计量经济学(古扎拉蒂)第二课课后习题答案

合集下载

古扎拉蒂《计量经济学基础》第2章

古扎拉蒂《计量经济学基础》第2章
国内外经典教材名师讲堂
古扎拉蒂 《计量经济学基础》
第二章 双变量回归分析: 一些基本思想
主讲老师:李庆海
2.1 本章要点
●一些基本概念 ●总体回归函数 ●“线性”函数的定义 ●PRF的随机设定 ●随机干扰项的意义
●样本回归函数
2.2 重难点导学
一、一些基本概念
条件概率:给定X的Y的概率,记为P(Y|X)。
条件均值(如图2-1所示)
Y
条件均值
149 101 65
E(Y|Xi)
80
140 220
X
图2-1 总体回归线
总体回归曲线
思考:给定一个X,就对应一个(惟一 的)E(Y|X)。因此,(X,E(Y|X))可以 表示成平面上的一个点。 总体回归曲线(Popular Regression Curve):Y的条件均值的轨迹。即Y对X的回 归。 总体回归曲线的几何意义:当解释变量给 定值时因变量的条件期望值的轨迹。
已知给定X=1,Y取5个不同的值:1、2、3、4、
5。 问:Y取每个值的概率有多大?
古典概率模型:取每个值的概率相等。因此有:
P(Y=1|X=1)=1/5; P(Y=2|X=1)=1/5;
P(Y=3|X=1)=1/5;
P(Y=4|X=1)=1/5; P(Y=5|X=1)=1/5;
词总是指对参数为线性的一种回归(即参数
只以它的1次方出现)。
Y= 1+2X+u, lnY= 1+2lnX+u 是线性的!
Y= 1ln(2X+u)不是线性的!
模型对参数为线性?
模型对变量为线性?

不是

LRM
LRM
不是
NLRM

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解
3.经济统计学的问题,主要是收集、加工并通过图表的形式来展现经济数据。但是,经济统计学家不考虑怎样利用所收集来的数据去检验经济理论。
三、计量经济学方法论
大致说来,传统的计量经济学方法论按如下路线进行:
1.理论或假说的陈述;
2.理论的数学模型设定;
3.统计或计量经济模型设定;
4.获取数据;
5.计量经济模型的参数估计;
理论计量经济学是要找出适当的方法,去测度由计量经济模型设定的经济关系。为此,计量经济学家非常依赖于数理统计。
在应用计量经济学中,利用理论计量经济学工具去研究经济学或管理学中的某些特殊领域。
0.2
本章没有课后习题。本章是全书的一个引言,对计量经济学这门学科作一个简要介绍。对于本章内容,学员简单了解即可。
(3)在问卷调查中,无应答的问题也可能相当严重。
(4)获取数据的抽样方法可能变化很大,要比较不同样本得来的结果常常非常困难。
(5)通常获得的经济数据都是高度加总的。
(6)由于保密性质,某些数据只能以高度加总的形式公布。
研究结果不可能比数据的质量更好。所以,如果在一定情况下,研究者发现研究的结果“不能令人满意”的话,原因不一定是误用模型,而是数据的质量不好。
4.名义尺度
此类变量不具备比率尺度变量的任何一个特征。因此适合于比率尺度变量的计量经济方法可能不适合于名义尺度变量。
1.2
1.表1-1给出了7个工业化国家的消费者价格指数(CPI)数据,以1982~1984年为该指数的基期并令1982—1984=100。
1.经济理论所作的陈述或假说大多数是定性的。计量经济学家的工作就是要提供这一数值估计。换言之,计量经济学对大多数的经济理论赋予经验内容。
2.数理经济学的主要问题,是要用数学形式(方程式)来表述经济理论,而不管该理论是否可以量化或是否能够得到实证支持。计量经济学家常常使用数理经济学家所提供的数学方程式,但要把这些方程式改造成适合于经验检验的形式。这种从数学方程到计量经济方程的转换需要有许多的创造性和实际技巧。

计量经济学古扎拉蒂课后答案

计量经济学古扎拉蒂课后答案

计量经济学古扎拉蒂课后答案【篇一:计量经济学考试习题及答案】双对数模型 lny?ln?0??1lnx??中,参数?1的含义是()a.y关于x的增长率b.y关于x的发展速度c. y关于x的弹性d. y关于x 的边际变化2、设k为回归模型中的参数个数,n为样本容量。

则对多元线性回归方程进行显著性检验时,所用的f统计量可表示为()ess(/n?k)r2/(k?1)b. a.2rss(/k?1)(1?r)(/n?k)ess(/k?1)r2(/n-k)d.c. tss(/n?k)(1?r2)(/k?1)3、回归模型中具有异方差性时,仍用ols估计模型,则以下说法正确的是()a. 参数估计值是无偏非有效的b. 参数估计量仍具有最小方差性c. 常用f 检验失效d. 参数估计量是有偏的4、利用德宾h检验自回归模型扰动项的自相关性时,下列命题正确的是()a. 德宾h检验只适用一阶自回归模型b. 德宾h检验适用任意阶的自回归模型c. 德宾h 统计量渐进服从t分布d. 德宾h检验可以用于小样本问题5、一元线性回归分析中的回归平方和ess的自由度是()a. nb. n-1c. n-kd. 16、已知样本回归模型残差的一阶自相关系数接近于1,则dw统计量近似等于( )a. 0b. 1 c. 2 d. 47、更容易产生异方差的数据为 ( )a. 时序数据b. 修匀数据c. 横截面数据d. 年度数据8、设m为货币需求量,y为收入水平,r为利率,流动性偏好函数为?2分别是?1 、?2的估计值,则根据经济理m??0??1y??2r??,又设?1、论,一般来说(a )a. ?1应为正值,?2应为负值b. ?1应为正值,?2应为正值c. ?1应为负值,?2应为负值d. ?1应为负值,?2应为正值9、以下选项中,正确地表达了序列相关的是()a.co(v?i,?j)?0,i?jb.co(v?i,?j)?0,i?j ??????????vxi,?j)?0,i?j c.cov(xi,xj)?0,i?jd.co(10、在一元线性回归模型中,样本回归方程可表示为()a. yt??0??1??tb.yt?e(yt/x)??ic. yt??0??1xtd. e(yt/xt)??0??1xt11、对于有限分布滞后模型 ???yt????0xt??1xt?1??2xt?2????kxt?k??t在一定条件下,参数?i 可近似用一个关于i的阿尔蒙多项式表示(i?0,1,2,?,m),其中多项式的阶数m必须满足() ?a.mk b.m=kc.mkd.m?k12、设?t为随机误差项,则一阶线性自相关是指()a.cov(?t,?s)?0(t?s) b. ?t???t?1??tc. ?t??1?t?1??2?t?2??td. ?t??2?t?1??t13、把反映某一总体特征的同一指标的数据,按一定的时间顺序和时间间隔排列起来,这样的数据称为()a. 横截面数据b. 时间序列数据c. 修匀数据d. 原始数据14、多元线性回归分析中,调整后的可决系数r与可决系数r2之间的关系()22n?122a.?1?(1?r) b. ?r n?k22n?k2 c. ?0 d. ?1?(1?r) n?115、goldfeld-quandt检验法可用于检验( )a.异方差性b.多重共线性c.序列相关d.设定误差16、用于检验序列相关的dw统计量的取值范围是( )a.0?dw?1b.?1?dw?1c.?2?dw?2 d.0?dw?417、如果回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量的值为()a.不确定,方差无限大b.确定,方差无限大c.不确定,方差最小d.确定,方差最小18、应用dw检验方法时应满足该方法的假定条件,下列不是其假定条件的为()a.解释变量为非随机的b.被解释变量为非随机的c.线性回归模型中不能含有滞后内生变量d.随机误差项服从一阶自回归二、多项选择题1、古典线性回归模型的普通最小二乘估计量的特性有()a. 无偏性b. 线性性c. 最小方差性d. 不一致性e. 有偏性2、如果模型中存在自相关现象,则会引起如下后果()a.参数估计值有偏b.参数估计值的方差不能正确确定c.变量的显著性检验失效d.预测精度降低e.参数估计值仍是无偏的????x的特点() ???3、利用普通最小二乘法求得的样本回归直线yt12ta. 必然通过点(,)b. 可能通过点(,)?的平均值与y?的平均值相等 c. 残差et的均值为常数 d. ytte. 残差et与解释变量xt之间有一定的相关性4、广义最小二乘法的特殊情况是()a.对模型进行对数变换 b.加权最小二乘法c.数据的结合d.广义差分法e.增加样本容量5、计量经济模型的检验一般包括内容有()a、经济意义的检验b、统计推断的检验c、计量经济学的检验d、预测检验e、对比检验三、判断题(判断下列命题正误,并说明理由)1、在实际中,一元回归几乎没什么用,因为因变量的行为不可能仅由一个解释变量来解释。

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(虚拟变量回归模型)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(虚拟变量回归模型)【圣才出品】

第9章虚拟变量回归模型9.1 复习笔记考点一:ANOVA模型★★★1.虚拟变量含义虚拟变量是指仅有0和1两个取值的变量,是一种定性变量。

一般而言,虚拟变量等于0表示变量不具有某种性质,等于1表示具有某种性质。

虚拟变量也可以放到回归模型中。

这种模型被称为方差分析(ANOVA)模型。

2.虚拟变量模型(1)虚拟变量的表达式Y i=β1+β2D2i+β3D3i+u i应看到,除了不是定量回归元而是定性或虚拟回归元(若观测值属于某特定组则取值为1,若它不属于那一组则取值0)之外,方程与前面考虑的任何一个多元回归模型都是一样的。

所有的虚拟变量都用字母D表示。

(2)使用虚拟变量的注意事项①若定性变量有m个类别,则只需引入m-1个虚拟变量,否则就会陷入虚拟变量陷阱,即完全共线性或完全多重共线性(若变量之间存在不止一个精确的关系)情形。

对每个定性变量而言,所引入的虚拟变量的个数必须比该变量的类别数少一个。

②不指定其虚拟变量的那一组被称为基组、基准组、控制组、比较组、参照组或省略组。

所有其他的组都与基准组进行比较。

③截距值(β1)代表了基准组的均值。

④附属于方程中虚拟变量的系数被称为级差截距系数,它反映取值为1的地区的截距值与基准组的截距系数之间的差别。

⑤如果定性变量不止一类,那么,基准组的选择完全取决于研究者。

⑥对于虚拟变量陷阱,如果在这种模型中不使用截距项,那么引入与变量的类别相同数量的虚拟变量就能够回避虚拟变量陷阱的问题。

因此,如果从方程中去掉截距项,并考虑如下模型Y i=β1D1i+β2D2i+β3D3i+u i由于此时没有完全共线性,所以就不会陷入虚拟变量陷阱。

但要确定做这个回归时,一定要使用回归软件包中的无截距选项。

⑦在一个含有截距的方程中,能更容易地处理是否有某个组与基准组有所不同以及有多大的不同,所以在方程中包括截距更方便。

为了检查分组是否得当,也可通过将虚拟变量的系数相对0做t检验(或者更一般地,对适当的虚拟变量系数集做一个F检验),就可以检验分类是否适当。

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(定性响应回归模型)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(定性响应回归模型)【圣才出品】

第15章定性响应回归模型15.1 复习笔记考点一:定性响应模型的性质★★定性响应模型是指模型中的回归子是一个二值或二分变量的模型,通常被称为概率模型。

回归子也可以是多分响应变量或多类型响应变量。

将二值响应变量建立成概率模型的方法包括线性概率模型(LPM)、logit模型、probit模型和tobit模型。

考点二:线性概率模型(LPM)★★★★1.LPM的定义以下述回归模型为例说明:Y i=β1+β2X i+u i。

其中X表示家庭收入;Y=1,则表示该家庭拥有住房;Y=0,则该家庭不拥有住房。

该模型被称为线性概率模型,因为Y i在给定X i下的条件期望E(Y i|X i)可解释为在给定X i下事件(家庭拥有住房)发生的条件概率,即Pr(Y i=1|X i)。

2.LPM的特征令P i表示“Y i=1”(即事件发生)的概率,而1-P i表示“Y i=0”(即事件不发生)的概率,则变量Y i服从贝努利概率分布。

根据期望的定义,有:E(Y i)=0(1-P i)+1P i=P i。

此外有:E(Y i|X i)=β1+β2X i =P i,即模型的条件期望事实上可以解释为Y i的条件概率。

该模型的约束条件为:0≤E(Y i|X i)≤1。

3.LPM的问题(1)干扰项u i的非正态性若把方程写成:u i=Y i-β1-β2X i,u i的概率分布见表15-1。

表15-1 u i的概率分布可见u i服从贝努利分布而不是正态分布。

虽然干扰项不满足正态性假定,但OLS的点估计值仍具有无偏性。

此外在大样本下,OLS估计量一般都趋于正态分布,因此LPM的统计推断仍可用正态性假定下的OLS程序。

(2)干扰项的异方差性即使LPM中的干扰项满足零均值和无序列相关性假定,但也不能说它具有同方差性。

对于贝努利分布,理论上的均值和方差分别为P和P(1-P),可见方差是均值的函数,而均值的取值依赖于X的值,因此LPM中的干扰项具有异方差性。

计量经济学第2章习题参考答案

计量经济学第2章习题参考答案
ˆt = a ˆ0 + a ˆ1 + yt 却是两个完全不同的回归方程。③回归分析对资料的要求是:被解释变 和x
量 y 是随机变量, 解释变量 x 是非随机变量, 相关分析对资料的要求是两个变量都是随机变 量。 2. 答: 相关关系是指两个以上的变量的样本观测值序列之间表现出来的随机数学关系, 用相关 系数来衡量。 因果关系是指两个或两个以上变量在行为机制上的依赖性, 作为结果的变量是由作为原因的 变量所决定的, 原因变量的变化引起结果变量的变化。 因果关系有单向因果关系和互为因果 关系之分。 具有因果关系的变量之间一定具有数学上的相关关系。 而具有相关关系的变量之间并不一定 具有因果关系。 3. 答:主要区别:①描述的对象不同。总体回归模型描述总体中变量 y 与 x 的相互关系,而样 本回归模型描述所观测的样本中变量 y 与 x 的相互关系。 ②建立模型的不同。 总体回归模型 是依据总体全部观测资料建立的, 样本回归模型是依据样本观测资料建立的。 ③模型性质不 同。总体回归模型不是随机模型,样本回归模型是随机模型,它随着样本的改变而改变。 主要联系:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是 用来估计总体回归模型。
1 n ∑ ui = 0 ,因为 n i =1
前者是条件期望,即针对给定的 X i 的随机干扰的期望,而后者是无条件的平均值,即针对 所有 X i 的随机干扰取平均值。
二、单项选择题 1. A 2. D 3. A 4. B 5. C 6. B 7. D 8. B 9. D 10. C 11. D 12. D 13. C
14. D 15. D 16. A 17. B
三、多项选择题 1. ACD 2. ABE 3. AC 4. BE 5. BEFH 6. DG, ABCG, G, EF 7. ABDE 8. ADE 9. ACDE

《计量经济学(第二版)》习题解答(1-2章)

《计量经济学(第二版)》习题解答(1-2章)
2
(3) Cov( yi , y j ) 0 证:
(i j )
(1) E ( yi ) E (a bxi i ) E (a bxi ) E ( i ) a bxi (2) D( yi ) D(( a bxi i ) D( i ) 2 (因为根据古典假定, a bxi 为常量)
-4-
(2) b1、b2 的置信区间都不包含 0,其概率含义为:b1、b2 都显著地不等于 0,该推断的置信概率为 95%。
《计量经济学(第二版) 》习题解答
第一章
1.1 计量经济学的研究任务是什么?计量经济模型研究的经济关系有哪两个基本特征? 答: (1)利用计量经济模型定量分析经济变量之间的随机因果关系。 (2)随机关系、因果关系。
1.2 试述计量经济学与经济学和统计学的关系。 答: (1)计量经济学与经济学:经济学为计量经济研究提供理论依据,计量经济学是对经济理论的 具体应用,同时可以实证和发展经济理论。 (2)统计数据是建立和评价计量经济模型的事实依据, 计量经济研究是对统计数据资源的深层开发和利用。
ˆ) 。 ˆ 与 b 之间的绝对误差不会大于 t S (b 即能以 1 的概率保证: b /2
2.7 试根据置信区间的概念解释 t 检验的概率含义。即证明,对于显著水平 ,当 | ti | t / 2 时,bi 的 100(1- )%置信区间不包含 0。
ˆ t S (b ˆ ), 答:因为 bi 的 100(1- )%置信区间为: (b i /2 i
ˆ) 元回归为例) S (b
ˆ 2 / S xx 可知,两者正相关,即总体方差越小,参数估计误差越小。
(3) 随机误差项ε i 与残差项 ei 的区别与联系; 答:区别:随机误差项描述的是 y 关于总体回归方程的误差,而残差项度量的是 y 关于样本回归方 程的误差。联系:由于两者都是反映模型之外其他因素的综合影响,所以,可以将 ei 视为ε 似估计。 (4) 根据最小二乘原理,所估计的模型已经使得拟合误差达到最小,为什么还要讨论模型 的拟合优度问题? 答:根据最小二乘原理,只能保证模型的绝对拟合误差达到最小,而拟合优度可以度量模型的相对 拟合误差大小,即模型对数据(客观事实)的近似程度。 (5) R2 检验与 F 检验的区别与联系; 答:区别:R2 检验是关于模型对样本拟合优度的检验,F 检验是关于模型对总体显著性的检验。联 系:F 检验是关于 R2 的显著性检验。 (6) 高斯—马尔可夫定理的条件与结论;

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解
表1-3九国汇率:1985~2006
资料来源:EconomicReport ofthe President,2007,Table13-110,P.356.
答:a.把汇率的对数作为纵轴并把时间作为横轴进行描点,如图1-4所示,汇率的波动性很大。比如,在1985年,1美元只能兑换0.257比索,但到了2004年,它能兑换约11.29比索。
三、回归与因果关系
从逻辑上说,回归得到的统计关系式本身不可能意味着任何因果关系。肯德尔和斯图亚特认为,一个统计关系式永远不能确立因果方面的联系:对因果关系的理念,必须来自统计学以外的某种理论。
四、回归与相关
1.相关分析与相关系数
相关分析是以测度两个变量之间的线性关联程度为其主要目的。
相关系数是用来测度线性关联强度的。
6.01
1986
1.86
4.13
0.67
2.53
-0.10
6.11
3.42
1987
3.65
4.32
0.00
3.24
0.19
4.59
4.18
1988
4.14
4.05
0.67
2.73
1.33
4.99
4.93
1989
4.82
4.95
2.27
3.46
2.73
6.59
7.72
1990
5.40
4.80
3.15
3.34
-0.08
1.78
1.83
5.37
3.36
1996
2.95
1.59
0.08
2.02
1.50
3.87
2.46
1997
2.29

计量经济学课后答案

计量经济学课后答案

计量经济学课后答案计量经济学课后答案导论部分:1.计量经济学是研究经济现象和经济政策的数量分析方法,通过运用数学和统计学的工具,以实证分析为基础,对经济理论进行检验和推断。

它旨在解决经济学中的因果问题,即经济变量之间的因果关系,以及如何进行有效的经济政策评估。

2.计量经济学的研究方法主要包括建立经济模型、数据收集、数据处理、模型估计与检验等步骤。

经济模型是对经济现象进行理论化的抽象,通过建立适当的假设和约束条件,可以帮助我们理解经济系统的运行规律。

数据收集则是通过收集相关的经济数据,来描述和分析经济现象的特征和变动。

数据处理是对收集到的数据进行整理和清洗,以获得可用于进一步分析的数据集。

模型估计与检验是对建立的经济模型进行参数估计和假设检验,以得到经济变量之间关系的具体度量与统计显著性。

3.计量经济学的数据要素主要包括观察单位、时间间隔和经济变量。

观察单位是指研究对象的经济主体,可以是个人、家庭、企业、产业、国家等。

时间间隔是指研究对象的观察周期,可以是日、月、季度、年等。

经济变量是指用来度量经济现象的变量,如GDP、失业率、通胀率等。

简单线性回归模型:1.简单线性回归模型是最基本的计量经济学模型之一,用于描述两个变量之间的线性关系。

模型的基本形式为:Y_i= β_0 + β_1*X_i + u_i,其中Y_i是因变量,X_i是自变量,β_0和β_1是模型的参数,u_i是误差项。

2.模型参数的估计通常使用最小二乘法进行。

最小二乘法的思想是通过最小化实际观测值与模型预测值之间的差异,来估计模型的参数。

最小二乘估计量β̂_0和β̂_1可以通过求解最小化残差平方和的正规方程来得到。

3.模型参数的显著性检验是计量经济学中常用的假设检验方法,用于检验模型参数是否具有统计显著性。

常见的检验方法包括t检验和F检验。

t检验用于检验单个参数的显著性,而F检验用于检验多个参数的整体显著性。

4.模型的拟合优度可以通过确定系数R^2来度量。

计量经济学 第二版 课后习题1-14章 中文版答案汇总

计量经济学 第二版 课后习题1-14章 中文版答案汇总
β1的99%置信区间为[ -2.58SE( ), +2.58SE( )],其中 =13.9,SE( )=2.5
7.45≤β1≤20.35
即SmallClass对测试成绩效应99%的置信区间为[7.45,20.35]。
6.
(1)不一定。没有资料表明大班与小班的测试成绩变异是否相同。
(2)5.3式既适应于同方差,也适应于异方差,所以不会影响置信区间的准正确性。
(4)β0的99%置信区间为[ -2.58SE( ), +2.58SE( )]
=-520.4,SE( )=20.4
467.7≤β0≤573.0
2.
(1)性别差距估计值= =$2.12/h
(2)H0:性别差距=β1=0;H1:性别差距=β1≠0
t= = =5.89
p=2 (- )=2 (-5.89)=2×[1- (5.89)]<2×(1-0.9999)=0.0001
=49+0.24×120=77.8
=49+0.24×150=85
② =10ΔXi=10×0.24=2.4
第五章
习题
1.
(1)β1的95%置信区间为[ -1.96SE( ), +1.96SE( )]
=-5.82,SE( )=2.21
-10.152≤β1≤-1.4884
(2)t= = =-2.6335
p=2 (- )=2 (-2.6335)=2×[1- (2.6335)]≈2×(1-0.)=0.<0.01<0.05
(2)经济发展水平高的县,犯罪率会相对提高,同时也增大警察力量。但在遗漏经济发展水
平情况下,经济发展水平提高带来的犯罪率上升,会被归咎到警察力量上面来,所以高

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(自相关:误差项相关会怎么样?)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(自相关:误差项相关会怎么样?)【圣才出品】
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 12 章 自相关:误差项相关会怎么样? 12.1 复习笔记
考点一:自相关问题癿性质 ★★★ 1.定义 自相关定义为“按时间(如在时间序列数据中)戒空间(如在横截面数据中)排序癿观 测序列各成员乊间癿相关”。若存在自相关,则用符号表示为:E(uiuj)≠0(i≠j)。 2.可能模式 自相关和无自相关癿一些可能模式,如图 12-1 所示。图 12-1(a)到图 12-1(d)中, 残差项随着时间发化表现出明显癿觃律性,本期癿残差和上期癿残差存在一定癿关联性。而 图 12-1(e)则没有明显癿关联,是非自相关模式。
4.自相关出现时癿 BLUE
利用双发量模型幵假定 AR(1)过程,可以证明 β2 癿 BLUE 估计量由下式给出:
ˆ2GLS
n t2
xt xt1
yt yt1 C
n t2
xt xt1
2
其中 C 是一校正因子,在实际中可以忽略。注意下标从 t=2 发到 t=n。从而斱差是:
var ˆ2GLS

2.德宾-沃森d 检验 (1)d 统计量癿一些基本假定 ①回弻含有截距项;
斱差不相关系数和跨度期数 s 相关。
斱程表明,在 AR(1)模式下,ut 癿斱差仍是同斱差癿,但 ut 丌仁不其过去一期癿值
相关,而丏不过去几期癿值也相关。若 ρ=1,上述斱差和协斱差都没有定义。若|ρ|<1,
斱程中给出癿 AR(1)过程是平稳癿,此时残差项癿均值和斱差丌发,协斱差癿值将随着
两个误差癿时间间隑越进而越小。
3.AR(1)模式癿估计结果
回到双发量回弻模型:Yt=β1+β2Xt+ut。在 AR(1)模式下,估计量癿斱差为:
var ˆ2 AR1

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(双变量回归分析:一些基本思想)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(双变量回归分析:一些基本思想)【圣才出品】

第2章双变量回归分析:一些基本思想2.1 复习笔记考点一:总体回归函数相关概念★★★★1.条件期望函数(CEF)条件期望值E(Y|X i)是关于X i的一个函数,其中X i是X的某个给定值,用符号表示:E(Y|X i)=f(X i)。

该式也被称为条件期望函数(CEF)或总体回归函数(PRF),或简称为总体回归(PR),表明在给定X i下Y的分布的(总体)均值与X i有函数关系。

2.线性总体回归函数假定总体回归函数E(Y|X i)是系数的线性函数,表达为:E(Y|X i)=β1+β2X i。

其中β1和β2为未知但却固定的参数,称为回归系数;β1和β2也分别称为截距和斜率系数。

方程本身则称为线性总体回归函数,或简称线性总体回归。

3.“线性”的含义(1)对变量为线性Y的条件期望值是X i的线性函数。

从几何意义上说,这时回归曲线是一条直线。

(2)对参数为线性Y的条件期望E(Y|X i)是参数β的一个线性函数,X和Y都可以以任何形式存在(二次项、对数等)。

本书中所有的“线性回归”总是指对参数β为线性的一种回归(即参数只以它的一次方出现)。

4.PRF的随机设定(1)随机误差项个别的Y i围绕它的期望值的离差为:u i=Y i-E(Y|X i),其中离差u i是一个不可观测的可正可负的随机变量,称为随机干扰项或随机误差项。

解释方程Y i=E(Y|X i)+u i,给定X i水平,Y i可表示为两个成分之和:E(Y|X i)被称为系统性或确定性成分;u i为随机或非系统性成分。

(2)随机误差项的条件均值方程Y i=E(Y|X i)+u i的两边取期望,得到:E(Y i|X i)=E[E(Y|X i)|X i]+E(u i|X i)=E(Y|X i)+E(u i|X i)因为E(Y i|X i)=E(Y|X i),则E(u i|X i)=0。

5.随机干扰项的意义不将随机误差项清晰地引进模型中的原因:(1)理论的含糊性;(2)数据的欠缺;(3)核心变量与周边变量;(4)人类行为的内在随机性;(5)糟糕的替代变量;(6)节省原则;(7)错误的函数形式。

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(双变量回归模型:估计问题)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(双变量回归模型:估计问题)【圣才出品】

6.假定 6:观测次数 n 必须大亍待估计的参数个数。
7.假定 7:X 发量的性质。 (1)在一个给定的样本中,X 的叏值必须要有发异,即 var(X)是有限的正数。 (2)为了避免回归结果叐到异常观测值的支配,X 发量的叏值没有异常,即没有一个 X 值相对余观测而言过大戒过小。
3.假定 3:干扰项 ui 的均值为零,即 E(ui|Xi)=0。 此假定是所选回归模型中丌存在设定偏误的另一种表述,该假定意味着模型设定中丌存 在遗漏重要发量、包含丌必要发量和错误函数形式的情况。E(ui|Xi)=0 同时也意味着这 两个发量乊间无关,ui 是一个外生的发量。若 X 是非随机的,E(ui)=0。
Yi=β1+β2Xi+ui
由亍 PRF 无法直接观测,可通过样本回归斱程 SRF 去估计:





Yi=β1+β2Xi+ui=Yi+ui




所以:ui=Yi-Yi=Yi-β1-β2Xi。
选择残差平斱和尽可能小的 SRF,即最小化下式:




∑ui2=∑(Yi-Yi)2=∑(Yi-β1-β2Xi)2
ˆ2 n
n
Yi X i
X
2 i
Xi
Yi
n
Xi X
Yi Y
2
2
Xi
n Xi X
xi yi xi2
__
_
_
其中X和Y是 X 和 Y 的样本均值,幵且定义 xi=Xi-X和 yi=Yi-Y,可得:
ˆ1 n
X
2 i
Yi
n
X
2 i
Xi
X iYi
2
Y ˆ2 X

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(计量经济建模:模型设定与诊断检验)【圣才出品】

古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(计量经济建模:模型设定与诊断检验)【圣才出品】

第13章计量经济建模:模型设定与诊断检验13.1 复习笔记考点一:模型选择准则和设定误差★★★1.模型的选择准则(1)数据容纳性;(2)与理论一致;(3)回归元的弱外生性;(4)表现出参数的不变性;(5)表现出数据的协调性;(6)模型有一定的包容性。

2.设定误差类型及解释(见表13-1)表13-1 设定误差类型及解释考点二:模型设定误差的后果★★★★1.模型拟合不足(漏掉一个有关变量)假如真实模型是:Y i=β1+β2X2i+β3X3i+u i。

但出于某种原因拟合了如下模型:Y i=α1+α2X2i+v i。

漏掉X3的后果将是:(1)如果放弃或漏掉的变量X3与变量X2两变量的相关系数r23非零,则α∧1和α∧2是有偏误且非一致的。

此时E(α∧1)≠β1,E(α∧2)≠β2,而且这种偏误不会随着样本容量的增大而消失。

(2)即使X2与X3不相关(r23=0),尽管α∧2现在是无偏的,但α∧1是有偏的。

(3)由于误差项包含了X3的信息,方差σ2将被不正确地估计。

(4)计算的α∧2的方差σ2/∑x2i2,是真实估计量β∧2的方差的一个有偏误的估计量。

(5)通常的置信区间和假设检验程序对于所估计参数的统计显著性容易导出误导性的结论。

(6)基于不正确模型做出的预测及预测(置信)区间都是不可靠的。

2.包含一个无关变量(模型拟合过度)假定:Y i=β1+β2X2i+u i是真实模型,但拟合了以下模型:Y i=α1+α2X2i+α3X3i+v i,从而导致了在模型中引入一个无关变量的设定误差。

这一设定误差将导致如下后果:(1)“不正确”模型中全部参数的OLS估计量都是无偏而又一致的,即E(α∧1)=β1,E(α∧2)=β2,和E(α∧3)=β3=0。

(2)误差方差σ2的估计是正确的。

(3)置信区间和假设检验程序仍然有效。

(4)一般地说,各个系数的估计量将是非有效的,也就是说,它们的方差一般都大于真实模型中β∧的方差。

计量经济学2答案

计量经济学2答案

第二章 简单线性回归模型一、单项选择题:1、回归分析中定义的( B )。

A 、解释变量和被解释变量都是随机变量B 、解释变量为非随机变量,被解释变量为随机变量C 、解释变量和被解释变量都为非随机变量D 、解释变量为随机变量,被解释变量为非随机变量2、最小二乘准则是指使( D )达到最小值的原则确定样本回归方程。

A 、1ˆ()n t t t Y Y =-∑B 、1ˆn t t t Y Y =-∑C 、ˆmax t t Y Y -D 、21ˆ()n t t t Y Y =-∑ 3、下图中“{”所指的距离是( B )。

A 、随机误差项i 、ˆiY 的离差 4、参数估计量ˆβ是i Y 的线性函数称为参数估计量具有( A )的性质。

A 、线性 B 、无偏性 C 、有效性 D 、一致性5、参数β的估计量βˆ具备有效性是指( B )。

A 、0)ˆ(=βVarB 、)ˆ(βVar 为最小C 、0ˆ=-ββD 、)ˆ(ββ-为最小6、反映由模型中解释变量所解释的那部分离差大小的是( B )。

A 、总体平方和B 、回归平方和C 、残差平方和D 、样本平方和7、总体平方和TSS 、残差平方和RSS 与回归平方和ESS 三者的关系是( B )。

A 、RSS=TSS+ESSB 、TSS=RSS+ESSC 、ESS=RSS-TSSD 、ESS=TSS+RSS8、下面哪一个必定是错误的( C )。

A 、 i i X Y 2.030ˆ+= ,8.0=XY r B 、 i i X Y 5.175ˆ+-= ,91.0=XY r C 、 i i X Y 1.25ˆ-=,78.0=XY r D 、 i i X Y 5.312ˆ--=,96.0-=XY r9、产量(X ,台)与单位产品成本(Y ,元/台)之间的回归方程为ˆ356 1.5Y X =-,这说明( D )。

A 、产量每增加一台,单位产品成本增加356元B 、产量每增加一台,单位产品成本减少1.5元C 、产量每增加一台,单位产品成本平均增加356元D 、产量每增加一台,单位产品成本平均减少1.5元10、回归模型i i i X Y μββ++=10,i = 1,…,25中,总体方差未知,检验010=β:H 时,所用的检验统计量1ˆ11ˆβββS -服从( D )。

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解

古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解关注薇公号-精研学习网-查找资料引言0.1复习笔记考点一:计量经济学概况★1计量经济学的定义计量经济学是以一定的经济理论为基础,运用数学、统计学方法,以建立经济计量模型为主要手段,定量分析研究具有随机性特性的经济变量关系的一门经济学学科。

计量经济学可定义为实际经济现象的数量分析。

这种分析基于理论与观测的并行发展,而理论与观测又通过适当的推断方法得以联系。

2研究对象和研究方法在一系列的假定条件下,计量经济学主要通过对经济数据的统计推断,研究经济定律的经验判定。

计量经济学的研究方法是,利用统计推断的理论和技术,以达到经济理论和实际测算相衔接的目的。

3计量经济学是一门单独的学科计量经济学是一门单独的学科,理由如下:(1)经济理论所作的陈述或假说大多数是定性的。

计量经济学提供了经济理论的数值估计,对大多数的经济理论赋予经验内容。

(2)数理经济学只用方程式表达经济理论,却未考虑实证检验问题。

计量经济学家对数学方程式进行改造,使其成为更适合于经验检验的形式。

(3)经济统计学主要收集、加工并通过图表的形式来展现经济数据,不考虑怎样利用所收集来的数据去检验经济理论。

计量经济学通过数据来检验经济理论。

考点二:计量经济学方法论★1计量经济学的方法论路线传统的计量经济学方法论大致按如下路线进行:(1)理论或假说的陈述;(2)理论的数学模型设定;(3)统计或计量经济模型设定;(4)获取数据;(5)计量经济模型的参数估计;(6)假设检验;(7)预报或预测;(8)利用模型进行控制或制定政策。

2计量经济学的类型计量经济学可划分为两大类:理论计量经济学和应用计量经济学。

在每一大类中按照估计方法逻辑又分为经典方法和贝叶斯方法。

理论计量经济学主要研究计量模型和计量方法,以求更精准测度由计量经济模型设定的经济关系。

应用计量经济学主要将理论计量经济学工具应用到经济学或管理学中的某些特殊领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档