精编2019高考数学《导数及其应用》专题考核题完整版(含标准答案)

合集下载

最新版精编2019高考数学《导数及其应用》专题考核题(含标准答案)

最新版精编2019高考数学《导数及其应用》专题考核题(含标准答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知函数y=f(x)的图像是下列四个图像之一,且其导函数y=f’(x)的图像如右图所示,则该函数的图像是(2013年高考浙江卷(文))2.设函数()xf x xe=,则()A. 1x=为()f x的极大值点 B.1x=为()f x的极小值点C. 1x=-为()f x的极大值点 D. 1x=-为()f x的极小值点[学3.曲线12e xy=在点2(4e),处的切线与坐标轴所围三角形的面积为()A.29e2B.24eC.22eD.2e答案D4.已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),y=g(x)的图象可能是DD5.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于 A .1-或25-64 B .1-或214 C .74-或25-64 D .74-或7 (2009江西卷文) 二、填空题6.曲线xy e =(其中 2.71828e =)在1x =处的切线方程为 。

7.已知函数()x f 的导函数为()f x ',且满足()()2322f x x xf =+',则()5f '= .8.定义在R 上的函数()f x ,其导函数()'f x 满足()'1f x >,且()23f =,则关于x 的不等式()1f x x <+的解集为 ▲ .9.已知函数()cos(2)(0)f x x θθπ=+<<,若'()()y f x f x =的图象关于6x π=对称,则θ= .10.已知函数()322f x x ax bx a =+++在1x =处有极值10,则a b += .11.已知函数x ax x f ln )(+=,其中a 为实常数,设e 为自然对数的底数.若)(x f 在区间],0(e 上的最大值为3-,则a 的值为12.曲线3y x =在点3(,)a a (0)a ≠处的切线与x 轴、直线x a =所围成三角形的面积为16,则a = ▲ .13.曲线y=x 3在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为__________。

新版精编2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

新版精编2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.曲线311y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是( ) (A )-9 (B )-3 (C )9 (D )15(2011山东文4) 二、填空题 2.曲线2xy x =+在点(-1,-1)处的切线方程为 ▲ 。

3. 2sin y x x =+在[]ππ,2上的最大值是 ▲ 。

4. 若对任意的x D ∈,均有()()()12f x f x f x ≤≤成立,则称函数()f x 为函数()1f x 到函数()2f x 在区间D 上的“折中函数”.已知函数()()()11,0,f x k x g x =--= ()()1ln h x x x =+,且()f x 是()g x 到()h x 在区间[]1,2e 上的“折中函数”,则实数k 的取值范围为 .5.已知曲线y=x 2 (x >0)在点P 处切线恰好与圆C :x 2+(y+1)2=1相切,则点P 的坐标为 (,6) .(3分)6.已知函数ax x x f +-=3)(在区间()1,1-上是增函数,则实数a 的取值范围是 . 7.函数=x3-15x2-33x +6的单调减区间为________8.若点P 是曲线x x y ln 2-=上任意一点,则点P 到直线2-=x y 的最小距离为__________;9. 直线12y x b =+能作为下列函数()y f x =的切线有 ▲ .(写出所有正确....的函数的序号) ①1()f x x=②()ln f x x =MBA③()sin f x x = ④()x f x e =- 10.已知函数()c x x x x f +--=22123,若对任意[]2,1-∈x 都有()2c x f <,则c 的取值范围是 .[来11.已知定义在R 上的函数2()(3)f x x ax =-,函数()()()([0,2])g x f x f x x '=+∈,若()g x 在0x =处取得最大值,则正数a 的取值范围是 ▲ .12. 函数()x f x e =在1x =处的切线方程是 ▲ .13.曲线y=x 3在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为__________。

新版精编2019高考数学《导数及其应用》专题测试版题(含参考答案)

新版精编2019高考数学《导数及其应用》专题测试版题(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知函数)(()(x f x f x y ''=其中的图象如右图所示))(的导函数是函数x f ,下面四个图象中)(x f y =的图象大致是( )(2005江西理)2.已知函数2f (x )x cos x =-,则06005f (.),f (),f (.)-的大小关系是( ) (A )00605f ()f (.)f (.)<<- (B) 00506f ()f (.)f (.)<-< (C) 06050f (.)f (.)f ()<-< (D) 05006f (.)f ()f (.)-<<二、填空题3.已知A 是曲线C 1:y =ax -2 (a >0)与曲线C 2:x 2+y 2=5的一个公共点.若C 1在A 处的切线与C 2在A 处的切线互相垂直,则实数a 的值是 ▲ .4.定义在R 上的函数y =f (x )的图像经过坐标原点O ,且它的导函数y =f '(x ) 的图像是如图所示的一条直线,则y =f (x )的图像一定不经过第 ▲ 象限.5.设定义在R 上的函数x x x f sin 5)(+=, 则 不等式f (x −1)+f (1−x 2)<0的解集为 _ ▲____(第14题6. 若存在实常数k 和b ,使函数()f x 和()g x 对其定义域上的任意实数x 恒有:()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知2(),()2ln h x x x e x ϕ==,则可推知(),()h x x ϕ的“隔离直线”方程为 ▲ . 7.已知a ,b 为正实数,函数xbx ax x f 2)(3++=在[]1,0上的最大值为4,则)(x f 在[]0,1-上的最小值为 .8.曲线9y x=在点(3,3)M 处的切线方程为 . 9. 曲线y=2lnx 在点(e,2)处的切线与y 轴交点的坐标为_________.10.已知函数3221()(21)13f x x x a x a a =++-+-+,若()0f x '=在(1,3]上有解,则实数a 的取值范围为 ▲ .11.直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b= ▲12.函数]32,32[sin 2ππ--=在区间x x y 上的最大值为 ▲ . 关键字:求导;求最值13.函数sin xy e x =⋅在[0,]π上的单调递增区间是 .14.已知函数y = f (x ),x ∈[0,2π]的导函数y = f ' (x )的图象, 如图所示,则y = f (x ) 的单调增区间为 ▲ .15.曲线x x y ln 2-=在点)2,1(处的切线方程为 .16.已知函数qx px x x f --=23)(的图象与x 轴切于点)0,1(,则)(x f 的极大值和极小值分别为 和 。

最新版精编2019高考数学《导数及其应用》专题完整版考核题(含参考答案)

最新版精编2019高考数学《导数及其应用》专题完整版考核题(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若函数3()=+b +f x x x c 有极值点1x ,2x ,且11()=f x x ,则关于x 的方程213(())+2()+=0f x f x b 的不同实根个数是(A)3 (B)4 (C) 5 (D)6(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))2.已知二次函数()y f x =的图象如图所示,则它与x 轴所围图形的面积为( )A .2π5B .43C .32D .π2(2012湖北理)3.曲线=xy e 在点A (0,1)处得切线斜率为( ) A .1 B .2 C .e D .1e(2011江西文4) 4.设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为( )()A 1ln2- ()B ln 2)- ()C 1ln2+ ()D ln 2)+5.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则 (A )1,1a b == (B) 1,1a b =-= (C) 1,1a b ==- (D) 1,1a b =-=-二、填空题 6.曲线12ex y =在点2(4e ),处的切线与坐标轴所围三角形的面积为7.设奇函数()f x 定义在(,0)(0,)ππ-U 上,其导函数为()f x ',且()02f π=,当0x π<<时, ()sin ()cos 0f x x f x x '-<,则关于x 的不等式()2()sin 6f x f x π<的解集为 ▲ .8.已知函数()3121f x x x =-+-的极大值为M ,极小值为N ,则M N += ▲ ;9.已知函数()x f 的导函数为()f x ',且满足()()2322f x x xf =+',则()5f '= .10.已知曲线()ln 1f x a x bx =++在点(1,(1))f 处的切线斜率为-2,且23x =是函数()y f x =的极值点,则a b -= .11.如果曲线y =x 4-x 在点P 处的切线垂直于直线y =-13x ,那么点P 的坐标为_________ 12.已知函数()1sin ,([0,2))f x x x π=+∈图象在点P 处的切线与函数()(1)3x g x =+图象在点Q 处的切线平行,则直线PQ 与两坐标轴所围成的三角形的面积为13.已知函数2 1()(2) 1ax bx c x f x f x x ⎧++≥-=⎨--<-⎩,其图象在点(1,(1)f )处的切线方程为21y x =+,则它在点(3,(3))f --处的切线方程为 ▲14.某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栅栏隔开(栅栏要求在一直线上),公共设施边界为曲线231)(x x f -=的一部分,栅栏与矩形区域的边界交于点M 、N ,与曲线切于点P ,则OMN ∆(O 为坐标原点)面积S 的最小值为 .三、解答题15.已知函数()()0≠++=x b xax x f ,其中R b a ∈,. (Ⅰ)若曲线()x f y =在点()()2,2f P 处的切线方程为13+=x y ,求函数()x f的解析式;(Ⅱ)讨论函数()x f 的单调性;(Ⅲ)若对于任意的⎥⎦⎤⎢⎣⎡∈2,21a ,不等式()10≤x f 在⎥⎦⎤⎢⎣⎡1,41上恒成立,求b 的取值范围.16.已知函数f (x )=x 3-3ax (a ∈R). (1)如果a =l ,求f (x )的极小值;(2)如果a ≥l ,g (x )=|f (x )|,x ∈[-l ,1],求g (x )的最大值F (a )的解析式.17.设5221)(23+--=x x x x f ,当[2,2]x ∈-时,0)(<-m x f 恒成立,求实数m 的取值范围.18.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:3138(0120).12800080y x x x =-+<≤已知甲、乙两地相距100千米。

最新版精选2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

最新版精选2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.曲线311y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是( ) (A )-9 (B )-3 (C )9 (D )15(2011山东文4) 二、填空题2.函数()ln f x x =的图象在点()e ,(e)f 处的切线方程是3. 若对任意的x D ∈,均有()()()12f x f x f x ≤≤成立,则称函数()f x 为函数()1f x 到函数()2f x 在区间D 上的“折中函数”.已知函数()()()11,0,f x k x g x =--= ()()1ln h x x x =+,且()f x 是()g x 到()h x 在区间[]1,2e 上的“折中函数”,则实数k 的取值范围为 .4.若对任意的x D ∈,均有()()()12f x f x f x ≤≤成立,则称函数()f x 为函数()1f x 到函数()2f x 在区间D 上的“折中函数”.已知函数()()()11,0,f x k x g x =--= ()()1ln h x x x =+,且()f x 是()g x 到()h x 在区间[]1,2e 上的“折中函数”,则实数k 的取值为 ▲5.,则曲线过点)4,2(P 的切线方程为6.函数xe x a xf 32sin )(+=,若7)0('=f , 则a 的值是 ▲7.在实数集R 上定义运算:()().(),x x y x a y a f x e ⊗=-=为实常数若(),xg x ex -=+令()()().F x f x g x =⊗若函数))0(,0()(F P x F 在点处的切线斜率为1,则此切线方程为________________.8.已知函数()cos(2)(0)f x x θθπ=+<<,若'()()y f x f x =的图象关于6x π=对称,则θ= .9. 如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎫-3,-12内单调递增; ②函数y =f (x )在区间⎝⎛⎭⎫-12,3内单调递减; ③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )有极小值; ⑤当x =-12时,函数y =f (x )有极大值.则上述判断中正确的是__________. 三、解答题10.设函数f (x )=ax 3+bx 2+cx ,在x =1和x =-1处有极值,且f (1)=-1,求a 、b 、c 的值,并求出相应的极值. [解析] f ′(x )=3ax 2+2bx +c .∵x =±1是函数的极值点,∴-1、1是方程f ′(x )=0的根,即有又f (1)=-1,则有a +b +c =-1,此时函数的表达式为f (x )=12x 3-32x .∴f ′(x )=32x 2-32.令f ′(x )=0,得x =±1.当x 变化时,f ′(x ),f (x )变化情况如下表:由上表可以看出,当x =-1时,函数有极大值1;当x =1时,函数有极小值-111.若函数1)1(2131)(23+-+-=x a ax x x f 在区间(1,4)内为减函数,在区间(6,+∞)上为增函数。

精编新版2019高考数学《导数及其应用》专题完整考试题(含标准答案)

精编新版2019高考数学《导数及其应用》专题完整考试题(含标准答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( )A .3B .2C .1D .0(2005湖北文)二、填空题2.曲线32242y x x x =--+在点(13)-,处的切线方程是 . 答案 520x y +-=3.设)(x f '和)(x g '分别是()f x 和()g x 的导函数,若()()0f x g x ''≤在区间I 上恒成立,则称)(x f 和)(x g 在区间I 上单调性相反.若函数31()23f x x ax =-与2()2g x x bx =+在开区间(,)a b 上单调性相反(0a >),则b a -的最大值为 .4.已知函数2()()(0)xf x ax bx c e a =++>的导函数'()y f x =的两个零点为-3和0. 若()f x 的极小值为-1,则()f x 的极大值为35exyO(2,0)P ()y f x =()y f x '=1 (第7题图)5.已知定义在R 上的函数()f x ,其导函数为()'1f x x =+,则函数()f x 的单调增区间为 ()1,-+∞6. 已知函数()f x 的导函数()29f x x '=-,且(0)f 的值为整数,当(,1]x n n ∈+*()n N ∈时,()f x 的值为整数的个数有且只有1个,则n = .47.奇函数32()f x ax bx cx =++在1x =-处有极值,则3a b c ++的值为 ▲ . 8.曲线y=2lnx 在点(e,2)处的切线与y 轴交点的坐标为9. 函数)42sin(π+-=x y 的单调增区间是 ▲10.(文科做)曲线cos y x =在点(π6)处的切线的斜率为 ▲ .11. 如果函数f (x )=2x 2-ln x 在定义域的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是_______________________.12.已知函数f (x )=3231x ax ax -++在区间(,)-∞+∞内既有极大值,又有极小值,则实数a 的取值范围是___________13.(文科、艺体学生做)一质点的运动方程为32S 2+=t (位移单位:米,时间单位:秒),则该质点在2=t 秒时的瞬时速度为 米/秒.(理科学生做)已知)0,3,2(-=a ,)3,0,(k b = ,且32,π=b a ,则实数k = .14.关于x 的不等式(21)ln 0ax x -≥对任意(0,)x ∈+∞恒成立,则实数a 的值为_____.15.已知函数()y f x =及其导函数()y f x '=的图象如图所示,则曲线()y f x =在点P 处的切线方程是 ▲16.已知曲线xey =上一点P (e ,1)处的切线分别交x 轴、y 轴于A ,B 两点,O 为坐标原点,则△OAB 的面积为 。

精选2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

精选2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、填空题1.已知函数210()0x x f x a x ⎧+>⎪=≤ 在点(1,2)处的切线与()f x 的图像有三个公共点,则a 的取值范围是 ;2.设)(x f '和)(x g '分别是()f x 和()g x 的导函数,若()()0f x g x ''≤在区间I 上恒成立,则称)(x f 和)(x g 在区间I 上单调性相反.若函数31()23f x x ax =-与2()2g x x bx =+在开区间(,)a b 上单调性相反(0a >),则b a -的最大值为 .3. 曲线21()cos 3f x x x =-在0x =处的切线的斜率为 ▲ . 4. 已知函数()y f x =的图象在点(1,(1))f 处的切线方程为32y x =-,则函数2()()g x x f x =+的图象在点(1,(1))g 处的切线方程为 ▲ .5. 已知函数()a f x x =在1x =处的导数为2-,则实数a 的值是 ▲ .6.已知直线12y x b =+是曲线y=lnx(x>0)的一条切线,则实数b 的值是 。

7.已知函数e x y =的图象在点(e )k a k a ,处的切线与x 轴的交点的横坐标为1k a +,其中*k ∈N ,10a =,则135a a a ++= ▲ .8.设函数e x y =的图象在点(e )k a k a ,处的切线与x 轴的交点的横坐标为1k a +,其中*k ∈N ,10a =,则135a a a ++= ▲ .9.设曲线1*()n y xn N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋅⋅⋅的值为(A) 1n (B) 11n + (C) 1n n + (D) 1(2009陕西卷文)10.若函数2()2ln f x x x =-在点(1,2)处的切线方程为_ .11.已知函数)(x f y =的图象如图, 则函数)(x f y '=的草图为 ▲ .12.已知函数=-'-'+=31(,31(2)(2f x f x x f 则____________。

精选最新版2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

精选最新版2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设b a <,函数)()(2b x a x y --=的图象可能是( )(2009安徽理)[解析]:/()(32)y x a x a b =---,由/0y =得2,3a b x a x +==,∴当x a =时,y 取极大值0,当23a b x +=时y 取极小值且极小值为负。

故选C 。

或当x b <时0y <,当x b >时,0y >选C 2.函数2sin 2xy x =-的图象大致是( )(2011山东文10)3.设2:()e ln 21xp f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 答案 B 二、填空题4. 函数()f x 的定义域为R ,()12f -=,对任意x R ∈,()'2fx >,则()24f x x >+的解集为 _ ▲__ .5.若定义在R 上的函数()f x 的导函数为()24f x x '=-,则函数(1)f x -的单调递减区间是 ▲ .6.(文)函数)(x f 的定义域为R ,2)1(=-f ,对任意R x ∈,'()2f x >,则()24f x x >+的解集为7.若3()3f x ax x =-在R 上是单调函数,则a 的取值范围为______. 8.曲线y =e x在点A(0,1)处的切线斜率为________.9. 曲线3()2f x x x =+-在0P 点处的切线平行于直线41y x =-,则0P 点的坐标为 .10.函数()ln (1),(0)f x x a x a =-->的单调增区间是 .11.点()00,y x P 是曲线C :xy 1=(x >0)上的一个动点,曲线C 在点P 处的切线与x 轴、y 周分别交与B A ,两点,点O 是坐标原点。

精编新版2019高考数学《导数及其应用》专题完整考题(含参考答案)

精编新版2019高考数学《导数及其应用》专题完整考题(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,2)(>'x f ,则f (x )>2x+4的解集为( )(A )(-1,1) (B )(-1,+∞) (C )(-∞,-1) (D )(-∞,+∞)(2011辽宁理11)2.将边长为1m 正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记2(S =梯形的周长)梯形的面积,则S 的最小值是____ ____。

3.已知()f x 与()g x 是定义在R 上的连续函数,如果()f x 与()g x 仅当0x =时的函数值为0,且()()f x g x ≥,那么下列情形不可能...出现的是 ( )A .0是()f x 的极大值,也是()g x 的极大值B .0是()f x 的极小值,也是()g x 的极小值C .0是()f x 的极大值,但不是()g x 的极值D .0是()f x 的极小值,但不是()g x 的极值 答案 C 二、填空题4.已知32()26(f x x x m m =-+为常数)在[2,2]-上有最大值3,那么此函数在[2,2]-上的最小值为____________5.已知函数f (x )=e x -ax 在区间(0,1)上有极值,则实数a 的取值范围是 ▲ .6.已知函数y =f (x )在定义域⎝⎛⎭⎫-32,3上可导,其图象如图,记y =f (x )的导函数y =f ′(x ),则不等式xf ′(x )≤0的解集是______ __.xyO(2,0)P()y f x =()y f x '=1 (第10题7.直线y =a 与函数f (x )=x 3-3x 的图象有相异的三个公共点,则实数a 的取值范围是 .8.设函数f (x )在其定义域D 上的导函数为f ′(x ).如果存在实数a 和函数h (x ),其中h (x )对任意的x ∈D 都有h (x )>0,使得f ′(x )=h (x )(x 2-ax +1),则称函数f (x )具有性质P (a ).给出下列四个函数:①f (x )=13x 3-x 2+x +1;②f (x )=ln x +4x +1;③f (x )=(x 2-4x +5)e x ;④f (x )=x 2+x2x +1,其中具有性质P (2)的函数是 .(写出所有满足条件的函数的序号) 9.设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 .10.函数y =2xx 2+1的极大值为______,极小值为______.[答案] 1 -1[解析] y ′=2(1+x )(1-x )(x 2+1)2,令y ′>0得-1<x <1,令y ′<0得x >1或x <-1, ∴当x =-1时,取极小值-1,当x =1时,取极大值1.11.已知函数()y f x =及其导函数()y f x '=的图象如图所示,则曲线()y f x =在点P 处的切线方程是 ▲ .12.已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,)()(2>-'x x f x f x )(0>x ,则不等式0)(2>x f x 的解集是 .13.如图为函数32()f x ax bx cx d =+++的图象,'()f x 为函数()f x 的导函数,则不等式'()0x f x ⋅<的解集为______ ______.答案 (,-∞⋃14.已知函数f (x )的定义域为[-2,+∞),部分对应值如下表,)(x f '为f (x )的导函数,函数)(x f y '=的图象如右图所示,若两正数a ,b 满足1)2(<+b a f ,则33++a b 的取值范围是 . 答案 ⎪⎭⎫⎝⎛37,53 15.已知一辆轿车在公路上作加速直线运动,设ts 时的速度为3)(2+=t t v )/(s m ,则s t 3=时轿车的瞬时加速度为______________________.16. 函数5()sin 2sin cos2cos66f x x x ππ=⋅-⋅在[,]22ππ-上的单调递增区间为 .三、解答题17.已知函数()ln f x x x a x =--.(1)若a =1,求函数()f x 在区间[1,]e 的最大值; (2)求函数()f x 的单调区间;(3)若()0f x >恒成立,求a 的取值范围.18.已知函数2()21()f x x ax a R =++∈,'()f x 是()f x 的导函数 (1)若[2,1]x ∈--,不等式()'()f x f x ≤恒成立,求a 的取值范围; (2)解关于x 的方程()'()f x f x =;(3)设函数'(),()'()()(),()'()f x f x f xg x f x f x f x ≥⎧=⎨<⎩,求()g x 在[]2,4x ∈时的最小值.19.设L 为曲线C:ln xy x=在点(1,0)处的切线. (I)求L 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线L 的下方. (2013年高考北京卷(理))20.设a ∈R ,函数233)(x ax x f -=,2=x 是函数)(x f y =的极值点. (Ⅰ)求a 的值;(Ⅱ)求函数233)(x ax x f -=在区间[]1,5-上的最值.21.已知函数()ln 3f x a x ax =--(a R ∈). (1)求函数()f x 的单调区间;(2)若函数()y f x =的图象在点(2,(2))f 处的切线的倾斜角为4π,对于任意[]1,2t ∈,函数32()()2m g x x x f x ⎡⎤'=++⎢⎥⎣⎦在区间(t ,3)总不是单调函数,求m 的取值范围.22.已知函数()ln f x x x a x =--.(1)若a =1,求函数()f x 在区间[1,]e 的最大值; (2)求函数()f x 的单调区间;(3)若()0f x >恒成立,求a 的取值范围.(本小题满分16分)23.已知函数()||x f x e bx =-,其中e 为自然对数的底. (1)当1b =时,求曲线()y f x =在x=1处的切线方程; (2)若函数()y f x =有且只有一个零点,求实数b 的取值范围;(3)当0b >时,判断函数()y f x =在区间(0,2)上是否存在极大值,若存在,求出极大值及相应实数b 的取值范围.24.已知a ,b 是实数,函数,)(,)(23bx x x g ax x x f +=+= )(x f '和)(x g '是)(),(x g x f 的导函数,若0)()(≥''x g x f 在区间I 上恒成立,则称)(x f 和)(x g 在区间I上单调性一致(1)设0>a ,若函数)(x f 和)(x g 在区间),1[+∞-上单调性一致,求实数b 的取值范围;(2)设,0<a 且b a ≠,若函数)(x f 和)(x g 在以a ,b 为端点的开区间上单调性一致,求|a -b |的最大值。

精编2019高考数学《导数及其应用》专题完整考题(含答案)

精编2019高考数学《导数及其应用》专题完整考题(含答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设函数)(x f 的定义域为R ,)0(00≠x x 是)(x f 的极大值点,以下结论一定正确的是 ( )A .)()(,0x f x f R x ≤∈∀B .0x -是)(x f -的极小值点C .0x -是)(x f -的极小值点D .0x -是)(x f --的极小值点(2013年高考福建卷(文))2.函数()()21n f x ax x =-在区间[]0,1上的图象如图所示,则n 可能是( )(A )1 (B )2 (C )3 (D )4(2011安徽文10) 二、填空题3. 若对任意的x D ∈,均有()()()12f x f x f x ≤≤成立,则称函数()f x 为函数()1f x 到函数()2f x 在区间D 上的“折中函数”.已知函数()()()11,0,f x k x g x =--= ()()1ln h x x x =+,且()f x 是()g x 到()h x 在区间[]1,2e 上的“折中函数”,则实数k 的取值范围为 .4. 设 3.2()21f x x ax bx =+++的导数为()f x ',若函数()y f x '=的图像关于直线12x =-对称,且(1)0f '=.(1)求实数,a b 的值; (2)求函数()f x 的极值.5.函数2()l n 1f x a x x=++在[,)e +∞上是减函数,则实数a 的取值范围是 .6.332++=x x y 在点x=3处的导数是___________ 7.曲线12x y x +=-在x=1处的切线与直线10x by ++=,则实数b的值为 ▲8.函数3()45f x x x =++在1x =处的切线与y 轴的交点为 。

9.函数()f x 的定义域为R ,且(1)2f =,若'()3f x >对x R ∈恒成立,则不等式()31f x x >-的解集为 .10. 在同一平面直角坐标系中,已知函数()y f x =的图象与xy e =的图象关于直线y x =对称,则函数()y f x =对应的曲线在点(,()e f e )处的切线方程为 ▲ .11.设曲线1*()n y xn N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a +++的值为 . (2009陕西卷理)三、解答题12.如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.千米)【答案及解析】【点评】本题主要考查二次函数的图象与性质以及求解函数最值问题.在利用导数求解函数的最值问题时,要注意增根的取舍,通过平面几何图形考查函数问题时,首先审清题目,然后建立数学模型,接着求解数学模型,最后,还原为实际问题.本题属于中档题,难度适中.13.某集团为了获得更大的收益,每年要投入一定的资金用于广告促销.经调查投入广告费t (百万元),可增加销售额约为-t 2+5t (百万元)(0≤t ≤5).(1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?(2)现该公司准备共投入3百万元,分别用于广告促销和技术改造.经预测,每投入技术改造费x (百万元),可增加的销售额约为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该公司由此获得的收益最大?(注:收益=销售额-投放).14.设函数3()(0)f x ax bx c a =++≠为奇函数,其图像在点(1,(1))f 处的切线与直线670x y --=垂直,导函数()f x '的最小值为-12。

精编新版2019高考数学《导数及其应用》专题完整考试题(含标准答案)

精编新版2019高考数学《导数及其应用》专题完整考试题(含标准答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.函数y =x cos x -sin x 在下面哪个区间内是增函数( ) (A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(2004全国2理)(10)2.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )(全国二文)A .1B .2C .3D .43.已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是( )(2008福建理)二、填空题 4.曲线12ex y =在点2(4e ),处的切线与坐标轴所围三角形的面积为5. 函数32()f x x x x a =--+的极小值为52-,则实数a 的值为 ▲ . 6.直线y =a 与函数f (x )=x 3-3x 的图象有相异的三个公共点,则实数a 的取值范围是 . 7.曲线9y x=在点(3,3)M 处的切线方程为 . 8. 曲线y=2lnx 在点(e,2)处的切线与y 轴交点的坐标为_________.9.已知3()f x x ax =-在区间[1,+∞)上是单调增函数,则实数a 的最大值是 。

10.已知函数x x x f sin )(=,∈x R ,则)5(πf ,)1(f ,)(3π-f 的大小关系为 ▲11.已知函数2 1()(2) 1ax bx c x f x f x x ⎧++≥-=⎨--<-⎩,其图象在点(1,(1)f )处的切线方程为21y x =+,则它在点(3,(3))f --处的切线方程为 ▲12.已知过点)3,9(P 的直线l 与x 轴正半轴、y 轴正半轴分别交于A 、B 两点, 则距离AB 最小值为 。

13.曲线13++=x x y 在点(1,3)处的切线方程是 。

最新精编2019高考数学《导数及其应用》专题考核题完整版(含答案)

最新精编2019高考数学《导数及其应用》专题考核题完整版(含答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设a <b,函数2()()y x a x b =--的图像可能是(2009安徽卷理)[解析]:/()(32)y x a x a b =---,由/0y =得2,3a b x a x +==,∴当x a =时,y 取极大值0,当23a b x +=时y 取极小值且极小值为负。

故选C 。

或当x b <时0y <,当x b >时,0y >选C二、填空题2.函数()[]sin ,0,3f x x x ππ⎛⎫=+∈ ⎪⎝⎭的单调减区间为 .3.已知函数1)2(33)(23++++=x a ax x x f 既有极大值又有极小值,则实数a 的取值范围是 .4.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -= .答案 325.如果质点A 的位移S 与时间t 满足方程32S t =(位移单位:米,时间单位:秒),则质点在3t =时的瞬时速度为 ▲ 米/秒.6.设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是 7.已知函数()'(0)cos sin f x f x x =+,则函数()f x 在02x π=处的切线方程是 .8.)(x f ,)(x g 分别是定义在R 上的奇函数和偶函数,当0<x 时,0)(')()()('>+x g x f x g x f ,且0)3(=-g ,则不等式0)()(<x g x f 的解集是____9.函数2log y x =的单调递减区间是 ▲ .10.曲线32242y x x x =--+在点(13)-,处的切线方程是 .答案 520x y +-=11.点()00,y x P 是曲线C :xy 1=(x >0)上的一个动点,曲线C 在点P 处的切线与x 轴、y 周分别交与B A ,两点,点O 是坐标原点。

精编2019高考数学《导数及其应用》专题考核题完整版(含标准答案)

精编2019高考数学《导数及其应用》专题考核题完整版(含标准答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.由曲线y =2y x =-及y 轴所围成的图形的面积为( ) A.103 B.4 C.163D.6(2011全国理9) 2.设函数()f x 在R 上可导,其导函数为,()f x ,且函数)(')1(x f x y -=的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f(B )函数()f x 有极大值(2)f -和极小值(1)f(C )函数()f x 有极大值(2)f 和极小值(2)f -(D )函数()f x 有极大值(2)f -和极小值(2)f3.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )(全国二文) A .1B .2C .3D .4二、填空题4.已知A 是曲线C 1:y =a x -2(a >0)与曲线C 2:x 2+y 2=5的一个公共点.若C 1在A 处的切线与C 2在A 处的切线互相垂直,则实数a 的值是 ▲ .5.函数()2x f x x e =-的单调减区间是 ▲6.已知(0)1,()(1)()f f n nf n n N +==-∈,则(4)f = ▲ .7.已知函数()cos(2)(0)f x x θθπ=+<<,若'()()y f x f x =的图象关于6x π=对称,则θ= .8.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))9.已知函数c bx ax x x f +++=223)(23在区间)1,0(内取极大值,在区间)2,1(内取极小值,则22)3(b a z ++=的取值范围是________________10.已知函数2()ln f x a x x =-,若对区间(0,1)内任取两个实数p ,q ,且p ≠q ,不等式(1)(1)1f p f q p q +-+>-恒成立,则实数a 的取值范围是 . 11.函数()2sin f x x x k =-+在区间0,2π⎡⎤⎢⎥⎣⎦上有两个零点,则实数k 的取值范围是 ▲ .12.已知定义在R 上的可导函数()y f x =的导函数为/()f x ,满足/()()f x f x <且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为 ▲ .13.若直线2+=kx y 与曲线3y x mx n =++相切于点)4,1(,则n = ▲ .14.若直线2+=kx y 与曲线3y x mx n =++相切于点)4,1(,则n = ▲ .15.点P 是曲线2ln y x x =-上任意一点,则点P 到直线2y x =-三、解答题16.已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=. ⑴求函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值;⑶若过点()()2,2M m m ≠可作曲线()y f x =的三条切线,求实数m 的取值范围.(本题满分15分)17.已知x x b ax x f ln 42)(+-=在311==x x 与处都取得极值. (1)求a 、b 的值;(2)若对],1[e e x ∈时,c x f ≥)(恒成立,求实数c 的取值范围.18.已知函数()3x f x e a =+( 2.71828e =…是自然对数的底数)的最小值为3. ⑴ 求实数a 的值;⑵ 已知b R ∈且0x <,试解关于x 的不等式()22ln ln3(21)3f x x b x b -<+--; ⑵ 已知m Z ∈且1m >.若存在实数[1,)t ∈-+∞,使得对任意的[1,]x m ∈,都有()3f x t ex +≤,试求m 的最大值.(本小题满分16分)19.(本小题14分)设函数32()f x x bx cx =++,'()()()g x f x f x =-,若()g x 是奇函数,求,b c 的值.20.已知函数()ln ()f x x a x a R =-∈(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程;(2)求函数()f x 的极值. (2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))21.(I)证明:当[]0,1sin ;2x x x x ∈≤≤时,(II)若不等式()[]3222cosx 40,12x ax x x x a ++++≤∈对恒成立,求实数的取值范围. (2013年高考辽宁卷(文))请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.已知函数()ln 3f x a x ax =--(a R ∈).(1)求函数()f x 的单调区间;(2)若函数()y f x =的图象在点(2,(2))f 处的切线的倾斜角为4π,对于任意[]1,2t ∈,函数32()()2m g x x x f x ⎡⎤'=++⎢⎥⎣⎦在区间(t ,3)总不是单调函数,求m 的取值范围.23.已知函数f (x)=(m -3)x3 + 9x.(1)若函数f (x)在区间(-∞,+∞)上是单调函数,求m 的取值范围;(2)若函数f (x)在区间[1,2]上的最大值为4,求m 的值.(本小题满分16分)24.已知函数2()ln ,()(1)(1).f x x g x m x x m ==+-≠-(I )若函数()()y f x y g x ==与的图像在公共点P 处有相同的切线,求实数m 的值和P 的坐标;(II )若函数()()y f x y g x ==与的图像有两个不同的交点M 、N ,求实数m 的取值范围;(III )在(II )的条件下,过线段MN 的中点作x 轴的垂线分别与()()f x g x 的图象和的图像交于S 、T 点,以S 点为切点作1(),f x l 的切线以T 为切点作()g x 的切线2l ,是否存在实数m ,使得12//l l ?如果存在,求出m 的值;如果不存在,请说明理由。

最新版精编2019高考数学《导数及其应用》专题完整考题(含答案)

最新版精编2019高考数学《导数及其应用》专题完整考题(含答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是 ( )(2012重庆理)A .函数()f x 有极大值(2)f 和极小值(1)fB .函数()f x 有极大值(2)f -和极小值(1)fC .函数()f x 有极大值(2)f 和极小值(2)f -D .函数()f x 有极大值(2)f -和极小值(2)f2.函数31y ax =+的图象与直线y x =相切,则a =( )A .18B .14C .12D .1(2005浙江文) 二、填空题3.用铁皮制作一个无盖的圆锥形容器,已知该圆锥的高为10cm ,体积为31000cm 3π.则制作该容器需要铁皮面积为 2cm 取1.414,π取3.14,结果保留整数)4. 已知a > 0,方程x 2-2ax -2a ln x =0有唯一解,则a = .125. 函数()x f x x=e 的单调递增区间是 . (1,)+∞(或[1,)+∞) 6.(文科)已知存在实数a ,满足对任意的实数b ,直线y=﹣x+b 都不是曲线y=x 3﹣3ax 的切线,则实数a 的取值范围是 .7.曲线2y 21x x =-+在点(1,0)处的切线方程为________8.已知函数()sin f x x =的导数为()f x ',则(0)f '= .9.设ax x x x f 22131)(23++-=(20<<a ),若)(x f 在]4,1[上的最小值为316-,则)(x f 在区间]4,1[上的最大值为 .10.点()00,y x P 是曲线C :xy 1=(x >0)上的一个动点,曲线C 在点P 处的切线与x 轴、y 周分别交与B A ,两点,点O 是坐标原点。

最新版精编2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

最新版精编2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设函数()f x 的定义域为R,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是 ( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 (2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))2.对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( C ) A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) C. f (0)+f (2)≥2f (1) D. f (0)+f (2)>2f (1)3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++=(2006安徽理)二、填空题4.函数x x x f sin )(3+=的导函数是 ☆ ;5.已知可导函数)(x f )(R x ∈的导函数)(x f '满足)(x f '>)(x f ,则不等式()(1)x e f x f e >的解集是 ▲ .6.曲线y =e x在点A(0,1)处的切线斜率为________.7.设函数c b a c x b x a x x f ,,)()()(()(---=是两两不等的常数),则()()()a b c f a f b f c ++='''________. 8. 如果函数f (x )=2x 2-ln x 在定义域的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是_______________________.9.如图,已知矩形ABCD 的一边在x 轴上,另两个顶点C ,D 落在二次函数2()4f x x x =- 上.求这个矩形面积的最大值。

精编新版2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

精编新版2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=(2006安徽理)二、填空题2.如图,函数)(x f y =的图象在点则(2)(2)f f '+= ★ .983. 函数)42sin(π+-=x y 的单调增区间是 ▲4.曲线2y 21x x =-+在点(1,0)处的切线方程为________5. 过坐标原点作函数ln y x =图像的切线,则切线斜率为 . 6.设ax x x x f 22131)(23++-=(20<<a ),若)(x f 在]4,1[上的最小值为316-,则)(x f 在区间]4,1[上的最大值为 .7.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))8.已知32()'(1)3'(1)f x x x f xf =++-,则'(1)'(1)f f +-的值为___▲___.(第11题图)9.函数y =f (x )的图像在点M (1, f (1))处的切线方程是y =3x -2,则f (1)+ f ′(1)= 。

10.已知函数x ax x f ln )(+=,其中a 为实常数,设e 为自然对数的底数.若)(x f 在区间],0(e 上的最大值为3-,则a 的值为11.已知函数()c x x x x f +--=22123,若对任意[]2,1-∈x 都有()2c x f <,则c 的取值范围是 .[来12.函数]32,32[sin 2ππ--=在区间x x y 上的最大值为 ▲ . 关键字:求导;求最值13.与直线2-=x y 平行且与曲线x x y ln 2-=相切的直线方程为 ▲ .14.设()sin (,)44f x x x x ππ⎡⎤=+∈-⎢⎥⎣⎦, ()f x 的最大值为 。

最新版精编2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

最新版精编2019高考数学《导数及其应用》专题考核题完整版(含参考答案)

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.函数31y ax =+的图象与直线y x =相切,则a =( )A .18B .14C .12D .1(2005浙江文)2.右图是函数f (x )=x 2+ax +b 的部分图象,则函数()ln '()g x x f x =+的零点所在的区间是( )A .11(,)42B .(1,2)C .1(,1)2D .(2,3)答案 C 二、填空题 3.曲线2xy x =+在点(-1,-1)处的切线方程为 ▲ 。

4.设函数f (x )=ax +sin x +cos x .若函数f (x )的图象上存在不同的两点A ,B ,使得曲线y =f (x )在点A ,B 处的切线互相垂直,则实数a 的取值范围为 ▲ .[-1,1] 5.下列关于函数2()(2)xf x x x e =-的判断正确的是________①()0f x >的解集是{}|02x x <<; ②(f 是极小值,f 是极大值; ③()f x 既没有最小值,也没有最大值.6.函数()ln f x x x =的极小值为________________.7.设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 .8.函数()f x 在定义域R 内可导,若()(2)f x f x =-,且当(,1)x ∈-∞时,(1)'()0x f x -<,设1(0),(),(3)2a fb fc f ===,则,,a b c 的大小关系为c <a<b.提示:依题意得,当1x <时,有'()0f x >,()f x 为增函数; 又(3)(1)f f =-,且11012-<<<,因此有1(1)(0)()2f f f -<<, 即有1(3)(0)()2f f f <<,c a b <<.9.若函数b bx x x f 36)(3+-=在(0,1)内有极小值,则实数b 的取值范围是 ▲ .10.已知函数x ax x f ln )(+=,其中a 为实常数,设e 为自然对数的底数.若)(x f 在区间],0(e 上的最大值为3-,则a 的值为11.已知函数23)(23+-=x x x f ,若]3,2[-∈x ,则函数的值域为 ▲ .)2(3)(-='x x x f ,]0,2[-,]3,2[上增,)2,0(上减,18)2(-=-f ,2)0(=f ,2)2(-=f ,2)3(=f ,故值域为]2,18[-12.已知曲线xey =上一点P (e ,1)处的切线分别交x 轴、y 轴于A ,B 两点,O 为坐标原点,则△OAB 的面积为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是( )(2012重庆理)A .函数()f x 有极大值(2)f 和极小值(1)fB .函数()f x 有极大值(2)f -和极小值(1)fC .函数()f x 有极大值(2)f 和极小值(2)f -D .函数()f x 有极大值(2)f -和极小值(2)f2.f(x)是定义在(0,+∞)上的非负可导函数,且满足()()0xf x f x '+≤,对任意正数a 、b ,若a <b ,则必有 A .af(b) ≤bf(a) B .bf(a) ≤af(b) C .af(a) ≤f(b)D .bf(b) ≤f(a)二、填空题3.函数)(x f 在定义域R 内可导,若)2()(x f x f -=,且当)1,(-∞∈x 时,(1)()0x f x '-<, 设)3(),21(),0(f c f b f a ===,则c b a ,,的大小关系为 .4.若3()3f x ax x =-在R 上是单调函数,则a 的取值范围为_____▲ __ 5. 函数()ln f x x x =+的导数是'()f x = ▲ .6.已知函数f (x )=3231x ax ax -++在区间(,)-∞+∞内既有极大值,又有极小值,则实数a 的取值范围是___________7.设函数32()2ln f x x ex mx x =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是 .8.曲线12x y x +=-在x=1处的切线与直线10x by ++=,则实数b的值为 ▲9.已知函数()f x 满足(ln )f x x =,则(1)f = .10.设函数()2ln f x x x =+,若曲线()y f x =在点()()1,1f 处的切线方程为y ax b =+,则a b += .11.已知函数()sin f x x x =-,则()f x '= ▲ . 三、解答题12.某公司需制作容积为216 ml 的长方体形饮料盒,饮料盒底面的长是宽的2倍.当饮料盒底面的宽为多少时,才能使它的用料最省? (本题满分10分)13.已知二次函数c bx ax x f ++=2)(的图象如图所示,t t t t y l ,20(8:21≤≤+-=其中直线为常数);2:2=x l .若直线l 1、l 2与函数f (x )的图象以及l 1,y 轴与函数f (x )的图象所围成的封闭图形如阴影所示. (1)求a 、b 、c 的值(2)求阴影面积S 关于t 的函数S (t )的解析式;14.已知函数()1ln xf x x ax-=+ (1) 若函数()f x 在[)1,+∞为增函数,求正实数a 的取值范围; (2) 当1a =时,求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(3) 当1a =时,求证对大于1的任意正整数1111,ln .234n n n>++++15.已知二次函数g (x )对任意实数x 都满足g (x -1)+g (1-x )=x 2-2x -1,且g (1)=-1.令f (x )=g ⎝⎛⎭⎫x +12+m ln x +98(m ∈R ,x >0). (1)求g (x )的表达式;(2)若∃x >0使f (x )≤0成立,求实数m 的取值范围; (3)设1<m ≤e ,H (x )=f (x )-(m +1)x ,证明:对∀x 1,x 2∈[1,m ],恒有|H (x 1)-H (x 2)|<1.16.设实数0,0a b >>,且满足1a b += (1)求22log log a a b b +的最小值; (2)设1,3a b <<求证:(9)(9)b aa b >17.某商店经销一种世博会纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交a 元(a 为常数,25a ≤≤)的税收.设每件产品的售价为x 元(3541x ≤≤),根据市场调查,日销售量与xe (e 为自然对数的底数)成反比例.已知每件产品的日售价为40元时,日销售量为10件.(1)求该商店的日利润()L x 元与每件产品的日售价x 元的函数关系式;(2)当每件产品的日售价为多少元时,该商品的日利润()L x 最大,并求出()L x 的最大值.18.已知函数()e xf x mx x =-∈R ,.(1)若e m =,试确定函数()f x 的单调区间;(2)若0m >,且对于任意x ∈R ,()0f x >恒成立,试确定实数m 的取值范围;(3)设函数()()()F x f x f x =+-,求证:(1)(2)F F (1)2()(e 2)()nn F n n +*>+∈N .(2010广州惠州一模)关键字:求单调区间;恒成立问题;求参数的取值范围19.已知函数2'()21(),()()f x x ax a R f x f x =++∈是的导函数。

(1)若[2,1]x ∈--,不等式'()()f x f x ≤恒成立,求a 的取值范围; (2)解关于x 的方程'()|()|f x f x =;(3)设函数'''(),()()()(),()()f x f x f xg x f x f x f x ⎧≥⎪=⎨<⎪⎩,求()[2,4]g x x ∈在时的最小值;20. 已知函数21()22f x x x =-,()log a g x x =。

如果函数()()()h x f x g x =+没有极值点,且/()h x 存在零点。

(1)求a 的值;(2)判断方程()2()f x g x +=根的个数并说明理由;(3)设点1122(,), (,)A x y B x y 12()x x <是函数()y g x =图象上的两点,平行于AB 的切线以00(,)P x y 为切点,求证:102x x x <<。

21.已知函数f (x )=12m (x -1)2-2x +3+ln x ,m ∈R .(1)当m =0时,求函数f (x )的单调增区间;(2)当m >0时,若曲线y =f (x )在点P (1,1)处的切线l 与曲线y =f (x )有且只有一个公共点,求实数m 的值.(本小题满分14分)22.已知函数()2a f x x x=+,()ln g x x x =+,其中0a >.(1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围.23.已知函数2()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+.(Ⅰ)求,a b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值. (2013年高考课标Ⅰ卷(文))(本小题满分共12分)24.设L 为曲线C:ln xy x=在点(1,0)处的切线. (I)求L 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线L 的下方. (2013年高考北京卷(理))25.已知函数()a x x x x f +++-=9323.(1)求()x f 的单调递减区间;(2)若()x f 在区间[]2,2-上的最大值为20,求它在该区间上的最小值.26.设函数()ln f x x ax =-,a R ∈.(1)当1x =时,函数()f x 取得极值,求a 的值;(2)当102a <<时,求函数()f x 在区间[1,2]上的最大值; (3)当1a =-时,关于x 的方程22()mf x x =(0)m >有唯一实数解,求实数m 的值.27.函数()f x 是在(0,+∞)上每一点处可导的函数,若()()xf x f x '>在x >0上恒成立. (1)求证:函数()()f x g x x=在(0,+∞)上是增函数; (2)当120,0x x >>时,证明:()()()1212f x f x f x x +<+ ;28.已知函数2()21()f x x ax a R =++∈,'()f x 是()f x 的导函数 (1)若[2,1]x ∈--,不等式()'()f x f x ≤恒成立,求a 的取值范围; (2)解关于x 的方程()'()f x f x =;(3)设函数'(),()'()()(),()'()f x f x f xg x f x f x f x ≥⎧=⎨<⎩,求()g x 在[]2,4x ∈时的最小值.29.已知函数32()f x x x b =-++,()ln g x a x =. (1)若()f x 的极大值为427,求实数b 的值; (2)若对任意[]1,x e ∈,都有2()(2)g x x a x -++≥恒成立,求实数a 的取值范围;30.设函数2()(2)ln f x x a x a x =---.(1)求函数()f x 的单调区间;(2)若函数有两个零点,求满足条件的最小正整数a 的值;(3)若方程()f x c =有两个不相等的实数根12,x x ,求证:12()02x x f +'>.(本小题满分16分)。

相关文档
最新文档