x x -+-=__________. 【答案】-9 【解析】 【分析】将2x =-代入求解即可得.【详解】22221(21)(1)x x x x x -+-=--+=-- 将2x =-代入得:原式()()222219=--+⨯--=- 故答案为:9-.【点睛】本题考查了代数式的化简求值,掌握有理数的混合运算方法是解题关键.15.若单项式﹣223x y的系数是m ,次数是n ,则mn 的值等于_____. 【答案】﹣2. 【解析】 【分析】根据单项式系数、次数的定义来求解,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,然后求出m和n的值,相乘即可,m=-23,n=3,mn=-2.【详解】∵单项式﹣223x y的系数是m,次数是n,∴m=﹣23,n=3,mn=﹣2.故答案为-2【点睛】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.3xy2﹣7xy2=_____.【答案】﹣4xy2.【解析】【分析】根据合并同类项的法则计算即可.【详解】3xy2﹣7xy2=(3﹣7)xy2=﹣4xy2.故答案为﹣4xy2【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.17.一名足球守门员练习折返跑,从球门线出发,向前为正,返回为负,他记录如下(单位:米):+5,﹣3,+10,﹣8,+4,﹣6,+8,﹣10.守门员全部练习结束后,他共跑了__米.【答案】54.【解析】【分析】求出所有数的绝对值的和即可.【详解】由题意可得:|+5|+|﹣3|+|+10|+|﹣8|+|+4|+|﹣6|+|+8|+|﹣10|=5+3+10+8+4+6+8+10=54(米),答:守门员全部练习结束后,他共跑了54米.故答案为54.【点睛】本题考查了正数和负数,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.三、解答题一(每题6分,共18分)18.计算:﹣2×4﹣6+(﹣15)﹣45【答案】﹣15. 【解析】 【分析】根据有理数的乘法和加减法即可解答. 【详解】﹣2×4﹣6+(﹣15)﹣45=﹣8﹣6+(﹣15)+(﹣45)=﹣15.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 19.计算:|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| 【答案】6.5. 【解析】 【分析】根据有理数的乘法和加减法可即可求解. 【详解】|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| =3.75+5.25﹣2.5 =6.5.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 20.合并同类项:2x 2﹣3x +4x 2﹣6x ﹣5 【答案】6x 2﹣9x ﹣5. 【解析】 【分析】根据合并同类项法则计算即可. 【详解】原式=(2x 2+4x 2)+(﹣3x ﹣6x )﹣5 =6x 2﹣9x ﹣5.【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.四、解答题二(每题8分,共24分)21.先化简,再求值:22211(21)()(33)33x x x x x -----+-,其中32x = 【答案】244x -;5.【解析】【分析】先根据整式的加减:合并同类项进行化简,再将x 的值代入求解即可. 【详解】22211(21)()(33)33x x x x x -----+- 22211021333x x x x x =---+++- 244x =-当32x =时,原式2394()44429445=⨯-=⨯-=-=. 【点睛】本题考查了整式的加减及化简求值,熟记整式的运算法则是解题关键. 22.若|a +5|+|b ﹣2|+|c +4|=0,求a b ÷b c 的值. 【答案】5.【解析】【分析】根据绝对值的非负性可得a+5=0,b-3=0,c+2=0,再解可得a 、b 、c 的值,然后再代入代数式可得答案.【详解】∵|a +5|+|b ﹣2|+|c +4|=0,∴a +5=0,b ﹣2=0,c +4=0,解得a =﹣5,b =2,c =﹣4,∴a b ÷b c =a b ×c b=52-×42- =5,故答案为5.【点睛】此题主要考查了绝对值,以及有理数的乘法,关键是掌握有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.23.根据下面给出的数轴,解答下列问题:(1)A 、B 两点之间的距离是多少?(2)画出与点A 的距离为2的点(用不同于A 、B 的字母在所给的数轴上表示).(3)数轴上,线段AB 的中点表示的数是多少?【答案】(1)A 、B 两点之间的距离是5;(2)如图所示,见解析;(3)数轴上,线段AB 的中点表示的数是0.5.【解析】【分析】(1)从数轴上可以看出A 点是-2,B 点是3,所以距离为5;(2)与点A 的距离为2的点有两个,即一个向左,一个向右.(3)从数轴上找出线段AB 的中点,即距A ,B 两点的距离都是2.5的点,然后读出这个数即可.【详解】(1)A 、B 两点之间的距离是2+3=5.(2)如图所示:.(3)(﹣2+3)÷2=0.5.【点睛】本题主要考查了在数轴上解决实际问题的能力,学生要会利用数轴来解决这些问题.五、解答题三(每题10分,共20分)24.大客车上原有(3m ﹣n )人,中途有一半人下车,又上车若干人,此时车上共有乘客(8m ﹣5n )人,(1)请问中途上车的共有多少人?(2)当m =10,n =8时,中途上车的乘客有多少人?【答案】(1)中途上车的共有(132m ﹣92n )人;(2)中途上车的乘客有29人. 【解析】分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)将m 与n 的值代入(1)中的关系式,计算即可得到结果.【详解】(1)根据题意得:(8m ﹣5n )﹣12(3m ﹣n )=8m ﹣5n ﹣12m +12n =132m ﹣92n , 则中途上车的共有(132m ﹣92n )人; (2)当m =10,n =8时,原式=132×10﹣92×8=65﹣36=29, 则中途上车的乘客有29人.【点睛】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.25.已知:是最小的正整数,且、满足|6|||0c a b -++=,请回答问题:(1)请直接写出、、的值.a=,b=,c=.(2)、、所对应的点分别为、、,点为一动点,其对应的数为,点在、之间运动时,请化简式子:+---+(请写出化简过程)|1||1|2|5|x x xn n>个单位长度的速度向左运动,同时,点和(3)在(1)(2)的条件下,点、、开始在数轴上运动,若点以每秒(0)点分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过秒钟过后,若点与点之间的距离表-的值是否随着时间的变化而改变?若变化,请说明示为BC,点与点之间的距离表示为AB.请问:BC AB理由:若不变,请求其值.【答案】(1)-1,1,6;(2)-10;(3)不变,值为3.【解析】【分析】(1)根据最小的正整数是1,推出b=1,再利用非负数的性质求出a、c即可.(2)首先确定x的范围,再化简绝对值即可.(3)BC−AB的值不变.根据题意用n,t表示出BC、AB即可解决问题.【详解】解:∵b是最小的正整数,∴b=1,∵(c−6)2+|a+b|=0,(c−6)2⩾0,|a+b|⩾0,∴c=6,a=−1,b=1,故答案为−1,1,6;(2).由题意−1<x<1,∴|x+1|−|x−1|−2|x+5|=x+1+x−1−2x−10=−10.(3)不变,由题意BC=5+5nt−2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC−AB=(5+3nt)−(2+3nt)=3,∴BC−AB的值不变,BC−AB=3.【点睛】本题考查非负数的性质、绝对值、数轴等知识,解题的关键是熟练掌握非负数的性质,绝对值的化简,学会用参数表示线段的长.。
成都七中初中学校2023—2024学年度上七年级数学期中考试试卷附详细答案
成都七中初中学校2023—2024学年度上七年级期中质量检测数学(满分150分,120分钟完成)A 卷(共100分)一、选择题(每小题4分,共32分)1.−12的绝对值是( ) A.12 B.2 C.−2 D.122.北京时间2022年11月21日0点,万众瞩目的卡塔尔世界杯全面打响,据统计在小组赛的赛程中,场均观看直播人数达到了70620000人,则70620000用科学记数法表示为( )A.7.062×104B.70.62×106C.0.7062×108D.7.062×1073.用一个平面去截一个正方体,截面的形状不可能是( )A.梯形B.五边形C.六边形D.七边形4.下列运算正确的是( )A.−5−5=0B.2×(−5)=−10C.(−13)2=−19D.(−2)÷12=−1 5.下列代数式:①a+1;②-3ab 7;③5;④−2a+5b ;⑤a ;⑥1a .其中单项式有( ) A.1个 B.2个 C.3个 D.4个6.已知2a x b 4与−a 2b y-1是同类项,则x y 的值为( )A.6B.−6C.−10D.107.下列变形,错误的是( )A.−(a −b)=−a+bB.−2(a+b)=−2a −2bC.−a −b=−(a −b)D.a −b=−(−a+b)8.将一些完全相同的棋子按如图所示的规律摆放,第①个图中有4颗棋子,第②个图中有7颗棋子,第③个图中有12颗棋子,…,按此规律,则第⑩个图中棋子的颗数是( )A.84B.99C.103D.122二、填空题(每小题4分,共20分)9.比较大小:−37____−38(填“<”或“>”). 10.如图是一个正方体的平面展开图,若该正方体相对两个面上的数相等,则a+b+c=____.11.多项式x 3−2x 2y 2+3y 2是____次____项式.12.如果4a −9与3a −5互为相反数,那么a 2−a+1的值等于____.13.某种T 形零件尺寸如图所示.用含有x 、y 的代数式表示阴影部分的周长是____.(结果要化简)三、解答题(共48分)14.计算或化简(每小题4分,共20分)(1)(−65)−7−(−3.2)+(−1) (2)(−60)×(34+56−12) (3)−36÷65×56÷(−5) (4)12×|−3|+(−12)2−(−1) (5)−22×[(2−8)÷6]−18÷(−3)215.(6分)已知|a −2|+(b +12)2=0,求a 2b −(3ab 2−a 2b)+2(2ab 2−a 2b)的值. 10题图a 13 -2 1+b c+10.5x ① ② ③ ④16.(6分)如图1,是一个用小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数.请你在如图2方格纸中画出它从正面和从左面看到的平面图形.17.(6分)已知|x |=3,|y|=7.(1)若x y <0,求x +y 的值;(2)若|x −y|=x −y ,求2x +y 的值.18.(10分)杭州亚运会的举办,不仅提升了杭州的国际影响力,也为杭州的旅游业带来了巨大的发展机遇.随着亚运会的到来,杭州每月的游客人数较往年同期有明显增长,已知杭州2023年1月的游客人数为17.0百万人次,接下来7个月的游客人数变化情况如表:注:表中的数据为当月的游客人数相比前一个月游客人数的变化量.(1)杭州2023年4月份的游客人数是多少百万人次?(2)杭州2023年2月到8月,哪个月游客人数最多?最多是多少百万人次?哪个月游客人数最少?最少是多少百万人次?(3)假设杭州市每个月为旅游业建设支出50亿元,2023年前4个月每百万人次的游客能为杭州市旅游业带来收入10亿元,而随着亚运会的临近,5月到8月每百万人次的游客为杭州市旅游业带来的收入提升至20亿元,则2023年1月到8月杭州市34 32 1 图1 图2 从正面看 从左面看旅游业的总利润是多少亿元?B 卷(满分50分)一、填空题(每小题4分,共20分)19.已知a 2−2a=1,则多项式2023−2a 2+4a 的值是______.20.计算12+14+…+12100=______.21.一个小立方块的六个面分别标有字母A 、B 、C 、D 、E 、F ,从三个不同方向看到的情形如图所示,其中A 、B 、C 、D 、E 、F 分别代表数字−4、−2、0、1、2、4,则三个小立方块的下底面所标字母代表的数字的和为______.22.已知n 为正整数,n(n+1)(n+2)的末位数字记为f(n).如n=2时,f(2)=4,则f(1)+f(2)+f(3)+…+f(2023)的值为______.23.对于一个四位正整数M ,如果M 满足各数位上的数字均不为0,它的百位上的数字比千位上的数字大1,个位上的数字比十位上的数字大1,则称M 为“进步数”,如:1245就是一个进步数.对于一个“进步数”M 记为abcd̅̅̅̅̅̅,它的千位数字和百位数字组成的两位数为ab ̅̅̅,十位数字和个位数字组成的两位数为cd̅̅̅,将这两个两位数求和记作t ;它的千位数字和十位数字组成的两位数为ac ̅,它的百位数字和个位数字组成的两位数为bd̅̅̅̅,将这两个两位数求和记作s ,当s −t=36时,M 的最大值与最小值的和为______.二、解答题(共30分)24.(8分)已知A=3a 2−ab+2a+1,B=2a 2+ab −2.(1)若a=3,b=−1,求A −2B 的值.(2)若2A −3B 的值与a 无关,求b 的值.A B FA DE B D E25.(10分)请利用“数形结合”的数学方法解决下列问题.(1)有理数a 、b 、c 在数轴上的位置如图,化简:|b −c|−|a+b|+|c −a|.(2)请你找出所有符合条件的整数x ,使得|2+x |+|x −5|=11.(3)若m 、n 为非负整数,且(|m −2|+|m −6|)(|n −1|+|n+2|)=24,求m 、n 的值.26.(12分)如图,在数轴上点A 表示数a ,点B 表示b ,点C 表示数c.单项式−6x b y 次数是3,a 是这个单项式的系数,|c+1|=9.(1)a=______,b=______,c=________.(2)若点P 从点A 出发,以每秒2个单位的速度沿数轴向右运动,点Q 从点C 出发,以每秒1个单位的速度沿数轴向左运动.点P 与点Q 同时出发,经过多少秒后,线段PB 的中点M 到点Q 的距离为6.(3)在(2)的条件下,当点P 与点Q 相遇后,两点都立即掉头,速度不变,此时点N 开始从点B 出发,以每秒1个单位的速度向左运动,点P 运动的时间为t 秒,当PQ=4PN 时,求点P 在数轴上对应的数.成都七中初中学校2023—2024学年度上七年级期中质量检测数学(满分150分,120分钟完成)A 卷(共100分)一、选择题(每小题4分,共32分)1.−12的绝对值是( ) A.12 B.2 C.−2 D.12xb1.解:负数的绝对值是正数,两者之和为0,故选A 。
福建省莆田擢英中学2023-2024学年七年级上学期期中考试数学试卷(含解析)
2023-2024学年福建省莆田市荔城区擢英中学七年级(上)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.―2023的相反数是( )A. ―12023B. ―2023 C. 12023D. 20232.下列方程是一元一次方程的是( )A. 2x2―1=0B. y=x+1C. 2x+1=1 D. x―2=13.下列各组中,不是同类项的是( )A. 52与25B. ―ab与baC. 0.2a2b与―15a2b D. a2b3与―a3b24.|x|=5,则x等于( )A. 5B. ―5C. ±5D. 以上都不是5.已知等式a=b,则下列等式中不一定成立的是( )A. a+1=b+1B. 2a―2b=0C. ac =bcD. ac=bc6.数轴上有一个点B表示的数是3,点C到点B的距离为2个单位长度,则点C表示的数为( )A. 1B. 5C. 3或2D. 1或57.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(―4)的过程,按照这种方法,图2表示的过程应是在计算( )A. (―5)+(―2)B. (―5)+2C. 5+(―2)D. 5+28.按照如图所示的计算程序,若x=2,则输出的结果是( )A. 16B. ―16C. 26D. ―269.如图,两个正方形的面积分别为36,25,两阴影部分的面积分别为a ,b(a >b),则a ―b 等于( )A. 9B. 10C. 11D. 1210.如图,周长为6个单位长度的圆上的六等分点分别为A ,B ,C ,D ,E ,F ,点A 落在2的位置,将圆在数轴上沿负方向滚动,那么落在数轴上―2025的点是( )A. 点CB. 点DC. 点ED. 点F二、填空题:本题共5小题,每小题4分,共20分。
11.写出一个系数是2023,且只含x ,y 两个字母的三次单项式是______.12.若x =2是关于x 的方程2x +3m ―1=0的解,则m 的值等于______.13.若x +2y =1,则2x +4y ―5的值是______.14.在初中数学文化节游园活动中,被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛,活动规则是:在九宫格中,除了已经填写的三个数之外的每一个方格中,填入一个数,使每一横行、每一竖列以及两条对角线上的3个数之和分别相等,且均为m.王小明抽取到的题目如图所示,他运用初中所学的数学知识,很快就完成了这个游戏,则m = ______.15.我们知道,任意一个正整数x 都可以进行这样的分解:x =m ×n(m,n 是正整数,m ≤n),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m ×n 是x 的最佳分解,并规定:f(x)=m n .根据以上条件,可得f(24)= ______.若一个两位正整数t(t =10a +b,1≤a ≤b ≤9,a,b 为正整数),交换其个位上的数字与十位上的数字,得到的新数减去原数所得的差为54,则f(t)的最大值为______.三、解答题:本题共9小题,共86分。
初中七年级数学上册期中质量检测试题(含答案)
初中七年级数学上册期中质量检测试题(含答案)一、 选择题(每题3分,共30分)1.多项式32--x x 的一次项的系数是 ( ) A .1 B. 0 C. 1- D. 3- 2.下列运算正确的是 ( )A . 66x x x =• B. ()33263a a = C. 327x x x ÷ D. 222532x x x =+3. 互为余角的两个角之比为2:1,则这两个角分别为 ( ) A . 002040和 B. 002550和 C. 003060和 D. 003555和4.下列作图语句正确的是 ( )A. 作射线AB,使AB=aB. 以点O 为圆心作弧C. 延长直线AB 到C,使AC=BCD. 作∠AOB=∠α 5.如图,若∠2=070,∠C=070,∠1=0110,则∠B 等于 ( ) A .070 B. 060 C. 050 D. 01106.一支蝴蝶在空中飞行,然后随意落在某个方格中(每个方格除颜色外完全一样),则蝴蝶停在白色方格中的概率为 ( ) A .83B. 85 C. 81 D . 217.某资料显示:一个水分子的质量大约是26103-⨯千克,那么8个水分6题子的质量用科学计算法表示为 ( ) A .千克241024.0-⨯ B. 千克25104.2-⨯ C. 千克26104.2-⨯ D. 千克24104.2-⨯8.若等于是同类项,则与b a b a y x y x -3243 ( ) A .8 B. 81 C. 8- D . 81-9.甲、乙两人玩掷骰子游戏,若掷得奇数,则甲获胜;若掷得偶数,则乙获胜,你觉得这个游戏 ( ) A .对甲有利,对乙不公平 B. 是公平的 C .对乙有利,对甲不公平 D. 以上都不正确 10.如图,AB ∥CD ,EF ⊥CD ,FG 平分∠EFC ,则 ( ) A .∠1>∠2 B. ∠1<∠2 C. ∠1=∠2 D .不能确定二、 填空题:(每题3分,共30分)11.多项式33112325a b ab b -+--有 项,分别是 12.已知2221,()2,αβαβαβ+=+=则的值为13.如图,直线1l ∥2l ,且AB ⊥1l ,若∠ABC=132,则α∠= 14.如图,在△ABC 中,∠ABC=90,∠ACB 与∠CBD 互余,∠ABD 与∠ACB 的关系是15.用小数表示43.01210--⨯为16.中国互联网的上网用户居世界第二位,已超过7800万,用科学计数法表示为 万。
七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试[含答案]
2024-2025学年七年级数学上学期期中模拟卷(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:北京版2024七年级上册第一章-第二章.5.难度系数:0.85.第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算13--的结果是( )A .-2B .2C .-4D .42.下列方程中是一元一次方程的是( )A .5x =-B .242x x x -=+C .231x x -=-D .10.254x x +=+3.如图,数轴上被墨水遮盖的点表示的数可能是( )A .1-B . 1.5-C .3-D .5-4.在31-.,0,+2,(7)--,15--,π2-,3(2)-中,负有理数有( )A .2个B .3个C .4个D .5个5.若a 、b 互为相反数,则下列等式:①0a b +=;②0a b +=;③0a b -=;④0a b ´=其中一定成立的个数为( )A .1B .2C .3D .46.某工厂计划每天烧煤5吨,实际每天少烧2吨,m 吨煤多烧了20天,则可列方程是( )A .2025m m -=B .2023m m -=C .2057m m -=D .2035m m -=7.如图所示是计算机程序流程图,若开始输入1x =,则最后输出的结果是( )A .11B .11-C .13D .13-8.三个有理数a ,b ,c 在数轴上表示的位置如图所示,则化简b a a c b c --+--的结果是( )A .0B .2bC .2cD .2a-第Ⅱ卷二、填空题:本题共8小题,每小题2分,共16分.9. 2.78- 425-.(填“>”“<”或“=”)10.如果方程1320m x ++=是关于x 的一元一次方程,那么m 的值是 .11.中国古代著作《九章算术》在世界数学史上首次正式引入负数,如果盈利80元记作80+元,那么亏本70元记作 元.12.规定图形表示运算a b c -+,图形表示运算x z y w +--,则+= .(直接写出答案)13.在边长为9cm 的正方形ABCD 中,放置两张大小相同的正方形纸板,边EF 在AB 上,点K ,I 分别在BC ,CD 上,若区域I 的周长比区域Ⅱ与区域Ⅲ的周长之和还大6cm ,则正方形纸板的边长为 cm .14.在解关于y 的方程21132y y a -+=-时,小明在去分母的过程中,右边的“1-”漏乘了公分母6,因而求得方程的解为4y =,则方程正确的解是 .15.若关于x 的一元一次方程3x k +=和123x k x k --=的解互为相反数,则k = .16.已知一个长方形的周长为36cm ,若长方形的长减少1cm ,宽扩大为原来的2倍后成为一个正方形,设原来长方形的长为x cm ,则可列方程 .三、解答题:本题共12小题,共68分.解答应写出文字说明、证明过程或演算步棸.17.一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?18.解方程:43(2)x x -=-.19.计算:()2311154éù--´--ëû20.一个两位数,个位上的数字与十位上的数字之和是6,若把个位上的数字与十位上的数字调换位置,那么所得的新数比原数的三倍多6,求原来的两位数.21.在给出的数轴上,把下列各数表示出来,并用“>”连接各数.22-, 1.5-,122-,0,()2--,5-22.有甲、乙两个粮仓,已知乙仓原有粮食35 吨.如果从甲仓取出 15 吨粮食放入乙仓,这时乙仓的存粮是甲仓的 25,则甲仓原有粮食多少吨?23.下列数阵是由50个偶数按照5×10排成的,框内有四个数.(1)猜测:图中框内四个数之和与数字4有什么关系?(2)在数阵中任意做一类似于(1)中的框,设左上角的数为x ,那么其他3数怎样表示?(3)任意移动这个框,是否都能得到(1)的结论?你能证明这个结论吗?24.如图,每个图形都由同样大小的小正方形按一定规律组成。
湖南省长沙市长郡教育集团2023-2024学年上学期七年级期中考试数学试卷
23年秋初一长郡教育集团期中考试数学试卷一、单项选择题 (本大题共10小题,每小题3分,共30分)1.(3分)2的倒数是()A .−21−B .2C .21 D .2 2.(3分)2023年9月23日至10月8日,第19届亚运会在中国浙江杭州举行,亚运会主场馆为杭州奥体中心体育馆,又名“大莲花”.体育馆总建筑面积约为216000平方米,将数字216000用科学记数法表示为()0.21610⨯A .62.1610⨯B .5 2.1610⨯C .621.610⨯D .43.(3分)如图,对4个足球的质量进行检测,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()−A . 3.5+B . 2.5 −C .0.3 +D .14.(3分)下列计算正确的是() a a 22A .55−=B .+=235a b ab +=C .34ab ba ab 222D .−=−23a a a 5.(3分)单项式−2xy 32的系数和次数分别是()A . −3,22B . −3,32C .3,32 −D .2,2 6.(3分)下列去括号中,正确的是()A .+−=−+x x (32)32B .−=−a b a b22(6)311C .−−=−−x x x x (2)222D .−−=−−a a 2(43)86x =57.(3分)若是关于 x x m +−=的方程2310的解,则m 的值为()−A .3−B .2−C .1D .08.(3分)若= a b ,m 是任意实数,则下列等式不一定成立的是()A .+=+B a m b m .−=−C a m b m .=D am bm .=m ma b9.(3分)已知方程++= a x ||4a (5)30−a 是一元一次方程,则的值为()A .5−B .5±C .5D .10.(3分)定义一种关于整数n F 的“”运算:(1)当 n n +是奇数时,结果为5;(2)当n 是偶数时,结果是n k 2(其中k 是使 nk 2是奇数的正整数),并且运算重复进行.n =例如:取58”运算是29,第一次经“F ,第二次经“”运算是34F ,第三次经“F ”运算是17,第四次经“ ”运算是22F ,⋯n =;若11,则第2023次运算结果是()A .1B .6C .3D .8二、填空题 (本大题共6小题,每小题3分,共18分)11.(3分)比较大小: −43−54(填“>”或“<”)12.(3分)若家用电冰箱冷藏室的温度是︒4C ,冷冻室的温度要比冷藏室低︒ 22C,则冷冻室的温度是. 6.537813.(3分)用四舍五入法,取近似值:≈(精确到0.01).−2a b m +14.(3分)若13 5a b 323n 与−可以合并成一项,则mn 的值是. 15.(3分)某种商品原价每件元,第一次降价打八折,第二次降价每件又减10b 元,第二次降价后的售价是元.16.(3分)如图,在数轴上有a ,a b +<b 两个实数,则下列结论:①0b a −>,②0,③>ab()02 −>,④()0 ab 3中,其中正确的有(结果填序号).三、解答题 (本大题共9小题,共72分,解答应写出文字说明,证明过程或演算步骤)17.(4分)计算:(1)−−−−+++(3)(5)(7)(4)(2;)−⨯+÷−2814(7)1;(3)简便运算: −⨯+−⨯−⨯−3321(45(1)51(5);)−+−⨯−−312(1)|3(3)|42.18.(4分)化简:(1)253531x x y y x −−+++; (2)223(432)2(14)x x x x −+−−−.19.(4分)解下列方程:(1)281x x +−=; (2)72992x x −=+.20.(6分)先化简,再求值:2224(25)2(3)xy x xy y x xy −−++−,其中1x =−,2y =.21.(6分)2018年9月第22号台风“山竹”给某地造成严重影响.蓝天救援队驾着冲锋舟沿一条东西方向的河流营救灾民,早晨从A 地出发,晚上最后到达B 地,约定向东为正方向,当天航行依次记录如下(单位:千米): 18,8−,15,7−,11,6−,10,5−问:(1)B 地在A 地的东面,还是西面?与A 地相距多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中至少需要补充多少升油?22.(6分)我们把“!n ”叫做“n 的阶乘”,其中n 为正整数. 规定1:!(1)(2)21n n n n =⋅−⋅−⋅⋯⨯⨯.例如6!654321720=⨯⨯⨯⨯⨯=.规定2:在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括号里面的.(1)按照以上的规定,计算:①4!= ;②50!49!= ;③2!3!⨯= ; (2)计算:(4!5!)3!−÷.23.(6分)甲三角形的周长为23610a b −+,乙三角形的第一条边长为22a b −,第二条边长为23a b −,第三条边比第二条边短224a b −−. (1)求乙三角形第三条边的长;(2)甲、乙两个三角形的周长哪个大?请说明理由;24.(8分)有这样一道题“如果代数式53a b +的值为4−,那么代数式2()4(2)a b a b +++的值是多少?”,爱动脑筋的汤同学解题过程如下:原式22841062(53)2(4)8a b a b a b a b =+++=+=+=⨯−=−.汤同学把53a b +作为一个整体求解.整体思想是中学数学解题中的一种重要思想方法,请仿照上面的解题方法,完成下面的问题: 【简单应用】(1)已知23a a +=,则2222023a a ++= ; (2)已知23a b −=−,求3()755a b a b +−+−的值; 【拓展提高】(3)已知225a ab +=,226ab b −=−,求代数式22344a ab b ++的值.25.(8分)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,这种解决问题的思想叫做数形结合思想.研究数轴我们发现了许多重要的规律:①若数轴上点A ,点B 表示的数分别为a ,b ,若A ,B 位置不确定时,则A ,B 两点之间的距离为:||a b −,若点A 在B 的右侧,即a b >,则A ,B 两点之间的距离为:a b −; ②线段AB 的中点表示的数为2a b+; ③点A 向右运动m 个单位长度(0)m >后,点A 表示的数为:a m +,点A 向左运动m 个单位长度(0)m >后,点A 表示的数为:a m −.同学们可以在数轴上取点验证上述规律,并完成下列问题. 【问题情境】如图:在数轴上点A 表示数3−,点B 表示数1,点C 表示数9,点A 、点B 和点C 分别以每秒2个单位长度、1个单位长度和4个单位长度的速度在数轴上同时向左运动,设运动时间为t 秒(0)t >.(1)请利用上述结论,结合数轴,完成下列问题:AB 表示点A 到点B 之间的距离,运动之前,AB 的距离为 ,A 点与C 点的中点为D ,则点D 表示的数为 ;运动t 秒后,点A 表示的数为 (用含t 的式子表示);(2)若t 秒钟过后,A ,B ,C 三点中恰有一点为另外两点的中点,求t 值;(3)当点C 在点B 右侧时,是否存在常数m ,使2mBC AB −的值为定值?若存在,求m 的值,若不存在,请说明理由.23年秋初一长郡教育集团期中考试数学试卷参考答案与试题解析一、单项选择题 (本大题共10小题,每小题3分,共30分)1.(3分)2的倒数是()A .−21−B .2C .21D .2【分析】直接利用倒数的定义分析得出答案.【解答】解:2的倒数是:21. C 故选:.【点评】此题主要考查了倒数,正确把握定义是解题关键.2.(3分)2023年9月23日至10月8日,第19届亚运会在中国浙江杭州举行,亚运会主场馆为杭州奥体中心体育馆,又名“大莲花”.体育馆总建筑面积约为216000平方米,将数字216000用科学记数法表示为()0.21610⨯A .62.1610⨯B .5 2.1610⨯C .621.610⨯D .4a ⨯10【分析】科学记数法的表示形式为n a 的形式,其中1||10<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n <1是正整数;当原数的绝对值时,n 是负整数.=⨯【解答】解:216000 2.16105.B 故选:.a ⨯10【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为n 的形式,其中a 1||10<,n为整数,表示时关键要正确确定a 的值以及n的值.3.(3分)如图,对4个足球的质量进行检测,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()−A . 3.5+B . 2.5−C .0.3+D .1【分析】超过标准质量的克数记为正数,不足标准质量的克数记为负数.绝对值越小越接近标准.【解答】解:绝对值越小越接近标准,−=| 3.5| 3.5,+=| 2.5| 2.5 ,−=|0.3|0.3|1|1+=,,∴−0.3最接近标准.故选:C .【点评】本题考查了正负数的意义,解题的关键是理解有理数的意义,明白绝对值越小越接近标准.4.(3分)下列计算正确的是( ) A .2255a a −= B .235a b ab +=C .22234ab ba ab +=D .23a a a −=−【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:A .22254a a a −=,故本选项不符合题意; B .2a 与3b 不是同类项,所以不能合并,故本选项不符合题意; C .2ab 与23ba 不是同类项,所以不能合并,故本选项不符合题意;D .23a a a −=−,故本选项符合题意.故选:D .【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.5.(3分)单项式223xy −的系数和次数分别是( )A .2,23−B .2,33−C .2,33D .2−,2【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式223xy −的系数和次数分别是23−,3.故选:B .【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.6.(3分)下列去括号中,正确的是( ) A .(32)32x x +−=−+ B .11(6)322a b a b −=−C .22(2)2x x x x −−=−−D .2(43)86a a −−=−−【分析】根据去括号和添括号的方法进行化简即可. 【解答】解:A 、(32)32x x +−=−,故该项不正确;B 、11(6)322a b a b −=−,故该项正确;C 、22(2)2x x x x −−=−+,故该项不正确;D 、2(43)86a a −−=−+,故该项不正确;故选:B .【点评】本题考查去括号和添括号,熟练掌握相关的知识点是解题的关键. 7.(3分)若5x =是关于x 的方程2310x m +−=的解,则m 的值为( ) A .3−B .2−C .1−D .0【分析】把5x =代入方程,即可得出关于m 的方程,求出方程的解即可. 【解答】解:把5x =代入方程2310x m +−=得:10310m +−=,解得:3m =−, 故选:A .【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的方程是解此题的关键.8.(3分)若a b =,m 是任意实数,则下列等式不一定成立的是( ) A .a m b m +=+B .a m b m −=−C .am bm =D .a bm m= 【分析】根据等式的性质即可求出答案.【解答】解:A 、利用等式性质1,两边都加m ,得到a m b m +=+,原变形一定成立,故此选项不符合题意;B 、利用等式性质1,两边都减去m ,得到a m b m −=−,原变形一定成立,故此选项不符合题意;C 、利用等式性质2,两边都乘m ,得到am bm =,原变形一定成立,故此选项不符合题意;D 、成立的条件是0m ≠,原变形不一定成立,故此选项符合题意;故选:D .【点评】本题考查了等式的性质,解题的关键是熟练运用等式的性质.等式的性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.9.(3分)已知方程||4(5)30a a x −++=是一元一次方程,则a 的值为( ) A .5B .5−C .5±D .0【分析】只含有一个未知数(元),并且未知数的指数是1(次)的整式方程叫做一元一次方程,据此可得出关于a 的方程,继而可求出a 的值.a 【解答】解:由题可得−=||41 且+≠a 50a =5,解得,故选:A .【点评】此题主要考查了一元一次方程定义,关键是掌握一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.10.(3分)定义一种关于整数 n 的“F ”运算:(1)当 n n +是奇数时,结果为5;(2)当n 是偶数时,结果是n k 2(其中k 是使 nk2是奇数的正整数),并且运算重复进行.n =例如:取58F ”运算是29,第一次经“,第二次经“F ”运算是34,第三次经“F ”运算是17,第四次经“F ”运算是22,⋯n =;若11,则第2023次运算结果是()A .1B .6C .3D .8n =11【分析】根据题中所给运算方式,分别求出时,前几次的运算结果,发现规律即可解决问题.【解答】解:由题知,当n =11时,第一次经“F ”运算是:+=11516;第二次经“F ”运算是: =11624;第三次经“F ”运算是:+=156;第四次经“F ”运算是: =236;第五次经“F ”运算是:+=358;第六次经“F ”运算是:=1823;由此可见:除第一次经“F ”运算的结果外,后面运算的结果按1,6,3,8循环出现, 且−÷=(20231)4505余2,所以第2023次运算结果是6.故选:B .【点评】本题考查数字变化的规律,能根据运算的结果发现除第一次经“F ”运算的结果外,后面运算的结果按1,6,3,8循环出现是解题的关键.二、填空题 (本大题共6小题,每小题3分,共18分)11.(3分)比较大小: −43>− 54>(填“”或“<”) 【分析】先把各数化为小数的形式,再根据负数比较大小的法则进行比较即可.3【解答】解:−=−<40.750,54−=−<0.80,|0.75|0.75−=,|0.8|0.8−=,0.750.8<,0.750.8∴−>−,3445∴−>−. 故答案为:>.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.12.(3分)若家用电冰箱冷藏室的温度是4C ︒,冷冻室的温度要比冷藏室低22C ︒,则冷冻室的温度是 18C ︒− .【分析】根据题意,冷冻室的温度=冷藏室的温度(4C)22C ︒︒−,计算即可.【解答】解:冷冻室的温度4C 22C 18C ︒︒︒=−=−.故填写18C ︒−.【点评】本题主要是考查了温差的概念,以及有理数的减法,是一个基础的题目. 有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.13.(3分)用四舍五入法,取近似值:6.5378≈ 6.54 (精确到0.01).【分析】把千分位上的数字7进行四舍五入即可.【解答】解:6.5378 6.54≈(精确到0.01).故答案为:6.54.【点评】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.14.(3分)若132m a b +−与3235n a b −可以合并成一项,则mn 的值是 6 .【分析】直接利用同类项的定义得出m ,n 的值,进而得出答案.【解答】解:依题意知,132m a b +−与3235n a b −是同类项,则13m +=,233n −=, 解得2m =,3n =,所以236mn =⨯=.故答案为:6.【点评】此题主要考查了同类项,正确把握合并同类项法则是解题关键.15.(3分)某种商品原价每件b 元,第一次降价打八折,第二次降价每件又减10元,第二次降价后的售价是 (0.810)b − 元.【分析】根据某种商品原价每件b 元,第一次降价打八折,可知第一次降价后的价格为0.8b 元,第二次降价每件又减10元,可以得到第二次降价后的售价.【解答】解:某种商品原价每件b 元,第一次降价打八折,∴第一次降价后的售价为:0.8b 元.第二次降价每件又减10元,∴第二次降价后的售价是(0.810)b −元.b 故答案为:−(0.810).【点评】本题考查列代数式,解题的关键是明确题意,能列出每次降价后的售价.16.(3分)如图,在数轴上有a ,b a b +<两个实数,则下列结论:①0b a −>,②0,③>a b()02−>,④()0 ab 3 中,其中正确的有 ②③④(结果填序号).【分析】观察数轴可得:<<a b 0且<a b ||||,再根据有理数的加减法运算,乘除运算,乘方运算,即可求解.【解答】解:观察数轴得:<<a b 0且<a b ||||,∴+>a b 0b a −>,0,> a b()02故①错误;②③正确;∴<ab 0∴<,()0ab 3∴−>,()0ab 3,故④正确;故答案为:②③④.【点评】本题主要查了数轴,有理数的加减法运算,乘除运算,利用数形结合思想解答是解题的关键.三、解答题 (本大题共9小题,共72分,解答应写出文字说明,证明过程或演算步骤)17.(4分)计算:(1)−−−−+++(3)(5)(7)(4);(2)−⨯+÷− 2814(7)1;(3)简便运算:−⨯+−⨯−⨯−335(1)51(5)21;(4)−+−⨯−−312(1)|3(3)|42.【分析】(1)按照从左到右的顺序进行计算,即可解答;(2)先算乘除,后算加减,即可解答;(3)利用乘法分配律的逆运算进行计算,即可解答;(4)先算乘方,再算乘法,后算加减,有括号先算括号里,即可解答.【解答】解:(1)−−−−+++=−+−+(3)(5)(7)(4)3574=−+274=−1=−+54;(2)−⨯+÷−2814(7)1=−+−4(2) =−6;(3)−⨯+−⨯−⨯−335(1)51(5)21=−⨯−⨯+⨯33551524=−−+⨯33(1)524 =−⨯15=−5;(4)−+−⨯−−312(1)|3(3)|42=−+⨯−316|39|2 =−+⨯31662=−12=−+164.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.18.(4分)化简:(1)253531x x y y x −−+++;(2)223(432)2(14)x x x x −+−−−.【分析】(1)合并同类项即可;(2)去括号合并同类项即可.【解答】解:(1)原式(253)(53)1x x x y y =−++−+21y =+;(2)原式221296282x x x x =−+−++22074x x =−+.【点评】本题考查整式的加减,解题的关键是掌握整式加减的法则,属于中考常考题型.19.(4分)解下列方程:(1)281x x +−=;(2)72992x x −=+. 【分析】根据一元一次方程的解法,经过移项、合并同类项、系数化为1等过程即可.【解答】解:(1)281x x +−=,解:移项得,218x x +=+,合并同类项得,39x =,两边都除以3得,3x =;(2)移项得,79922x x −=+,合并同类项得,11112x −=,系数化为1得,2x =−. 【点评】本题考查一元一次方程的解法,掌握一元一次方程的解法步骤是正确解答的关键.20.(6分)先化简,再求值:2224(25)2(3)xy x xy y x xy −−++−,其中1x =−,2y =.【分析】先去括号,再合并同类项,然后把x ,y 的值代入化简后的式子进行计算,即可解答.【解答】解:2224(25)2(3)xy x xy y x xy −−++−22242526xy x xy y x xy =−+−+−23xy y =−, 当1x =−,2y =时,原式23(1)226410=⨯−⨯−=−−=−.【点评】本题考查了整式的加减−化简求值,准确熟练地进行计算是解题的关键.21.(6分)2018年9月第22号台风“山竹”给某地造成严重影响.蓝天救援队驾着冲锋舟沿一条东西方向的河流营救灾民,早晨从A 地出发,晚上最后到达B 地,约定向东为正方向,当天航行依次记录如下(单位:千米):18,8−,15,7−,11,6−,10,5−问:(1)B 地在A 地的东面,还是西面?与A 地相距多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中至少需要补充多少升油?【分析】(1)将题目中的数据相加,看最终的结果,即可得到B 地在A 地的那个方向,与A 地的距离是多少;(2)将题目中的数据都取绝对值然后相加与0.5相乘再与30作差即可解答本题.【解答】解:(1)(18)(8)15(7)11(6)10(5)28++−++−++−++−=.答:B 地在A 地的东面,与A 地相距28千米;(2)总路程18815711610580=+++++++=(千米)800.53010⨯−=(升).答:途中至少需要补充10升油.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中表示的实际含义,找出所求问题需要的条件.22.(6分)我们把“!n ”叫做“n 的阶乘”,其中n 为正整数.规定1:!(1)(2)21n n n n =⋅−⋅−⋅⋯⨯⨯.例如6!654321720=⨯⨯⨯⨯⨯=.规定2:在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括号里面的.(1)按照以上的规定,计算:①4!= 24 ;②50!49!= ;③2!3!⨯= ; (2)计算:(4!5!)3!−÷.【分析】(1)利用阶乘的定义进行运算即可;(2)利用阶乘的定义及有理数的相应的法则进行运算即可.【解答】解:(1)①4!432124=⨯⨯⨯=;故答案为:24; ②50!49!5049!49!⨯=50=, 故答案为:50;③2!3!⨯21321=⨯⨯⨯⨯12=,故答案为:12;(2)(4!5!)3!−÷(24120)6=−÷966=−÷16=−.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.23.(6分)甲三角形的周长为23610a b −+,乙三角形的第一条边长为22a b −,第二条边长为23a b −,第三条边比第二条边短224a b −−.(1)求乙三角形第三条边的长;(2)甲、乙两个三角形的周长哪个大?请说明理由;【分析】(1)第三条边比第二条边短2(24)a a −−,所以用第二条边长2(3)a b −减去2(24)a b −−,求得第三条边长.(2)先将乙三角形的三条边相加得到乙三角形的周长,再用甲三角形的周长减去乙三角形的周长,所得的差大于0,说明甲三角形的周长大;所得的差小于0,说明乙三角形的周长大.【解答】解:(1)第二条边长为23a b −,第三条边比第二条边短224a b −−. ∴第三条边长:2222(3)(24)3244a b a b a b a b b −−−−=−−++=−+.答:乙三角形第三条边的长是4b −+.(2)乙三角形的周长为:222(2)(3)(4)264a b a b b a b −+−+−+=−+.甲、乙三角形的周长的差为:222(3610)(264)6a b a b a −+−−+=+.因为260a +>,所以甲三角形的周长较大.答:甲三角形的周长大.【点评】本题考查了因式分解的计算,关键根据题意写对式子.24.(8分)有这样一道题“如果代数式53a b +的值为4−,那么代数式2()4(2)a b a b +++的值是多少?”,爱动脑筋的汤同学解题过程如下:原式22841062(53)2(4)8a b a b a b a b =+++=+=+=⨯−=−.汤同学把53a b +作为一个整体求解.整体思想是中学数学解题中的一种重要思想方法,请仿照上面的解题方法,完成下面的问题:【简单应用】(1)已知23a a +=,则2222023a a ++= 2029 ;(2)已知23a b −=−,求3()755a b a b +−+−的值;【拓展提高】(3)已知225a ab +=,226ab b −=−,求代数式22344a ab b ++的值.【分析】(1)将2222023a a ++变形为22()2023a a ++,再将23a a +=代入计算即可.(2)将3()755a b a b +−+−变形为4(2)5a b −−−,即可得出答案.(3)将22344a ab b ++变形为223(2)2(2)a ab ab b +−−,即可得出答案.【解答】解:(1)222220232()20232320232029a a a a ++=++=⨯+=.故答案为:2029.(2)原式33755a b a b =+−+−485a b =−+−4(2)5a b =−−−,23a b −=−,∴原式4(3)57=−⨯−−=.(3)22344a ab b ++223(2)2(2)a ab ab b =+−−352(6)=⨯−⨯−1512=+27=.【点评】本题考查整式的加减−化简求值,熟练掌握运算法则是解答本题的关键.25.(8分)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,这种解决问题的思想叫做数形结合思想.研究数轴我们发现了许多重要的规律:①若数轴上点A ,点B 表示的数分别为a ,b ,若A ,B 位置不确定时,则A ,B 两点之间的距离为:||a b −,若点A 在B 的右侧,即a b >,则A ,B 两点之间的距离为:a b −; ②线段AB 的中点表示的数为2a b +; ③点A 向右运动m 个单位长度(0)m >后,点A 表示的数为:a m +,点A 向左运动m 个单位长度(0)m >后,点A 表示的数为:a m −.同学们可以在数轴上取点验证上述规律,并完成下列问题.【问题情境】如图:在数轴上点A 表示数3−,点B 表示数1,点C 表示数9,点A 、点B 和点C 分别以每秒2个单位长度、1个单位长度和4个单位长度的速度在数轴上同时向左运动,设运动时间为t 秒(0)t >.(1)请利用上述结论,结合数轴,完成下列问题:AB 表示点A 到点B 之间的距离,运动之前,AB 的距离为 4 ,A 点与C 点的中点为D ,则点D 表示的数为 ;运动t 秒后,点A 表示的数为 (用含t 的式子表示);(2)若t 秒钟过后,A ,B ,C 三点中恰有一点为另外两点的中点,求t 值;(3)当点C 在点B 右侧时,是否存在常数m ,使2mBC AB −的值为定值?若存在,求m 的值,若不存在,请说明理由.【分析】(1)根据背景知识①即可求出AB 的距离;根据②即可求出点D 表示的数;根据背景知识③即可写出点A 表示的数;(2)分别用t 的代数式写出点A ,B ,C 表示的数,分类讨论,根据背景知识②列方程求解即可;(3)用t 的代数式表示出BC ,AB 的长,再用代数式表示出2mBC AB −,根据其值为定值,即可确定m 的值,从而解决问题.【解答】解:(1)A 点表示数3−,B 点示数1,AB ∴的距离为:1(3)4−−=; 又点A 表示数3−,点C 表示数9,点D 为AC 中点,∴点D 表示的数为39:32−+=; A 点表示数3−,以每秒2个单位长度向左运动,∴运动t 秒后,点A 表示的数为:32t −−. 故答案为:4;3;32t −−;(2)由题意可知,t 秒时,A 点所在的数为:32t −−,B 点所在的数为:1t −,C 点所在的数为:94t −.分三种情况:①若B 为AC 中点,则(32)(94)12t t t −−+−−=.解得1t =; ②若C 为AB 中点,则(32)(1)942t t t −−+−−=.解得4t =; ③若A 为BC 中点,则194322t t t −+−−−=.解得16t =. 综上,当1t =或4或16时,A ,B ,C 三点中恰有一点为另外两点的中点;(3)存在.点C 在点B 右侧,点B 在点A 右侧,94(1)83BC t t t ∴=−−−=−,1(32)4AB t t t =−−−−=+,2(83)2(4)838288(32)mBC AB m t t m mt t m m t ∴−=−−+=−−−=−−+.当320m +=,即23m =− 时,结果与t 无关, 即24028()833mBC AB −=⨯−−=− 为定值, ∴存在常数23m =− 使2mBC AB −的值为定值. 【点评】本题考查一元一次方程的应用,数轴,列代数式,理解题意,能用代数式表示出点所表示的数是解题的关键.。
七年级数学上册期中考试卷(带答案)
七年级数学上册期中考试卷(带答案)七年级数学上册期中考试卷及答案注意事项:1.本试卷共28题,全卷满分100分,考试时间100分钟.2.考生必须在答题卡上各题指定区域内作答,在本试卷上和其他位置作答一律无效.3.如用铅笔作图,必须把线条加黑加粗,描写清楚.一、填空题(本大题共有12小题,每小题2分,共计24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)1.的相反数是▲;的倒数是▲.2.用“>”或“3.镇江市某水文观测站的记录员将高于平均水位的水位记为,那么表示▲;如果该站的平均水位为,那么表示的实际水位为▲.4.有理数、、、、、、中,整数是▲;负分数是▲.5.计算:▲;在数轴上表示到原点的距离为的数是▲.6.用代数式表示:比的小的数是▲;与的平方差▲.7.单项式的系数为▲;多项式的次数为▲.8.如果与是同类项,那么▲;▲.9.若,那么▲;若是方程的解,则的值是▲.10.年月,教育部发布全国学生资助政策执行情况,去年义务教育阶段共有万家庭经济困难寄宿生享受生活补助,共补助资金亿元.这项资金用科学记数法表示为▲元.11.已知代数式的值是,则代数式的值是▲.12.从棱长为的正方体毛坯的一角,挖去一个棱长为的小正方体,得到一个如图所示的零件,则这个零件的表面积是▲.二、选择题(本大题共有6小题,每小题3分,共计18分,在每小题所给出的选项中,恰有一项是符合题目要求的,请将正确选项的字母代号写在答题卡相应位置上.)13.下列各项中,计算结果正确的是A.B.C.D.14.下列说法中,正确的是A.符号不同的两个数互为相反数B.两个有理数的和一定大于每一个加数C.有理数分为正有理数和负有理数D.一个数的绝对值是它本身,则这个数为正数或015.下列解方程变形正确的是A.若,那么B.若,那么C.若,那么D.若,那么16.有理数、在数轴上的位置如图所示,则化简的结果为A.B.C.D.17.近期,我国很多地区的猪肉价格不断上涨,我市某超市猪肉按原价上涨后,又提高元,现售价为元,那么该超市猪肉的原价为A.元B.元C.元D.元18.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是A.2010B.2011C.2012D.2013三、解答题(本大题共有10小题,共计58分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(每题4分,共8分)计算:(1)(2)20.(本题5分)先化简,后求值:,其中,.21.(本题5分)解方程.22.(本题5分)如果关于的方程和方程的解相同,求的值.23.(本题5分)镇江市出租车收费标准:以内(含)起步价为元,超过后,超过部分每加收元.另外,由于燃油费上涨,每次打车还需加收元燃油附加费.(1)若小明坐出租车回家,行驶了,则他应付多少元?(2)如果用表示出租车行驶的路程,表示出租车应收的费用,请你用含的代数式表示(将结果进行化简).24.(本题6分)有一个数值转换机操作如下:输入→→→输出结果(1)若输入的,则输出的结果▲.(2)与的关系为▲.(3)当输入的为何值时,输入和输出结果相等.25.(本题7分)年月日,中国汽车协会发布最新汽车产销数据显示:上半年汽车销售量万辆.某汽车厂计划一周生产汽车辆,平均每天生产辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(1)根据记录的数据可知该厂星期五生产汽车▲辆;(2)产量最多的一天比产量最少的一天多生产汽车▲辆;(3)根据记录的数据可知该厂本周实际生产汽车▲辆,该厂实行每周计件工资制,每生产一辆车可得元,那么该厂工人这一周的实际工资总额是▲元.26.(本题6分)若“”是规定的一种运算法则,对任意两个有理数、,有.(1)▲;(2)如果:,求.新课标第一网27.(本题5分)阅读与探究:我们知道分数写为小数即,反之,无限循环小数写成分数即.一般地,任何一个无限循环小数都可以写成分数形式.现在就以为例进行讨论:设:,由:…,得:…,…,于是:……,即:,解方程得:,于是得:.请仿照上述例题完成下列各题:(1)请你把无限循环小数写成分数,即▲.(2)你能化无限循环小数为分数吗?请完成你的探究过程.28.(本题6分)若在方格(每小格正方形边长为)上沿着网格线平移,规定:沿水平方向平移的数量为(向右为正,向左为负,平移个单位),沿竖直方向平移的数量为(向上为正,向下为负,平移个单位),则把有序数对{,}叫做这一平移的“平移量”.例如:点A按“平移量”{,}可平移至点B.(1)从点C按“平移量”{▲,▲}可平移到点B;(2)若点B依次按“平移量”{,}、{,}平移至点D,①请在图中标出点D;(用黑色水笔在答题卡上作出点D)②如果每平移需要秒,那么按此方法从点B移动至点D需要多少秒?③观察点D的位置,其实点B也可按“平移量”{▲,▲}直接平移至点D;观察这两种平移的“平移量”,猜想:点E依次按“平移量”{,}、{,}、{,}平移至点F,则相当于点E按“平移量”{▲,▲}直接平移至点F.友情提醒:做完了,请仔细检查,不要留下遗憾噢!!!初中生自主学习能力专项调研七年级数学学科答案一.填空(每小题2分,共24分)1.2;2.>;4.;5.;6.;7.;58.2;19.;10.11.412.二.选择(每小题3分,共18分)13.B14.D15.D16.A17.C18.D 三.解答(共58分)19.(每小题4分,共8分)(1)解:原式…(2分)…………(3分)………………………………(4分)(2)解:原式……(2分)…………………………(3分)……………………………………………(4分)(其他解题过程可根据情况酌情给分)20.(本题5分)解:原式………………………………(2分)……………………………………………………(3分)将,代入:原式…………(4分)…………………………………(5分)21.(本题5分)解:………………………………(1分)…………………………………………(2分)…………………………………………(3分)………………………………………………………(4分)…………………………………………………………(5分)22.(本题5分)解:由:得:……………………………(2分)将代入得:……………………(3分)解得:…………………………(5分)23.(本题5分)(1)……(1分)…………………………(2分)(2)………(4分)……………(5分)24.(本题6分)(1)……………………(2分)(2)………………(4分)(3)由题意得:,………(5分)解得:………………………(6分)25.(本题7分)(1)17………………………(2分)(2)7………………………(4分)(3)145…(6分)72500……………(7分)26.(本题6分)(1)4…………………(2分)(2)…………………(4分)…………………(6分)27.(本题5分)(1)…………………(3分)(2)设:,由:…,得:…,…于是:……即:解方程得:于是得:…………………(5分)28.(本题6分)(1){,}…………(1分)(2)①。
汉中东辰外国语学校初中部2023-2024学年度第一学期七年级数学期中考试卷附答案
汉中东辰外国语学校初中部2023-2024学年度第一学期七年级数学期中学情调研试题(卷)考试时间:120分钟一、选择题(每小题3分,共30分) 1.−5的倒数是( )A.15B.−15C.−5D.52.如果向东走3km 记为+3km ,那么−2km 表示的实际意义是( ) A.向东走2km B.向西走2km C.向南走2km D.向北走2km3.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( )A.5×109千克B.50×109千克C.5×1010千克D.0.5×1011千克 4.将如图绕AB 边旋转一周,所得几何体的俯视图为( )5.下列运算正确的是( )A.1−(3x +1)=−3x B.5x +3x =8x 2 C.2x +3y=5x y D.a 2b −ab 2=06.如图是一个正方体的展开图,如果正方体相对的两个面所标注的值均互为相反数,则字母A 所标注的代数式的值为( )A.−12B.−15C.12D. 15A y-2-8 x x -3x +6y+2 A. B. C.7.当x =1时,整式a x 3+b x −1的值等于10,那么当x =−1时,a x 3+b x −1的值为( ) A.−10 B.10 C.−12 D.128.一只蚂蚁沿数轴从点A 向一个方向移动了3个单位长度到达点B ,若点B 表示的数−2,则点A 所表示的数是( )A.1B.−5C.−1或5D.1或−59.已知有理数a ,c ,若|a −2|=18,且3|a −c|=|c|,则所有满足条件的数c 的和是( )A.−6B.2C.8D.910.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A.9a −9b B.9b −9a C.9a D.−9a 二、填空题(每小题3分,共18分) 11.在代数式①x+y x;②x 5+y 32;③0.25m 2n 4;④2021;⑤1+3x;⑥2π中,是整式的有_______(填序号). 12.单项式−πxy 2的系数是_______;多项式a 3b 4−2a 2b 4+3的次数是_______.13.若一个棱柱有10个面,所有侧棱长的和等于72,则每条侧棱的长为_______. 14.如图是一个数值运算程序框图,如果输入x 的值为−1,那么输出的数值是_______.15.若x la-2|+(5−a)x −3是关于x 的三次三项式,则a=_______.16.已知x <0<z ,x y >0,|y|>|z|>|x |,那么|x +z|+|y+z|−|x −y|=_______. 三、解答题(共72分)17.(8分)画出数轴,把下列各数表示在数轴上,并用“<”连接起来.12,|−2.5|,0,−22,−(+2),−(−4)18.(12分)计算题(1)12−(−314)+(−5)−714(2)(23−110+16−25)÷(−160)(3)−32×(−2)+42÷(−2)3−|−22| (4)34×(−5)−12×(−34)−0.75×319.(8分)已知单项式3x n+1y 4与12x 3y m-2是同类项,求代数式3.5n 2m+2mn −72mn 2+3mn 的值.20.(10分)如果关于x 、y 的代数式(2x 2+a x −y+6)−(2b x 2−3x +5y −1)的值与字母x 所取的值无关,试化简代数式a 3−2b 2−2(14a 3−3b 2),再求值.21.(7分)如图是由7个同样大小的小正方体搭成的几何体,请在下面方格纸中分别画出这个几何体从正面看、从左面看、从上面看的形状图(提示:在答题卡上先用铅笔和直尺作图,检查正确后再用黑色中性签字笔描图).22.(本题满分8分)(1)用代数式表示铺设五彩石的面积. (2)当a=10,b=4时,求铺设五彩石的面积.23.(7分)某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费. (1)若小明家3月份用水12吨,应交水费多少元?(2)若小明家4月份交水费35元,那么小明家里用水多少吨? (3)若5月份用水x 吨,则应交水费多少元?24.(12分)如图已知数轴上点A 、B 分别表示a 、b ,且|b+6|与(a −9)2互为相反数,O 为原点.从正面看 从左面看 从上面看从正面看(1)a=____,b=____.(2)若点M 、N 分别从点A 、B 同时出发,点M 以每秒1个单位长度的速度沿数轴向左匀速运动,点N 以每秒2个单位长度的速度沿数轴向右匀速运动,N 到点A 后立刻原速返回,设运动时间为t(t >0)秒. ①求t 为何值时,2MO=MA.②求t 为何值时,点M 与N 相距3个单位长度.汉中东辰外国语学校初中部2023-2024学年度第一学期七年级数学期中学情调研试题(卷)考试时间:120分钟一、选择题(每小题3分,共30分) 1.−5的倒数是( )A.15B.−15C.−5D.51.解:−5的倒数是−15,两者乘积为1,故选B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019~2020学年度第一学期期中质量调研七年级数学试题一、选择题(每小题2分,共16分)1.﹣6的相反数是------------------------------------------------------------------------------------【 】A .﹣B .6C .D .﹣62.“比a 的2倍大1的数”,列式表示是--------------------------------------------------------【 】 A .2(a +1)B .2(a ﹣1)C .2a +1D .2a ﹣13.下列算式中,运算结果为负数的是-----------------------------------------------------------【 】 A .)(5-- B .5-C .()35-D .()25-4.下列运算结果正确的是--------------------------------------------------------------------------【 】 A .66=-x x B .y y y 34--=+ C .022=-xy y xD .532422x x x =+5.已知|a |=4,|b |=7,且a ﹣b >0,则a +b 的值为------------------------------------------- 【 】 A .11B .3或11C .﹣3或﹣11D .3或﹣116.一个两位数的个位数字是x ,十位数字是y ,则这个两位数用代数式表示为---------------【 】 A .yxB .y+xC .10x +yD .10y +x7.下列说法正确的是----------------------------------------------------------------------------------【 】 A .单项式﹣5xy 的系数是5 B .单项式3a 2b 的次数是2 C .多项式x 2y 3﹣4x +1是五次三项式 D .多项式x 2﹣6x +3的项数分别是x 2,6x ,38.小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a +b 的值为--------------------------【 】 A .﹣6或﹣3 B .﹣8或1C .﹣1或﹣4D .1或﹣1二、填空题(每小题2分,共20分)2019.119.如果高出海平面20米,记作+20米,那么﹣30米表示.10.在①﹣42,②+0.080080008…(相邻两个8之间依次增加一个0),③π,④0,⑤120,这5个数中正有理数是(填序号).11.比较两个数的大小:(1) )21(--32-; (2) 14.3-π-.12.据相关报道,开展精准扶贫工作五年以来,我国约有55 000 000人摆脱贫困,将55 000 000用科学记数法表示是.13.冬季某天我国三个城市的最高气温分别是﹣10℃,1℃,﹣7℃,它们任意两城市中最大的温差是℃.14.若单项式3x2y n与﹣2x m y3是同类项,则m-n=.15.已知22-=-yx,则yx423+-的值是.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为.17.如图,长方形的长为2a,长方形的宽和半圆的半径都是a,用字母表示图中阴影部分的面积为(结果保留π)18.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示﹣1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示﹣2的点重合…),则数轴上表示﹣2019的点与圆周上表示数字的点重合.三、计算题(每小题4分,共16分)19.(1)53--8-+)((2))16(944981--÷⨯÷第16题第17题第18题(3))()(24-43-61-83⨯ (4))31(62--1-24-⨯+)(四、计算与化简(20题每小题5分,21题6分,共16分) 20.化简下列各式:(1)a a a a 655322+-- (2))2(3)(622m n n m +--21.先化简再求值:)3(2)3(52222y x xy xy y x +--,其中1,21-=-=y x .五、解答题(共32分) 22.(8分)某水泥厂仓库6天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库): +50、﹣45、﹣33、+48、﹣49、﹣36.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费?23.(7分)观察下列等式(1)13=×12×22;(2)13+23=×22×32;(3)13+23+33=×32×42;(4)13+23+33+43=×42×52;…根据上述等式的规律,解答下列问题:(1)写出第5个等式:;(2)写出第n个等式(用含有n的代数式表示):;(3)设t是正整数且t≥2,应用你发现的规律,化简:×t 2×(t +1)2﹣×(t﹣1)2×t 2.24.(8分)拖拉机油箱储油60.5L,在正常情况下,拖拉机工作1h耗油5.5L,(1)工作th后油箱内还剩多少L油?(2)利用(1)的结果分别计算拖拉机工作4.5h,6h后油箱内剩油量;(3)这台拖拉机最多能工作多少h?25.(9分)在数轴上,若点C到点A的距离恰好是3,则称点C为点A的“幸福点”;若点C 到点A,B的距两之和为6,则称点C为点A,B的“幸福中心”.(1)如图1,点A表示的数是﹣1,则点A的“幸福点”C表示的数是.(2)如图2,点M表示的数是﹣2,点N表示的数是4,若点C为点M,N的“幸福中心”,则点C表示的数可以是(填一个即可);(3)如图3,点A表示的数是﹣1,点B表示的数是4,点P表示的数是8,点Q从点P出发,以2单位/s的速度沿数轴向左运动,经过多少时间点Q是点A,B的“幸福中心”?七年级期中质量调研数学参考答案及评分建议一、选择题(每小题2分,共16分)二、填空题(每小题2分,共20分)9. 低于海平面30米 10.⑤ 11.> , > 12.7105.5⨯ 13.11 14.-1 15.7 16.6 17.2222a a π-18.2三、计算题(每小题4分,共16分,分步积分)19.(1)原式538-++=---------------2分 (2))161(949481-⨯⨯⨯-=----------2分 0=-------------------- -----4分 1=--------------------------------------4分(3)原式1849++-=------ ------3分 (4)241---=-----------------------3分 13=--------------------------- -----4分 7-=---------------------------------4分四、计算与化简(20、21每小题5分,22题6分,共16分)20(1)原式a a a a 655322+--=--------2分 (2)226366m n n m ---=----------2分a a +-=22 ------------------5分 n 9-=-------------------------------5分 21.原式2279xy y x -=---------------------------4分当1,21-=-=y x 时,原式45=--------------6分 五、解答题(共32分) 22.解:(1)+50+(﹣45)+(﹣33)+(+48)+(﹣49)+(﹣36)=50﹣45﹣33+48﹣49﹣36 =﹣65吨答:仓库里的水泥减少了,减少了65吨;---------------------3分 (2)200﹣(﹣65)=265(吨)答:6天前,仓库里存有水泥265吨;-------------------------------5分 (3)(|+50|+|﹣45|+|﹣33|+|+48|+|﹣49|+|﹣36|)×5 =261×5 =1305(元)答:这6天要付1305元的装卸费.----------------------------8分23.解:(1)第5个等式为13+23+33+43+53=×52×62,-------2分 (2)第n 个等式为13+23+33+43+…+n 3=×n 2×(n +1)2;----4分 (3)原式=13+23+33+43+…+t 3﹣[13+23+33+43+…+(t ﹣1)3] =13+23+33+43+…+t 3﹣13﹣23﹣33﹣43﹣…﹣(t ﹣1)3=t 3.-------------------------------------------------------------------------7分24.解:(1)工作th 后油箱内还剩油(60.5﹣5.5t )L ;------------------2分 (2)当t =4.5h 时:60.5﹣5.5×4.5=35.75L ;------------------4分 当t =6h 时:60.5﹣5.5×6=27.5L ;------------------6分 (3)当60.5﹣5.5t =0时,t =11h .------------------8分答:4.5h 后油箱内剩油量为35.75L ,6h 后油箱内剩油量为27.5L ,这台拖拉机最多能工作11h . 25.⑴ -4或2, ⑵ 正确即可 (每空2分,共4分)(3)Q 是A 和B 的幸福中心,Q 应该在数4.5和数-1.5表示的点处,因此 ①75.125.48=- ②75.425.18=)-(-故当经过1.75秒或4.75秒时,Q 是A 和B 的幸福中心.---------------9分。