HMC121G8中文资料

合集下载

CS5173GDR8G中文资料

CS5173GDR8G中文资料

1 CS5171/3 8
VC
VSW
FB
PGND
517xy ALYW
G
Test
AGND
SS
VCC
1 VC Test
CS5172/4 8
VSW PGND
517xy ALYW
G
NFB
AGND
SS
VCC
517xy
A L Y W G
= Device Code x= 1, 2, 3, or 4 y= E, G
= Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package
VC Low Clamp Voltage VC Threshold Oscillator Base Operating Frequency Reduced Operating Frequency Maximum Duty Cycle Base Operating Frequency Reduced Operating Frequency Maximum Duty Cycle NFB Frequency Shift Threshold FB Frequency Shift Threshold
VC tied to FB; measure at FB VC = 1.25 V FB = VREF NFB = NVREF VC = FB
1.246 −2.55 −1.0 −16

NFB Reference Voltage Line Regulation (CS5172/4 only)
VC = 1.25 V
♦ Industrial Grade: −40°C to 125°C ♦ Commercial Grade: 0°C to 125°C

美信芯片中文数据资料

美信芯片中文数据资料
DS1972
iButton 1024位EEPROM
DS1982
iButton 1K位只添加
DS1990A
iButton序列号
DS1990R, DS1990R-F3, DS1990R-F5
序列号iButton
DS1991
iButton多密钥
DS2129
LVD SCSI 27线调节器
DS2401
硅序列号
具有以太网和CAN接口的网络微控制器
DS8102
双通道Σ-Δ调制器与编码器
DS8113
智能卡接口
DS8113-KIT
DS8113 EMV评估板
DS8313, DS8314
智能卡接口
DS89C430, DS89C440, DS89C450
超高速闪存微控制器
DS89C450-KIT
DS89C450评估套件
12位、多通道ADC/DAC,带有FIFO、温度传感器和GPIO端口
MAX1224, MAX1225
1.5Msps、单电源、低功耗、真差分、12位ADC
MAX1258EVC16, MAX1258EVKIT
MAX1057、MAX1058、MAX1257和MAX1258评估板/评估系统
MAX1274, MAX1275
MAX1034, MAX1035
8/4通道、±VREF多量程输入、串行14位ADC
MAX1072, MAX1075
1.8Msps、单电源、低功耗、真差分、10位ADC
MAX1076, MAX1078
1.8Msps、单电源、低功耗、真差分、10位ADC,内置电压基准
MAX11014, MAX11015
DS9490B, DS9490R

HMC361S8G中文资料

HMC361S8G中文资料
Order Online at
元器件交易网
v02.1202 MICROWAVE CORPORATION
HMC361S8G
SMT GaAs HBT MMIC DIVIDE-BY-2, DC - 10.0 GHz
InpuGt SaeAnssitivMityMWICindSowU, TB=-2H5A°CRMONICALLY IPnpUuMt SPenEsDitivMityIWXiEndRow1v7s. T-e2m5perGatHurze
-20
-30
-40
-50 0 1 2 3 4 5 6 7 8 9 10 11 12 13
INPUT FREQUENCY (GHz)
Reverse Leakage, Pin= 0 dBm, T= 25 °C
0
Both Output Ports Terminated
-10
One Output Port Terminated
FREQ. DIVIDER & DETECTORS - SMT
Electrical Specifications, TA = +25° C, 50 Ohm System, Vcc= 5V
Parameter Maximum Input Frequency Minimum Input Frequency Input Power Range
Max.
0.5 +10 +2
Units GHz GHz dBm dBm dBm dBm dB dBc/Hz ps mA
10 - 8
For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 12 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373

HMC8121 E-Band Variable Gain Amplifier数据手册说明书

HMC8121 E-Band Variable Gain Amplifier数据手册说明书

81 GHz to 86 GHz,E-Band Variable Gain AmplifierData SheetHMC8121Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However , no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, N orwood, MA 02062-9106, U.S.A.Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved. Technical Support FEATURESGain: 22 dB typicalWide gain control range: 17 dB typicalOutput third-order intercept (OIP3): 27.5 dBm typicalOutput power for 1 dB compression (P1dB): 20 dBm typical Saturated output power (P SAT ): 21 dBm typical DC supply: 4 V at 265 mANo external matching requiredDie size: 3.599 mm × 1.369 mm × 0.05 mmAPPLICATIONSE-band communication systemsHigh capacity wireless backhaul radio systems Test and measurementGENERAL DESCRIPTIONThe HMC8121 is an integrated E-band, gallium arsenide (GaAs), pseudomorphic (pHEMT), monolithic microwave integrated circuit (MMIC), variable gain amplifier and/or driver amplifier that operates from 81 GHz to 86 GHz. The HMC8121 provides up to 22 dB of gain, 20 dBm output P1dB, 27.5 dBm of OIP3, and 21 dBm of P SAT while requiring only 265 mA from a 4 V power supply. Two gain control voltages (V CTL1 and V CTL2) are provided to allow up to 17 dB of variable gain control. The HMC8121 exhibits excellent linearity and is optimized for E-band communications and high capacity wireless backhaul radio systems. All data is taken with the chip in a 50 Ω test fixture connected via a 3 mil wide × 0.5 mil thick × 7 mil long ribbon on each port.FUNCTIONAL BLOCK DIAGRAMF I NV G G 1/V G G V D D 1V D D 2E N V D E TV C T L 1V C T L 2V G G V D D 3V G G V D D 4V G G V G G V D D 5V D D 6V R E FV D E TRFOUT13154-001Figure 1.HMC8121Data SheetRev. A | Page 2 of 16TABLE OF CONTENTSFeatures .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3 Absolute Maximum Ratings ............................................................ 4 Thermal Resistance ...................................................................... 4 ESD Caution .................................................................................. 4 Pin Configuration and Function Descriptions ............................. 5 Interface Schematics..................................................................... 6 Typical Performance Characteristics ..............................................7 Theory of Operation ...................................................................... 12 Typical Application Circuit ........................................................... 13 Assembly Diagram ..................................................................... 14 Mounting and Bonding Techniques for Millimeterwave GaAs MMICs ............................................................................................. 15 Handling Precautions ................................................................ 15 Mounting ..................................................................................... 15 Wire Bonding .............................................................................. 15 Outline Dimensions ....................................................................... 16 Ordering Guide .. (16)REVISION HISTORY2/16—Revision A: Initial VersionData SheetHMC8121Rev. A | Page 3 of 16SPECIFICATIONST A = 25°C, V DDx = 4 V , V CTLx = −5 V , unless otherwise noted. Table 1.ParameterMin Typ Max Unit OPERATING CONDITIONS RF Frequency Range 81 86 GHz PERFORMANCE Gain19 22 dB Gain Variation over Temperature 0.03 dB/°C Gain Control Range12 17 dB Output Power for 1 dB Compression (P1dB) 16 20 dBm Saturated Output Power (P SAT )21 dBm Output Third-Order Intercept (OIP3) at Maximum Gain 1 27.5 dBm Input Return Loss 12 dB Output Return Loss 10 dB POWER SUPPLYTotal Supply Current (I DD )2265 mA1 Data taken at power input (P IN ) = −10 dBm/tone, 1 MHz spacing.2Set V CTL1/V CTL2 = −5 V and then adjust V GG1/V GG2, V GG3, V GG4, V GG5, and V GG6 from −2 V to 0 V to achieve a total drain current (I DD ) = 265 mA.HMC8121Data SheetRev. A | Page 4 of 16ABSOLUTE MAXIMUM RATINGSTable 2.ParameterRating Drain Bias Voltage (V DD1 to V DD6)4.5 VGate Bias Voltage (V GG1/V GG2, V GG3 to V GG6) −3 V to 0 V Gain Control Voltage (V CTL1 and V CTL2)−6 V to 0 V Maximum Junction Temperature (to Maintain 1 Million Hours Mean Time to Failure (MTTF)) 175°CStorage Temperature Range −65°C to +150°C Operating Temperature Range−55°C to +85°CStresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.THERMAL RESISTANCETable 3. Thermal ResistancePackage TypeθJC 1 Unit 28-Pad Bare Die [CHIP]69.5 °C/W1Based on ABLEBOND® 84-1LMIT as die attach epoxy with thermal conductivity of 3.6 W/mK.ESD CAUTIONData SheetHMC8121Rev. A | Page 5 of 16PIN CONFIGURATION AND FUNCTION DESCRIPTIONS28272625242322212019181716151413121110987R F I NV G G 1/V G G 2V D D 1V D D 2E N V D E TV C T L 1V C T L 2V G G 3V D D 3V G G 4V D D 4V G G 5V G G 6V D D 5V D D 6V R E FV D E T123456RFOUT GND GNDG N DG N DG N DG N DG N DG N DG N DG N DHMC8121TOP VIEW (Not to Scale)13154-002Figure 2. Pad ConfigurationTable 4. Pad Function DescriptionsPad No. Mnemonic Description1, 3, 4, 6, 10, 13, 16, 19, 24, 27 GND Ground Connection (See Figure 3).2 RFIN RF Input. DC couple RFIN and match it to 50 Ω (see Figure 4). 5 RFOUT RF Output. DC couple RFOUT and match it to 50 Ω (see Figure 5).7 V DETDetector Voltage for the Power Detector (See Figure 6). V DET is the dc voltage representing the RF output power rectified by the diode, which is biased through an external resistor. Refer to the typical application circuit for the required external components (see Figure 38).8 V REFReference Voltage for the Power Detector (See Figure 6). V REF is the dc bias of the diode biased through an external resistor used for the temperature compensation of V DET . Refer to the typical application circuit for the required external components (see Figure 38).9, 12, 15, 18, 25, 26 V DD6 to V DD1 Drain Bias Voltage for the Variable Gain Amplifier (See Figure 7). For the required external components, see Figure 38.11, 14, 17, 20, 28 V GG6 to V GG3, V GG1/V GG2 Gate Bias Voltage for the Variable Gain Amplifier (See Figure 8). For the required external components, see Figure 38.21, 22V CTL2, V CTL1Gain Control Voltage for the Variable Gain Amplifier (See Figure 9). For the required external components, see Figure 38.23 ENV DET Envelope Detector (See Figure 10). For the required external components, see Figure 38. Die Bottom GNDGround. Die bottom must be connected to the RF/dc ground (see Figure 3).HMC8121Data SheetRev. A | Page 6 of 16INTERFACE SCHEMATICS13154-003Figure 3. GND InterfaceRFIN13154-004Figure 4. RFIN InterfaceRFOUT13154-005Figure 5. RFOUT InterfaceDET , V REF13154-006Figure 6. V DET , V REF InterfaceV DD6, V DD5, V DD4,V , V , V DD113154-007Figure 7. V DD6 to V DD1 InterfaceV GG6GG3,V GG1/V GG213154-008Figure 8. V GG6 to V GG3, V GG1/V GG2 InterfaceV CTL2CTL113154-009Figure 9. V CTL2, V CTL1 InterfaceDET13154-010Figure 10. ENV DET InterfaceData SheetHMC8121Rev. A | Page 7 of 16TYPICAL PERFORMANCE CHARACTERISTICSR E S P O N S E (d B )FREQUENCY (GHz)–30–20–1010203013154-011Figure 11. Broadband Gain and Return Loss Response vs. Frequency,V CTL1/V CTL2 = −5 V051015202530G A I N (d B )FREQUENCY (GHz)13154-012Figure 12. Gain vs. Frequency at Various Control Voltages–24–20–16–12–8–40R E T U R N L O S S (d B )FREQUENCY (GHz)81.081.582.082.583.083.584.084.585.085.586.013154-013Figure 13. Input Return Loss vs. Frequency at Various Temperatures,VCTL1/V CTL2 = −5 V 1012141618202224262830G A I N (d B )FREQUENCY (GHz)13154-014Figure 14. Gain vs. Frequency at Various Temperatures,V CTL1/V CTL2 = −5 V051015202530G A I N (d B )CONTROL VOLTAGE (V)13154-015Figure 15. Gain vs. Control Voltage at Various RF Frequencies–24–20–16–12–8–4R E T U R N L O S S (d B )FREQUENCY (GHz)13154-016Figure 16. Output Return Loss vs. Frequency at Various Temperatures,V CTL1/V CTL2 = −5 VHMC8121Data SheetRev. A | Page 8 of 16–30–25–20–15–10–50R E T U R N L O S S (d B )FREQUENCY (GHz)13154-017Figure 17. Input Return Loss vs. Frequency at Various Control Voltages–70–65–60–55–50–45–40I S O L A T I O N (d B )FREQUENCY (GHz)81.081.582.082.583.083.584.084.585.085.586.013154-033Figure 18. Reverse Isolation vs. Frequency at Various Temperatures,V CTL1/V CTL2 = −5 V1516171819202122232425P 1d B (d B m )FREQUENCY (GHz)13154-018Figure 19. Output P1dB vs. Frequency at Various Temperatures,V CTL1/V CTL2= −5 V –24–20–16–12–8–4R E T U R N L O S S (d B )FREQUENCY (GHz)81.081.582.082.583.083.584.084.585.085.586.013154-020Figure 20. Output Return Loss vs. Frequency at Various Control Voltages2021222324252627282930I P 3 (d B m )FREQUENCY (GHz)13154-019Figure 21. Output IP3 vs. Frequency at Various Temperatures,PIN = −10 dBm/Tone, V CTL1/V CTL2 = −5 V151617181920212223242581.081.582.082.583.083.584.084.585.085.586.0P S A T (d B m )FREQUENCY (GHz)13154-021Figure 22. P SAT vs. Frequency at Various Temperatures,V CTL1/V CTL2 = −5 VData SheetHMC8121Rev. A | Page 9 of 16048121620242832–5.0–4.5–4.0–3.5–3.0–2.5–2.0–1.5–1.0G A I N (d B ), I P 3(d B m )CONTROL VOLTAGE (V)13154-022Figure 23. Gain and Input/Output IP3 vs. Control Voltage,P IN = −10 dBm/Tone, RF = 81 GHz048121620242832G A I N (d B ), I P 3 (d B m )CONTROL VOLTAGE (V)13154-023Figure 24. Gain and Input/Output IP3 vs. Control Voltage,P IN = −10 dBm/Tone, RF = 83.5 GHz048121620242832G A I N (d B ), I P 3 (d B m )CONTROL VOLTAGE (V)13154-026Figure 25. Gain and Input/Output IP3 vs. Control Voltage,P IN = −10 dBm/Tone, RF = 86 GHz–20–15–10–5051015252085105125145165185205225245265G A I N (d B ), I P 3 (d B m )DRAIN CURRENT (mA)13154-024Figure 26. Gain and Input/Output IP3 vs. Drain Current, P IN = −5 dBm/Tone, V CTL1/V CTL2 = −1 V, RF = 81 GHz,Drain Current = (I DD1/I DD2 Fixed at 50 mA) + (I DD3 to I DD6 Swept)–20–15–10–5051015252085105125145165185205225245265G A I N (d B ), I P 3 (d B m )DRAIN CURRENT (mA)13154-027Figure 27. Gain and Input/Output IP3 vs. Drain Current, P IN = −5 dBm/Tone, V CTL1/V CTL2 = −1 V, RF = 83.5 GHz, Drain Current = (I DD1/I DD2 Fixed at 50 mA) + (I DD3 to I DD6 Swept)–20–15–10–5051015252085105125145165185205225245265G A I N (d B ), I P 3 (d B m )DRAIN CURRENT (mA)13154-025Figure 28. Gain and Input/Output IP3 vs. Drain Current, P IN = −5 dBm/Tone, V CTL1/V CTL2 = −1 V, RF = 86 GHz,Drain Current = (I DD1/I DD2 Fixed at 50 mA) + (I DD3 to I DD6 Swept)HMC8121Data SheetRev. A | Page 10 of 16–20–15–10–50510G A I N (d B )FREQUENCY (GHz)13154-028Figure 29. Gain vs. Frequency at Various Drain Currents,P IN = −5 dBm/Tone, V CTL1/V CTL2 = −1 V,Drain Current = (I DD1/I DD2 fixed at 50 mA) + (I DD3 to IDD6 Swept)23025027029031033035004812162024I D D (m A )P O U T (d B m ), G A I N (d B ),P A E (%)INPUT POWER (dBm)13154-032Figure 30. P OUT , Gain, PAE, and I DD vs. Input Power,V CTL1/V CTL2 = −5 V, RF = 83.5 GHz0.0010.010.1110V R E F – V D E T (V )OUTPUT POWER (dBm)13154-031Figure 31. Detector Output Voltage (V REF – V DET ) vs. Output Power atVarious RF Frequencies, V CTL1/V CTL2= −5 V23025027029031033035004812162024–15–13–11–9–7–5–3–113I D D (m A )P O U T (d B m ), G A I N (d B ),P A E (%)INPUT POWER (dBm)13154-029Figure 32. P OUT , Gain, PAE, and I DD vs. Input Power,V CTL1/V CTL2= −5 V, RF = 81 GHz23025027029031033035004812162024I D D (m A )P O U T (d B m ), G A I N (d B ),P A E (%)INPUT POWER (dBm)13154-030Figure 33. P OUT , Gain, PAE, and I DD vs. Input Power,V CTL1/V CTL2 = −5 V, RF = 86 GHz00.050.100.150.200.250.300.350.40–20–18–16–14–12–10–8–6–4P E A K -T O -P E A K O U T P U T V O L T A G E (V )TOTAL INPUT POWER (dBm)13154-134Figure 34. Envelope Detector Peak-to-Peak Output Voltage vs. Total InputPower at Various Tone Spacings, RF = 81 GHz, V CTL1/V CTL2 = −5 V,V DET = 4 V with 150 Ω Load Impedance at ENV DET00.050.100.150.200.250.300.350.40–20–18–16–14–12–10–8–6–4P E A K -T O -P E A K O U T P U T V O L T A G E (V )TOTAL INPUT POWER (dBm)13154-135Figure 35. Envelope Detector Peak-to-Peak Output Voltage vs. Total InputPower at Various Tone Spacings, RF = 83.5 GHz, V CTL1/V CTL2 = −5 V,V DET = 4 V with 150 Ω Load Impedance at ENV DET 00.050.100.150.200.250.300.350.40–20–18–16–14–12–10–8–6–4P E A K -T O -P E A K O U T P U T V O L T A G E (V )TOTAL INPUT POWER (dBm)13154-136Figure 36. Envelope Detector Peak-to-Peak Output Voltage vs. Total InputPower at Various Tone Spacings, RF = 86 GHz, V CTL1/V CTL2 = −5 V,V DET = 4 V with 150 Ω Load Impedance at ENV DETTHEORY OF OPERATIONThe circuit architecture of the HMC8121 variable gain amplifier is shown in Figure 37. The HMC8121 uses multiple gain stages and staggered voltage variable attenuation stages to form a low noise, high linearity variable gain amplifier with a gain range of ~17 dB. The first stage is a low noise preamp, which is followed by the first voltage variable attenuator in the signal path. A portion of the signal is coupled away and further amplified before driving an on-chip envelope detector. The envelope detector provides an output that is proportional to the peak envelope power of the incoming signal. After the first attenuator, a second stage amplifier provides additional gain and isolation before driving the second variable attenuator block. Three cascaded gain stages follow the second variable attenuator. At the output of the last stage, another coupler taps off a small portion of the output signal. The coupled signal is presented to an on-chip diode detector for external monitoring of the output power. A matched reference diode is included to help correct for detector temperature dependencies. See the application circuit in Figure 38 for further details on biasing the different blocks and utilizing the detector features.RFIN RFOUTDET CTL1CTL2REF DET13154-034Figure 37. Variable Gain Amplifier Circuit ArchitectureTYPICAL APPLICATION CIRCUITA typical application circuit for the HMC8121 is provided in Figure 38. For typical operation, drive the attenuator control pads from a single control voltage. It is important to bypass all the supply connections and attenuator control pads withadequate bypassing capacitors. Use single-layer chip capacitors with very high self-resonant frequency close to the HMC8121 die, bypassing each supply or control pad. Typically, 120 pF chip capacitors are used, followed by 0.01 μF and 4.7 μF surface-mount capacitors. Combine supply lines as shown in the application circuit schematic to minimize external component count and simplify power supply routing (see Figure 38). Pad 25 and Pad 26 are internally connected. Therefore, use either pad to connect the external bypass components of V DD1/V DD2. The HMC8121 uses several amplifier, detector, and attenuator stages. All stages use depletion mode pHEMT transistors. It is important to follow the following power-up bias sequence to ensure transistor damage does not occur. 1. Apply a −5 V bias to the V CTL1 and V CTL2 pads.2. Apply a −2 V bias to the V GG3 to V GG6 and V GG1/V GG2 pads.3. Apply 4 V to the V DD1 to V DD6 pads.4.Adjust V GG1/V GG2 and V GG3 to V GG6 between −2 V and 0 V to achieve a total amplifier drain current of 265 mA.After bias is established, adjust the V CTL1 = V CTL2 bias between −5 V and 0 V to achieve the desired gain.To power down the HMC8121, follow the reverse procedure. For additional guidance on general bias sequencing, see the MMIC Amplifier Biasing Procedure application note.F I N13154-035Figure 38. Typical Application CircuitASSEMBLY DIAGRAMGG1GG2GG3GG4DD6DD3DD4DD5GG5GG6DD1DD2CTL1CTL213154-036Figure 39. Assembly DiagramMOUNTING AND BONDING TECHNIQUES FOR MILLIMETERWAVE GaAs MMICSAttach the die directly to the ground plane eutectically or with conductive epoxy.To bring RF to and from the chip, use 50 Ω microstrip trans-mission lines on 0.127 mm (5 mil) thick alumina thin film substrates (see Figure 40).13154-037Figure 40. Routing RF SignalsTo minimize bond wire length, place microstrip substrates as close to the die as possible. Typical die to substrate spacing is 0.076 mm to 0.152 mm (3 mil to 6 mil).HANDLING PRECAUTIONSTo avoid permanent damage, adhere to the following precautions.StorageAll bare die ship in either waffle or gel-based ESD protective containers, sealed in an ESD protective bag. After opening the sealed ESD protective bag, all die must be stored in a dry nitrogen environment.CleanlinessHandle the chips in a clean environment. Never use liquid cleaning systems to clean the chip.Static SensitivityFollow ESD precautions to protect against ESD strikes. TransientsSuppress instrument and bias supply transients while bias is applied. To minimize inductive pickup, use shielded signal and bias cables.General HandlingHandle the chip on the edges only using a vacuum collet or with a sharp pair of bent tweezers. Because the surface of the chip has fragile air bridges, never touch the surface of the chip with a vacuum collet, tweezers, or fingers.MOUNTINGThe chip is back metallized and can be die mounted with gold/tin (AuSn) eutectic preforms or with electrically conductive epoxy. The mounting surface must be clean and flat.Eutectic Die AttachIt is best to use an 80% gold/20% tin preform with a work surface temperature of 255°C and a tool temperature of 265°C. When hot 90% nitrogen/10% hydrogen gas is applied, maintain tool tip temperature at 290°C. Do not expose the chip to a temperature greater than 320°C for more than 20 sec. No more than 3 sec of scrubbing is required for attachment.Epoxy Die AttachABLEBOND 84-1LMIT is recommended for die attachment. Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip after placing it into position. Cure the epoxy per the schedule provided by the manufacturer.WIRE BONDINGRF bonds made with 0.003 in. × 0.0005 in. gold ribbon are recom-mended for the RF ports. These bonds must be thermosonically bonded with a force of 40 g to 60 g. DC bonds of 0.001 in.(0.025 mm) diameter, thermosonically bonded, are recommended. Create ball bonds with a force of 40 g to 50 g and wedge bonds with a force of 18 g to 22 g. Create all bonds with a nominal stage temperature of 150°C. Apply a minimum amount of ultrasonic energy to achieve reliable bonds. Keep all bonds as short as possible, less than 12 mil (0.31 mm).OUTLINE DIMENSIONS01-26-2016-AFigure 41. 28-Pad Bare Die [CHIP](C-28-1)Dimensions shown in millimetersORDERING GUIDEModel 1 Temperature Range Package Description Package Option 2 HMC8121 −55°C to +85°C 28-Pad Bare Die [CHIP] C-28-1 HMC8121-SX−55°C to +85°C 28-Pad Bare Die [CHIP] C-28-11 The HMC8121-SX is two pairs of the die in a gel pack for the sample orders.2This is a waffle pack option; contact Analog Devices, Inc., sales representatives for additional packaging options.©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D13154-0-2/16(A)。

MPR121中文数据手册

MPR121中文数据手册

Device Name MPR121QR2
Temperature Range -40°C to +85°C
ORDERING INFORMATION
Case Number
Touch Pads
2059 (20-Pin QFN)
12-pads
MPR121 Rev 0, 9/2009
MPR121
Capacitive Touch Sensor Controller
© Freescale Semiconductor, Inc., 2009. All rights reserved.
简图和实施
VDD 1.71 V至2.75 V
VDD 1.71 V至2.75 V
0.1 μF GND
20 VDD 6 VSS 5 VREG 1 IRQ 2 SCL 3 SDA 4 ADDR 7 REXT
接近传感
一项新功能的MPR121接近感应系统,使系统的电极,可缩短使用
一起内部,创建一个大的电极.这种电极的电容是较大的和预计的电容可以
被测量.当启用时,这个“13
th“电极将被包含在一个正常的检测周期的末尾,将有自己的
独立设置的配置寄存器.此系统被描述在应用笔记AN3893.
LED驱动器
MPR121包括8个共享的LED驱动销.当这些引脚不作为电极的配置,它们可以被用于驱动LED.该系统可以为上拉和下拉LED配置,以及作为通 用GPIO推/拉功能. 应用笔记AN3894中描述的结构的LED驱动器系统.
Freescale Semiconductor Technical Data
Advanced Information Proximity Capacitive Touch Sensor Controller

分立元件库元件名称及中英对照

分立元件库元件名称及中英对照

部分分立元件库元件名称及中英对照AND ------------------------------------与门ANTENNA --------------------------------天线BA TTERY --------------------------------直流电源BELL -----------------------------------铃,钟BVC ------------------------------------同轴电缆接插件BRIDEG 1 -------------------------------整流桥(二极管) BRIDEG 2 -------------------------------整流桥(集成块) BUFFER--------------------------------- 缓冲器BUZZER----------------------------------蜂鸣器CAP ------------------------------------电容CAPACITOR ------------------------------电容CAPACITOR POL --------------------------有极性电容CAPV AR ---------------------------------可调电容CIRCUIT BREAKER ------------------------熔断丝COAX -----------------------------------同轴电缆CON ------------------------------------插口CRYSTAL --------------------------------晶体整荡器DB --------------------------------------并行插口DIODE ---------------------------------二极管DIODE SCHOTTKY ------------------------稳压二极管DIODE V ARACTOR ------------------------变容二极管DPY_3-SEG---------------------------- 3段LEDDPY_7-SEG---------------------------- 7段LEDDPY_7-SEG_DP -------------------------7段LED(带小数点) ELECTRO ------------------------------电解电容FUSE ----------------------------------熔断器INDUCTOR -----------------------------电感INDUCTOR IRON -------------------------带铁芯电感INDUCTOR3 -----------------------------可调电感JFET N -------------------------------N沟道场效应管JFET P --------------------------------P沟道场效应管LAMP ----------------------------------灯泡LAMP NEDN -----------------------------起辉器LED -----------------------------------发光二极管METER ---------------------------------仪表MICROPHONE ----------------------------麦克风MOSFET --------------------------------MOS管MOTOR AC -----------------------------交流电机MOTOR SERVO --------------------------伺服电机NAND ----------------------------------与非门NOR ----------------------------------或非门NOT -----------------------------------非门NPN -----------------------------------NPN----三极管NPN-PHOTO ------------------------------感光三极管OPAMP ----------------------------------运放OR ------------------------------------或门PHOTO ---------------------------------感光二极管PNP -----------------------------------三极管NPN DAR ----------------------------NPN三极管PNP DAR ----------------------------PNP三极管POT ----------------------------滑线变阻器PELAY-DPDT---------------------------- 双刀双掷继电器RES1.2 ----------------------------电阻RES3.4 ----------------------------可变电阻RESISTOR BRIDGE ? ----------------------------桥式电阻RESPACK ? ----------------------------电阻SCR ----------------------------晶闸管PLUG ?---------------------------- 插头PLUG AC FEMALE---------------------------- 三相交流插头SOCKET ? ----------------------------插座SOURCE CURRENT---------------------------- 电流源SOURCE VOLTAGE ----------------------------电压源SPEAKER ----------------------------扬声器SW ? ----------------------------开关SW-DPDY ?---------------------------- 双刀双掷开关SW-SPST ? ----------------------------单刀单掷开关SW-PB ----------------------------按钮THERMISTOR ----------------------------电热调节器TRANS1 ----------------------------变压器TRANS2 ----------------------------可调变压器TRIAC ?---------------------------- 三端双向可控硅TRIODE ? ----------------------------三极真空管V ARISTOR ----------------------------变阻器ZENER ? ----------------------------齐纳二极管DPY_7-SEG_D---------------------------- 数码管SW-PB ---------------------------- 开关7805----------------------------------LM7805CT。

Atmega8单片机

Atmega8单片机

内部特点:-高性能、低功耗的 8 位AVR 微处理器-先进的RISC 结构-130 条指令–大多数指令执行时间为单个时钟周期-32个8 位通用工作寄存器-全静态工作-工作于16 MHz 时性能高达16 MIPS-只需两个时钟周期的硬件乘法器-非易失性程序和数据存储器-8K 字节的系统内可编程Flash-擦写寿命:10,000 次-具有独立锁定位的可选Boot 代码区-通过片上Boot 程序实现系统内编程-真正的同时读写操作-512 字节的EEPROM-1K字节的片内SRAM-可以对锁定位进行编程以实现用户程序的加密外设特点:–两个具有独立预分频器8 位定时器/ 计数器, 其中之一有比较功能–一个具有预分频器、比较功能和捕捉功能的16 位定时器/ 计数器–具有独立振荡器的实时计数器RTC–三通道PWM– TQFP与MLF 封装的8 路ADC-8 路10 位ADC– PDIP封装的6 路ADC –面向字节的两线接口–两个可编程的串行USART–可工作于主机/ 从机模式的SPI 串行接口–具有独立片内振荡器的可编程看门狗定时器–片内模拟比较器· 特殊的处理器特点–上电复位以及可编程的掉电检测–片内经过标定的RC 振荡器–片内/ 片外中断源– 5种睡眠模式: 空闲模式、ADC 噪声抑制模式、省电模式、掉电模式及Standby 模式· I/O 和封装– 23个可编程的I/O 口状态; ADC 噪声抑制模式时终止CPU 和除了异步定时器与ADC 以外所有I/O 模块的工作,以降低ADC 转换时的开关噪声; Standby 模式下只有晶体或谐振振荡器运行,其余功能模块处于休眠状态,使得器件只消耗极少的电流,同时具有快速启动能力。

本芯片是以Atmel 高密度非易失性存储器技术生产的。

片内ISP Flash 允许程序存储器通过ISP 串行接口,或者通用编程器进行编程,也可以通过运行于AVR 内核之中的引导程序进行编程。

IC引脚功能及元器件代换

IC引脚功能及元器件代换

夏华IC引脚功能及元器件代换M61208FP引脚功能及工作电压
J系列CPU(SDA555X)各脚功能及电压
TDA16846功能脚简介
STR-G5653引脚功能及电压
ST6378引脚功能
TDA6210Q引脚功能
AN7583引脚功能
TA8720AN AV开关
SDA9380引脚功能
TDA8362引脚功能
厦华彩电各型号中周内置电容值
厦华彩电显像管、高压包及电路主要参数对照表(一)
第10 页共30 页
第11 页共30 页
第12 页共30 页
第13 页共30 页
第14 页共30 页
第15 页共30 页
第16 页共30 页
第17 页共30 页
第18 页共30 页
第19 页共30 页
厦华彩电行包代换表
第20 页共30 页
第21 页共30 页
第22 页共30 页
第23 页共30 页
第24 页共30 页
第25 页共30 页
开关变压器代用表
1/2W稳压管型号稳压值
场效应管K3116可用K2645代用。

D400可用C2344代用。

C2344可用C5248代用厦华彩电机型与CPU型号对应表。

13版-HMC使用说明书

13版-HMC使用说明书

3)速度调节器
附图 3 为速度调节器模块,该模块含有调节器的结构和参数选择,速度调节器也是通用调节器, 也可以做为其它变量的调节控制用,该调节器基本结构为比例积分 PI 结构,也可以构成分段式的积 分分离非线性 PI 调节器,该型调节器在合适的参数设计下,可以获得比传统线性 PI 调节器更好的 控制特性。 该调节器的限幅值来源可以选择,可以选择键盘单元设定或外部电位器模拟量设定,这种选择 方式为系统的电压或电流控制提供了灵活性,例如:如选择外部电位器设定限幅,在系统电封闭运 行时,加载电动机的电流加载调节控制十分方便。也可以方便与外部系统构成力矩闭环控制。
3
图 1-1 系统单元主电路
4
测量板:将系统中各测量点信号引入,经电路变换处理,供学生用示波器观测测量。其中有电网电 压同步信号、各晶闸管触发信号、斩波控制信号、电枢电压、励磁电压、励磁触发脉冲、测速发电 动机电压等。
图 1-2 1.4 系统机柜布局及输入输出功能端子
控制系统结构图
系统机柜布局图如图 1-3 所示,A、B、C 为三相 380V 电源输入端子,DA、DB 为主电路直流电压 输出,其接电动机电枢绕组。EA、EB 为励磁电压输出,接电动机励磁绕组。NA、NB 为测速发电动机 输入端子,接测速发电动机,注意该对接线端子有极性,如果接错了,则会发生转速正反馈和电动 机飞车现象。在本系统中,控制程序对其有识别保护,如果接错,运行中系统会报警显示故障并停 机。
1.6 键盘液晶显示操作方式
4)电流调节器
附图 4 为电流调节器模块,该模块为 PI 结构,其参数可以根据系统要求和结构加以选择,在相 控模式下,该调节器的输出与逻辑无环流控制结合,实现移相电流的快速跟踪控制;在斩控模式下, 其输出为占空比变化的驱动控制信号, 驱动相应桥臂的 IGBT 功率开关管, 实现电枢电流的跟踪控制。

LC51(SOP8)车充IC系列

LC51(SOP8)车充IC系列

电性能参数(VIN = 12V, TA = +25°C, 除非另外注明。)
参数
符号
测试条件
最小值
待机电流
ISD
VEN ≤ 0.3V
静态电流
IQ
VEN ≥ 2.6V, VFB =
1.0V
反馈电压
VFB
4.75V ≤ VIN ≤ 27V 0.900
反馈过压阈值
VFB_OVP
误差放大器电压增益 AEA
误差放大器跨导
内部框架图
功能描述
LC51H 是一种电流逐步减缓的同步整流型校准器。它控制输入 4.5V 到 27V 的输入电 压输出低至 0.925V,并且提供 2A 负载电流。其使用电流控制模式校准输出电压。输出电 压在 FB 端通过一个电阻分压检查并且经过内部传导式误差放大器放大。COMP 引脚电流 被用来与内部测量过的开关电流相比较以用来控制输出电压。
0.925 1.1 480 800 130 130
3.4 1.1 3.5 340 100 90 1.5 200 2.5 200 4.20 200 6 15 160
最大值 3.0 1.5 0.950
10 --
380
2.0 2.7 4.40
单位 uA mA
V V V/V uA/V mΩ mΩ uA A A A/V kHz kHz % V mV V mV V mV uA mS °C
DMAX
VFB = 1.0V
使能端关闭电压
VEN RisingLeabharlann 1.1使能关断阈值电压滞环
使能滞欠压锁定阈值
2.2
使能滞欠压锁定
输入低电压锁定
VIN Rising
3.80
输入欠电压锁定

HSC-1812BA493A-中英文说明书-C00

HSC-1812BA493A-中英文说明书-C00

目录 第一章 产品介绍 ......................................................................................................1
简介 ......................................................................................................................1 机械尺寸、重量与环境.......................................................................................1 典型功耗 ..............................................................................................................1 微处理器 ..............................................................................................................2 芯片组 ..................................................................................................................2 系统内存 ..............................................................................................................2 显示功能 ..............................................................................................................2 网络功能 ..............................................................................................................2 电源特性 ..............................................................................................................2 扩展总线 ..............................................................................................................2 Watchdog功能 ......................................................................................................2 操作系统 ..............................................................................................................3 I/O接口 .................................................................................................................3 EMC .....................................................................................................................3 第二章 安装说明 ......................................................................................................4

Hittite Microwave Corporation HMC365G8分频器产品说明书

Hittite Microwave Corporation HMC365G8分频器产品说明书

THIS PAGE INTENTIONALLY LEFT BLANK4For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at ApplicationSupport:Phone:******************************General Description Functional Diagram The HMC365G8 is a low noise Divide-by-4 Static Divider with InGaP GaAs HBT technology in an 8 lead glass/metal (hermetic) surface mount hermetic package. This device operates from DC (with a square wave input) to 13 GHz input frequency with a single +5V DC supply. The low additive SSB phase noiseof -151 dBc/Hz at 100 kHz offset helps the user maintain good system noise performance.Ultra Low SSB Phase Noise: -151 dBc/Hz Wide Bandwidth Output Power: 7 dBm Single DC Supply: +5V 8 Lead Hermetic SMT Package Electrical Specifications, T A = +25° C, 50 Ohm System, Vcc = 5VPrescaler for DC to Ku Band PLL Applications:• Point-to-Point / Multi-Point Radios• VSAT Radios • Fiber Optic • Test Equipment • Space & Military1. Divider will operate down to DC for square-wave input signal.F R E Q U E N C Y D I V I D E R S & D E T E C T O R S - S M T 44 - 2For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at ApplicationSupport:Phone:******************************-30-20-100102001234567891011121314151617I N P U T P O W E R (d B m )INPUT FREQUENCY (GHz)-30-20-100102001234567891011121314151617Min Pin + 25C Max Pin + 25CMin Pin + 85CMax Pin + 85CMin Pin -40CMax Pin -40CI N P U T P O W E R (d B m )INPUT FREQUENCY (GHz)SSB Phase NoisePerformance, Pin= 0 dBm, T= 25 °C Output Power vs. Temperature Reverse Leakage, Pin= 0 dBm, T= 25 °COutput Harmonic Content, Pin= 0 dBm, T= 25 °C -160-140-120-100-80-60-40-200102103104105106107S S BP HASEN OIS E(dB c /H z)OFFSET FREQUENCY (Hz)-60-50-40-30-20-10003691215Both Output Ports Terminated One Output Port Terminated POW ERLE VEL(d Bm )INPUT FREQUENCY (GHz)-50-40-30-20-10003691215Pfeedthru 2nd Harmonic 3rd Harmonic O U T P U T L E V E L (d B m )INPUT FREQUENCY (GHz)024681003691215+ 25C + 85C - 40C O U T P U T P O W E R (d B m )INPUT FREQUENCY (GHz)4For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at ApplicationSupport:Phone:******************************Outline DrawingNote: Divider will operate over full voltage range shown above Typical Supply Current vs. Vcc3. PLATING: ELECTROLYTIC GOLD 50 MICROINCHES MIN., OVERELECTROLYTIC NICKEL 50 MICROINCHES MIN.4. DIMENSIONS ARE IN INCHES [MILLIMETERS].5. TOLERANCES: ±.005 [0.13] UNLESS OTHERWISE SPECIFIED.6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS -700-500-300-10010030050070022.723.123.523.924.324.7A M P L I T U D E (m V )TIME (nS)F R E Q U E N C Y D I V I D E R S & D E T E C T O R S - S M T 44 - 4For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at ApplicationSupport:Phone:******************************4For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at ApplicationSupport:Phone:******************************The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground slug should be con-nected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes.The evaluation circuit board shown is availablefrom Hittite upon request. This evaluation board isdesigned for single ended input testing. J2 and J3provide differential output signals.[1] Reference this number when ordering complete evaluation PCB[2] Circuit Board Material: Rogers 4350List of Materials for Evaluation PCB 106582 [1]F R E Q U E N C Y D I V I D E R S & D E T E C T O R S - S M T 44 - 6For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at ApplicationSupport:Phone:******************************。

MC12148中文资料

MC12148中文资料

q
L 0.10 A1 B 0.25
M
C B
S
A
S
q
SD SUFFIX PLASTIC PACKAGE CASE 940-03 (SSOP–8) ISSUE B
8X
K REF 0.12 (0.005)
0.25 (0.010)
M
T U
S
V
S
N M
L/2 L
PIN 1 IDENT 1
NOTE: ESD data available upon request.
Symbol
VCC TA Tstg
Value
–0.5 to 7.0 –40 to 85 –65 to 150
Unit
Vdc °C °C
ELECTRICAL CHARACTERISTICS (VCC = 5.0 V; TA = –40 to 85°C, unless otherwise noted.)
MC12148D MC12148SD
© Motorola, Inc. 1997
元器件交易网
MC12148
MAXIMUM RATINGS Parameter
Power Supply Voltage, Pins 1, 7 Operating Temperature Range Storage Temperature Range
The MC12148 requires an external parallel tank circuit consisting of the inductor (L) and capacitor (C). A varactor diode may be incorporated into the tank circuit to provide a voltage variable input for the oscillator (VCO). This device may also be used in many other applications requiring a fixed frequency clock. The MC12148 is ideal in applications requiring a local oscillator. Systems include electronic test equipment and digital high–speed telecommunications. The MC12148 is based on the VCO circuit topology of the MC1648. The MC12148 has been realized utilizing Motorola’s MOSAIC III advanced bipolar process technology which results in a design which can operate at a much higher frequency than the MC1648 while utilizing half the current. Please consult with the MC1648 data sheet for additional background information. The ECL output circuitry of the MC12148 is not a traditional open emitter output structure and instead has an on–chip termination resistor with a nominal value of 500 ohms. This facilitates direct ac–coupling of the output signal into a transmission line. Because of this output configuration, an external pull–down resistor is not required to provide the output with a dc current path. This output is intended to drive one ECL load. If the user needs to fanout the signal, an ECL buffer such as the MC10EL16 Line Receiver/Driver should be used. NOTE: The MC12148 is NOT useable as a crystal oscillator.

HMC1001 HMC1002 HMC1021 HMC1022单轴双轴磁阻传感器 中文说明书

HMC1001 HMC1002 HMC1021 HMC1022单轴双轴磁阻传感器 中文说明书

在零读数时无发烫效应
HMC1001
HMC1002
最小值 600 -40 -55 -2
-60 2.5
46 3.0 3 -2800
典型值 5
850
0.1 1 0.05 0.05 2
-15
3.2 29 27 5 2.5 3900 51 1.5 3.2
-3000 -600 ±300 ±10 2500 ±3 ±0.5
垂直轴的影响和温度影响
图 2 内显示的输出响应曲线说明 S/R 脉冲的影响 当置位电流脉冲 I 置位 被加到 SR+引脚上时 输 出按照正斜率线作出响应 当复位电流脉冲 I 复位 被加到 SR-引脚上时 输出按照反斜率线作出响应 除两个偏置影响之外 这些曲线是原始脉冲的镜 像
在垂直轴向上 图 2 内显示的电桥偏置约为-25mV 这是由于制造过程中电阻匹配不当造成的 这种偏 置可通过多种方法调整为零 最直接的方法是在电 桥的一端上加一个分流(并联)电阻 强迫两个输出 的电压相同 这必须在零磁场环境下进行 通常在 零高斯室内进行
HMC1001-2 1021-2 单轴双轴磁阻传感器
BY 丙寅电子
上海丙寅电子有限公司是美国霍尼韦尔在中国区的特级代理。 在磁阻传感器应用领域有丰富的项目支持经验。提供软硬件 全套解决方案,如需要任何Honeywell 设计与技术方面的支 持可与我们联系,将助您在最短的时间内设计成功。
上海丙寅电子有限公司 电话:86 021 65072675 传真:86 021 65075878 邮箱:by07@anotron.com 地址:中国 上海市虹口区四平路188号上海商贸大厦801室 公司主页:http://www.bingyindz.com
从 S/R+至 S/R-之间测量

德国Hameg

德国Hameg
七、HM8100系列可程控仪器
¥23,150 ¥22,645 ¥27,038
HZO30 HZO50 HZO51 HZ100
有源高频探头 1GHz (0,9 pF,1MΩ) AC/DC电流探头 30A,DC-100kHz,替代HZ56-2 AC/DC 电流探头 1000A,DC-20kHz 20:1/200:1差分探头,30M/40MHz,±700Vpp
空白占位模块
¥569 HZ70
RS232光接口电缆(4米)
惠 ¥1,384
HZ540
3G有源近场探头套件,HZ551:1M~3G; HZ552:30M~3G;HZ553:1M~3G
¥21,215 HM801 HZ809
4BNC插口,配HM8001-2机框 测试适配转换器
¥435 HZ42
¥922
19"安装机架(2RU)适用:HM7042-5、 HM8001-2、8100系列、HMF和HMP系列
型号
带宽,通道,采样,存储深度
价格
HMP4030
3路,0-32V/0-10A,384W
¥20,174 HO3508 8通道逻辑探头,适用HMO3522/ HMO3524
¥4,458
一、模数组合示波器(MCO)一键完成模数转换,CRT显示
HM507
50M,2CH,100MS/s,2K存储深度
¥17,141
¥2,029 美
HZ540L
同HZ540,配低容抗探头, HZ551:1M~3G;HZ552:30M~3G; HZ555:0.25M~3G
¥27,288 HZ17 HZ18
四线测试夹,HM8018和HM8012选件 开尔文测试夹,HM8018和HM8012选件

HR121-2812中文资料

HR121-2812中文资料
DESIGN METHODOLOGY
The HR120 converters are switching regulators which use a quasisquare wave, single ended forward converter design with a nominal switching frequency of 600 kHz. Isolation between input and output circuits is provided with a transformer in the forward power loop and a temperature insensitive optical link in the feedback control loop. Output regulation is accomplished with constant frequency pulse width modulation. Both line and load regulation are typically within 10 mV.
The parts are packaged in sealed steel enclosures, making them ideal for use in high reliability applications. Each unit is guaranteed to pass a hermeticity test with a maximum leak rate of 0.001 atmcc/sec.
INHIBIT FEATURE
An inhibit terminal is provided that can be used to disable internal switching, resulting in a very low quiescent input current. An open collector TTL compatible low (≤0.8 V) is required to control the inhibit function. This level may be supplied by an open collector gate since the inhibit pin is provided with an internal pull-up resistor.

2-2 单片机的结构和原理-寄存器与片内存储器

2-2 单片机的结构和原理-寄存器与片内存储器

2.2、寄存器与片内存储器
2.2.1 QG8的存储器配置 2.2.2 CPU寄存器
2.2.3 有地址的寄存器表(分三块) 及重要寄存器的初始化
2.2、寄存器与片内存储器 • 寄存器?(与内部硬件控制紧密相关的可 读写的内存单元)
• 存储器? RAM、 ROM、EEPROM、FLASH • 编址?普林斯顿结构、哈佛结构
单元地址 0000H-0002H
编程时很重要
作 用
复位后初始化引导程序入口
0003H-000AH
000BH-0012H 0013H-001AH
外中断0服务程序入口
定时器0溢出中断入口 外中断1服务程序入口
001BH-0022H
0023H-002AH 002BH
定时器1溢出中断入口
串行口中断入口 定时器2溢出中断入口(52)
SFR在微控制器中的作 用
*未选中的区仍可存取数据,但不能采用R0-R7
寄存器寻址方式访问。
RS1 RS0 0 0 0 1 1 0 1 1 选中区 0区 1区 2区 3区
⑵ 位寻址区 字节地址:20H-2FH,共16字节,
每一位可单独寻址。
位地址:00-7FH,共128 bit, 由专用位操作指令访问.
电子称重器
飞思卡尔HCS08系列单片机的结构和原理
2.1、单片机整体结构及其管脚功能 2.1.1 单片机选型 2.1.2 QG8的最小系统 2.1.3 总体结构 2.1.4 管脚及功能(BDM)
2.2、寄存器与片内存储器
2.2.1 Q有地址的寄存器表(分三块)及重要寄存器的初始化 2.3、内部时钟源 2.4、Flash操作
222cpu寄存器registers非易失寄存器223有地址的寄存器表分三块及重要寄存器的初始化直接页面寄存器总结分类地址与名称注释端口0x0000ptad0x0001ptadd0x0002ptbd0x0003ptbddkbi0x000ckbisc0x000dkbipe0x000ekbiesirq0x000firqsc需要禁止rst0x0010adcsc10x0011adcsc20x0012adcrh0x0013adcrl脚可同时使用0x0014adccvh0x0015adccvl0x0016adccfg0x0017apctl1acmp0x001aacmpscsci0x0020scibdh0x0021scibdl0x0022scic10x0023scic20x0024scis10x0025scis20x0026scic30x0027scidspi0x0028spic10x0029spic20x002aspibr0x002bspis0x002dspidiic0x0030iica0x0031iicf0x0032iicc0x0033iics0x0034iicdics0x0038icsc10x0039icsc20x003aicstrm0x003bicssc缺省4mhzmtim0x003cmtimsc0x003dmtimclk0x003emtimcnt0x003fmtimmod8位定时器tpm0x0040tpmsc0x0041tpmcnth0x0042tpmcntl0x0043tpmmodh16位定时器0x0044tpmmodl0x0045tpmc0sc0x0046tpmc0vh0x0047tpmc0vl0x0048tpmc1sc0x0049tpmc1vh0x004atpmc1vl0x004b0x005f保留高页面寄存器分类地址与名称注释系统0x1800srs复位状态寄存器只读写任何值复位cop指令stasrs0x1801sbdfrbdm模式下强制复位控制寄存器最低位写1复位0x1802sopt1看门狗下载线复位管脚0x1803sopt2看门狗周期iic管脚比较器输出0x1806sdidh0x1807sdidl器件标识rti0x1808srtisc系统0x1809spmsc1低压检测与内部参考电压允许0x180aspmsc2掉电状态与控制0x180cspmsc3低压报警信息与门槛设置0x1810dbgcah0x1811db
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HMC121G8
HMC121G8 SMT VOLTAGE-VARIABLE ATTENUATOR DC - 8 GHz
FEBRUARY 2001
INSERTION LOSS (dB)
Insertion Loss
0 -1 -2 -3
-4
-5
0
2
4
6
8
FREQUENCY (GHz)
Return Loss
Web Site:
2 - 25
18 dB 12 dB
9 dB
3 dB
2
4
6
8
10
FREQUENCY (GHz)
12 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373
Web Site:
2 - 21
元器件交易网
HMC121G8 SMT VOLTAGE-VARIABLE ATTENUATOR DC - 8 GHz
NOTES:
FEBRUARY 2001
2
SMT ATTENUATORS
12 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373
元器件交易网
CORPORATION
HMC121G8
HMC121G8 SMT VOLTAGE-VARIABLE ATTENUATOR DC - 8 GHz
Schematic
50
RF1
500 500
FEBRUARY 2001
12 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343
2 - 20
Fax: 978-250-3373
Web Site:
元器件交易网
SMT ATTENUATORS
MICROWAVE CORPORATION
10 Reference
5
0
-5
10 dB 6 dB
15 Reference
10
5
10 dB 6 dB
-10
0
0.1
1
10
0
0
0.1
1
10
FREQUENCY (GHz)
Second Harmonic
FREQUENCY (GHz)
vs. Attenuation
65
SECOND HARMONIC (dBc)
-20
2
-30
-40
10
0
2
4
6
8
10
FREQUENCY (GHz)
Relative Attenuation vs. Control Voltage
0
-0.5
-1
V1
V2
-1.5
-2
-2.5
-3
10
0
5
10
15 20
25
30
RELATIVE ATTENUATION (dB)
Relative Phase
SMT ATTENUATORS
MICROWAVE CORPORATION
HMC121G8
HMC121G8 SMT VOLTAGE-VARIABLE ATTENUATOR DC - 8 GHz
FEBRUARY 2001
Input Third Order Intercept vs. Attenuation
0
RETURN LOSS (dB)
-10
-20
-30 0
2
4
6
8
FREQUENCY (GHz)
45 40
35 30 25 20 15
10 5
0 -5
0
RELATIVE PHASE (DEG) CONTROL VOLTAGE
Relative Attenuation
0
-10
ATTENUATION (dB)
500
2
500
V2 I
O V1
Outline Drawing
ORIENTATION TAB PIN 1
0.150 (3.81)
TYP
0.050 (1.27)
TYP
RFI GND V2 I
0.180 SQ (4.57 SQ)
MAX
HMC 121G8
0.070 (1.78)
MAX
0.400 (10.16)
60 Reference
55
50
45
40 6 dB
35
10 dB
30
3 dB 25
0
0.1
1
10
FREQUENCY (GHz)
12 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343
2 - 22
Fax: 978-250-3373
Web Site:
12 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343
2 - 24
Fax: 978-250-3373
Web Site:
元器件交易网
HMC121G8
MICROWAVE CORPORATION
Guaranteed Performance, 50 ohm system, -55 to +85 deg C
Parameter
Min.
Typ. Max.
Insertion Loss
DC - 4 GHz:
1.5
3.0
DC - 8 GHz:
2
3.5
Attenuation Range
25
30
Return Loss
Min. Atten:
+10
Atten. > 2dB:
-2
Input Third Order Intercept (two - 8 dBm signals) Min. Atten:
+25
Atten. > 2dB:
+10
Units
dB dB dB dB dB ns ns dBm dBm dBm dBm
TOL. ARE ± 0.005(±0.13)
12 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373
Web Site:
2 - 23
元器件交易网
8 PLCS
1. MATERIAL: A) PACKAGE BODY - ALUMINA LOADED BOROSILICATE GLASS B) LEADS, BASE, & COVER - ASTM F - 15 ALLOY
2. PLATING: ELECTROLYTIC GOLD 50 MICRO INCHES MINIMUM 3. DIMENSIONS ARE IN INCHES (MILLIMETERS), UNLESS OTHERWISE SPECIFIED
MAX
0.004 COPLANARITY 0.10
CASE BOTTOM IS GROUND
PIN 8
RF2 GND V1 O
0.015 +/-0.003 (0.38 +/-0.08)
8 PLCS
0.005 +/-0.002 (0.13 +/-0.05)
8 PLCS
0.070 +/-0.020 (1.78 +/-0.51)
30
THIRD ORDER INTERCEPT (dBm)
25
20
2
15
10 dB
Reference 3 dB
10 6 dB
5
0
0.1
1
10
FREQUENCY (GHz)
0.25 dB Compression
vs. Attenuation
15
Input Second Order Intercept vs. Attenuation
DC - 4 GHz:
10
15
DC - 8 GHz:
7
10
Switching Characteristics
tRISE, tFALL ( 10/90% RF):
3
tON, tOFF (50% CTL to 10/90% RF):
6
Input Power for 0.25dB Comp. ( 0.5 - 8GHz)
Absolute Maximum Ratings
RF Input
+16dBm
50
RF2
Control Voltage Range
+1.0 to -6.0 Vdc
Storage Temperature
-65 to +150 deg C
Operating Temperature -55 to +125 deg C
元器件交易网
SMT ATTENUATORS
MICROWAVE CORPORATION
HMC121G8
GaAs MMIC SMT VOLTAGE-VARIABLE ATTENUATOR DC - 8 GHz
FEBRUARY 2001
Features
General Description
SMT ATTENUATORS
MICROWAVE CORPORATION
相关文档
最新文档