2015年湖北省襄阳市中考数学试卷解析
2015-2016年湖北省襄阳市樊城区九年级(上)期末数学试卷和解析答案
2015-2016学年湖北省襄阳市樊城区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列方程中,是关于x地一元二次方程地是()A.2y2+y﹣1=0 B.﹣2x=1 C.ax2+bx+c=0 D.x2=02.(3分)下列汽车标志可以看作是中心对称图形地是()A.B.C.D.3.(3分)已知双曲线y=上有一点P(2,﹣3),则点A(6,1)、B(﹣2,3)、C(,﹣12)、D(﹣7,1)中,在该双曲线上地还有()A.点A、B B.点A、C C.点B、C D.点B、D4.(3分)已知x2﹣2x﹣1=0,则2x2﹣4x地值为()A.﹣2 B.2 C.﹣2或6 D.2或65.(3分)某商品连续两次降价10%后地价格是81元,则该商品原来地价格是()A.100元B.90元C.810元D.819元6.(3分)将抛物线y=﹣(x﹣2)2向右平移1个单位,再向下平移2个单位后,得到地抛物线解析式为()A.y=﹣(x﹣1)2+2 B.y=﹣(x﹣1)2﹣2 C.y=﹣(x﹣3)2+2 D.y=﹣(x﹣3)2﹣27.(3分)如图,CD为⊙O地直径,且CD⊥弦AB,∠AOC=50°,则∠B大小为()A.25°B.30°C.40°D.65°8.(3分)如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD地个数为()A.1 B.2 C.3 D.49.(3分)点O是△ABC地外心,点I是△ABC地内心,若∠BIC=145°,则∠BOC 地度数为()A.110°B.125°C.130° D.140°10.(3分)已知圆锥地高线长为4cm,底面半径为3cm,则此圆锥则面展开图地面积为()A.12πcm2B.13πcm2C.14πcm2D.15πcm211.(3分)给出下列函数①y=2x;②y=﹣x+1;③y=(x>0);④y=x2(x<﹣1)其中y随x地增大而减小地函数是()A.①②B.①③C.②④D.②③④12.(3分)二次函数y=ax2+b(b>0)与反比例函数y=在同一坐标系中地图象可能是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)13.(3分)如图,点A在双曲线y=上,AB⊥x轴于点B,且△AOB地面积是2,则k地值是.14.(3分)如图,方格纸中地每个小方格都是边长为1个单位长度地正方形,每个小正方形地顶点叫格点.△ABC地顶点都在方格地格点上,则cosA=.15.(3分)已知α、β是关于x地一元二次方程地x2+(2m+3)x+m2=0两个不相等地实数根,且满足α+β+αβ=0,则m地值是.16.(3分)网球被抛出后,距离地面地高度h(米)和飞行时间t(秒)满足函数关系式h=﹣t2+6t,则网球在飞行中距离地面地最大高度是.17.(3分)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若P在线段CA 地延长线上,且∠ABP=30°,则CP地长为.三、解答题(本大题共9小题,共69分)18.(6分)用两种不同地方法解下列方程:x2﹣4x=12.19.(4分)图①、图②均为7×6地正方形网格,点A、B、C在格点上.(1)在图①中确定格点D,并画出以A、B、C、D为顶点地四边形,使其为轴对称图形.(画一个即可)(2)在图②中确定格点E,并画出以A、B、C、E为顶点地四边形,使其为中心对称图形.(画一个即可)20.(5分)如图,一次函数y1=﹣x+2地图象与反比例函数y2=地图象相交于A,B两点,与x轴相交于点C,已知点B地纵坐标为﹣2.(1)求反比例函数地解析式;地面积为6,则A(,);(2)已知S△AOB(3)当y1<y2时,直接写出x地取值范围.21.(7分)已知:△ABC是⊙O地内接正三角形,P为弧BC上一点(与点B、C 不重合).(1)如图1,若点P是弧BC地中点,则PB+PC PA(填“>、=、<”);(2)如图2,若点P在弧BC上移动时,(1)地结论还成立吗?请说明理由.22.(7分)如图,某农场要建一个长方形地养鸡场,鸡场地一边靠墙(墙长18m),另三边用木栏围成,木栏长35m,鸡场地面积能达到180m2吗?如果能,请你给出设计方案;如果不能,请说明理由.23.(8分)如图,已知P是正方形ABCD内一点,以点B为旋转中心,将△ABP 按顺时针方向旋转使点A与点C重合,这时P点旋转到G点.(1)设AB地长为a,PB地长为b(b<a),在图中用阴影标出△ABP旋转到△CBG地过程中,边PA所扫过区域地面积,并用含a、b地式子表示它;(2)若PA=,PB=1,PC=2,连接PG,试猜想△PGC地形状,并说明理由.24.(10分)家乐福超市在我市开业时,玩具专柜新到一种儿童益智玩具,购进时地成本是20元/件,当超市地销售单价是30元/件时,月销售量是720件,试销后分析发现:销售单价每上涨1元,月销售量就减少30件.(1)求月销售利润y(元)与每件玩具地上涨价格x(元)之间地函数关系式;(2)每件玩具地售价定为多少元时可使月销售利润最大?最大地月利润是多少?(3)按照物价部门地规定,每件玩具地售价不能高于35元,如果专柜想要月销售利润在8400元以上,直接写出上涨价格x(元)地取值范围.25.(10分)如图,AB是⊙O地直径,点D是⊙O上一点,∠BAD地平分线交⊙O于点C,过点C地直线与AD互相垂直,垂足为点E,直线EC与AB地延长线交于点P,连接BC,已知PB:PC=1:.(1)求证:CP是⊙O地切线;(2)若⊙O地半径为r,试探究线段PB与r地数量关系并证明;(3)当r=3时,求DE地长.26.(12分)如图,矩形OABC在平面直角坐标系中,A、C两点地坐标分别为A (6,0),C(0,﹣3),直线y=﹣x与BC边相交于D点,过原点地抛物线y=ax2+bx 经过A、D两点.(1)求抛物线地解析式,并写出对称轴;(2)试判断△OCD与△ABD是否相似?并说明理由.(3)在抛物线对称轴上是否存在一点P,使得△POD为直角三角形?若存在,直接写出点P地坐标(并在“备用图”中画出P点得到地痕迹);若不存在,请说明理由.2015-2016学年湖北省襄阳市樊城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列方程中,是关于x地一元二次方程地是()A.2y2+y﹣1=0 B.﹣2x=1 C.ax2+bx+c=0 D.x2=0【解答】解:A、是关于y地一元二次方程,不符合题意;B、为分式方程,不符合题意;C、当a=0时,边上一元二次方程,不符合题意;D、只含有一个未知数,未知数地最高次数是2,二次项系数不为0,是一元二次方程,符合题意;故选D2.(3分)下列汽车标志可以看作是中心对称图形地是()A.B.C.D.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.3.(3分)已知双曲线y=上有一点P(2,﹣3),则点A(6,1)、B(﹣2,3)、C(,﹣12)、D(﹣7,1)中,在该双曲线上地还有()A.点A、B B.点A、C C.点B、C D.点B、D【解答】解:∵双曲线y=上有一点P(2,﹣3),∴﹣3=,解得k=﹣6,∵6×1=6,﹣2×3=﹣6,×(﹣12=﹣6,﹣7×1=﹣7,∴在该双曲线上地还有点B、C.故选:C.4.(3分)已知x2﹣2x﹣1=0,则2x2﹣4x地值为()A.﹣2 B.2 C.﹣2或6 D.2或6【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴2x2﹣4x=2(x2﹣2x)=2×1=2.故选B.5.(3分)某商品连续两次降价10%后地价格是81元,则该商品原来地价格是()A.100元B.90元C.810元D.819元【解答】解:设原价为x.x×(1﹣10%)2=81,解得x=100.故选:A.6.(3分)将抛物线y=﹣(x﹣2)2向右平移1个单位,再向下平移2个单位后,得到地抛物线解析式为()A.y=﹣(x﹣1)2+2 B.y=﹣(x﹣1)2﹣2 C.y=﹣(x﹣3)2+2 D.y=﹣(x﹣3)2﹣2【解答】解:∵抛物线y=﹣(x﹣2)2地顶点坐标为(2,0),∴向右平移1个单位,再向下平移2个单位后地顶点坐标是(3,﹣2)∴所得抛物线解析式是y=﹣(x﹣3)2﹣2,故选D.7.(3分)如图,CD为⊙O地直径,且CD⊥弦AB,∠AOC=50°,则∠B大小为()A.25°B.30°C.40°D.65°【解答】解:∵CD⊥AB,∴,∴∠D=∠AOC=25°,∴∠B=90°﹣25°=65°;故选:D.8.(3分)如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD地个数为()A.1 B.2 C.3 D.4【解答】解:有三个.①∠B=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等地两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等地两个三角形相似来判定;③中∠A不是已知地比例线段地夹角,不正确④可以根据两组对应边地比相等且相应地夹角相等地两个三角形相似来判定;故选:C.9.(3分)点O是△ABC地外心,点I是△ABC地内心,若∠BIC=145°,则∠BOC 地度数为()A.110°B.125°C.130° D.140°【解答】解:∵点I为△ABC地内心,∴∠IAB+∠IBA=(∠ABC+∠ACB)=180°﹣145°=35°,∴∠ABC+∠ACB=70°,∴∠A=180°﹣(∠ABC+∠ACB)=110°∵点O为△ABC地外心,作△ABC地外接圆如图,在⊙O上取一点D,连接BD、CD.∴∠D=180°﹣∠A=70°,∴∠BOC=2∠D=140°.故选D.10.(3分)已知圆锥地高线长为4cm,底面半径为3cm,则此圆锥则面展开图地面积为()A.12πcm2B.13πcm2C.14πcm2D.15πcm2【解答】解:∵圆锥地高为4cm,底面半径为3cm,∴圆锥地母线长为:=5cm,∴圆锥地侧面展开图地面积为:π×5×3=15πcm2.故选D.11.(3分)给出下列函数①y=2x;②y=﹣x+1;③y=(x>0);④y=x2(x<﹣1)其中y随x地增大而减小地函数是()A.①②B.①③C.②④D.②③④【解答】解:①y=2x,正比例函数,k>0,故y随x地增大而增大;②y=﹣x+1,一次函数,k<0,故y随x增大而减小;③y=(x>0),反比例函数,k>0在第一象限内y随x地增大而减小;④y=x2(x<﹣1),图象在对称轴右侧,y随着x地增大而增大;而在对称轴左侧,y随着x地增大而减小.故选D.12.(3分)二次函数y=ax2+b(b>0)与反比例函数y=在同一坐标系中地图象可能是()A.B.C.D.【解答】解:A、对于反比例函数y=经过第二、四象限,则a<0,所以抛物线开口向下,故A选项错误;B、对于反比例函数y=经过第一、三象限,则a>0,所以抛物线开口向上,b >0,抛物线与y轴地交点在x轴上方,故B选项正确;C、对于反比例函数y=经过第一、三象限,则a>0,所以抛物线开口向上,故C选项错误;D、对于反比例函数y=经过第一、三象限,则a>0,所以抛物线开口向上,而b>0,抛物线与y轴地交点在x轴上方,故D选项错误.故选:B.二、填空题(本大题共5小题,每小题3分,共15分)13.(3分)如图,点A在双曲线y=上,AB⊥x轴于点B,且△AOB地面积是2,则k地值是﹣4.【解答】解:∵△AOB地面积是2,∴|k|=2,∴|k|=4,解得k=±4,又∵双曲线y=地图象经过第二、四象限,∴k=﹣4,即k地值是﹣4.故答案为:﹣4.14.(3分)如图,方格纸中地每个小方格都是边长为1个单位长度地正方形,每个小正方形地顶点叫格点.△ABC地顶点都在方格地格点上,则cosA=.【解答】解:如图,由勾股定理得AC=2,AD=4,cosA=,故答案为:.15.(3分)已知α、β是关于x地一元二次方程地x2+(2m+3)x+m2=0两个不相等地实数根,且满足α+β+αβ=0,则m地值是3.【解答】解:∵关于x地一元二次方程地x2+(2m+3)x+m2=0有两个不相等地实数根,∴△=(2m+3)2﹣4m2=12m+9>0,解得:m>﹣.∵α、β是关于方程x2+(2m+3)x+m2=0地两个实数根,∴α+β=﹣(2m+3),αβ=m2.∵α+β+αβ=0,∴m2﹣2m﹣3=0,解得:m1=﹣1,m2=3.∵m>﹣,∴m=3.故答案为:3.16.(3分)网球被抛出后,距离地面地高度h(米)和飞行时间t(秒)满足函数关系式h=﹣t2+6t,则网球在飞行中距离地面地最大高度是9m.【解答】解:h=﹣t2+6t=﹣(t2﹣6t)=﹣(t2﹣6t+9)+9=﹣(t﹣3)2+9,∵﹣1<0,∴抛物线地开口向下,有最大值,当t=3时,h有最大值是9m.故答案为:9m.17.(3分)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若P在线段CA 地延长线上,且∠ABP=30°,则CP地长为6或4.【解答】解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°﹣30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB=;但不符合P在线段CA地延长线上,如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BC÷cos30°=4.故答案为:6或4.三、解答题(本大题共9小题,共69分)18.(6分)用两种不同地方法解下列方程:x2﹣4x=12.【解答】解:配方法:x2﹣4x=12,x2﹣4x+4=12+4,即(x﹣2)2=16,∴x﹣2=4或x﹣2=﹣4,解得:x1=6,x2=﹣2;因式分解法:x2﹣4x﹣12=0,(x﹣6)(x+2)=0,x﹣6=0或x+2=0,∴x1=6,x2=﹣2.19.(4分)图①、图②均为7×6地正方形网格,点A、B、C在格点上.(1)在图①中确定格点D,并画出以A、B、C、D为顶点地四边形,使其为轴对称图形.(画一个即可)(2)在图②中确定格点E,并画出以A、B、C、E为顶点地四边形,使其为中心对称图形.(画一个即可)【解答】解:(1)有以下答案供参考:.(2)有以下答案供参考:.20.(5分)如图,一次函数y1=﹣x+2地图象与反比例函数y2=地图象相交于A,B两点,与x轴相交于点C,已知点B地纵坐标为﹣2.(1)求反比例函数地解析式;地面积为6,则A(﹣2,4);(2)已知S△AOB(3)当y1<y2时,直接写出x地取值范围.【解答】解:(1)在一次函数y1=﹣x+2中,令y=﹣2,可得﹣2=﹣x+2,解得x=4,∴B(4,﹣2),把B(4,﹣2)代入反比例函数y2=,可得k=﹣2×4=﹣8,∴反比例函数地解析式为y=﹣;(2)设点A(a,b),则地面积为6,可得OC(|b|+|﹣2|)=6,由S△AOB∴×2×(|b|+2)=6,解得b=4,(负值已舍去)又∵ab=﹣8,∴a=﹣2,∴A(﹣2,4),故答案为:﹣2,4;(3)∵A(﹣2,4),B(4,﹣2),∴当y1<y2时,﹣2<x<0或x>4.21.(7分)已知:△ABC是⊙O地内接正三角形,P为弧BC上一点(与点B、C 不重合).(1)如图1,若点P是弧BC地中点,则PB+PC=PA(填“>、=、<”);(2)如图2,若点P在弧BC上移动时,(1)地结论还成立吗?请说明理由.【解答】解:(1)连OB,OC,如图∵点P是弧BC地中点,△ABC是⊙O地内接正三角形,∴AP为⊙O地直径,∴∠BPO=∠ACB,∠APC=∠ABC,∵△ABC是⊙O地内接正三角形,∴∠ACB=∠ABC=60°,∴∠BPO=∠APC=60°,∴△OBP和△OPC都是等边三角形,∴PB=PC=OP=OA,∴PB+PC=PA;故答案为=.(2)(1)地结论还成立.理由如下:在PA上截取PE=PC,∵∠APC=60°,∴△PEC为等边三角形,∴CE=CP,∠PCE=60°,而∠ACB=60°,∴∠ACE=∠BCP,而CA=CB,∴△CAE≌△CBP,∴AE=PB,∴PB+PC=PA.22.(7分)如图,某农场要建一个长方形地养鸡场,鸡场地一边靠墙(墙长18m),另三边用木栏围成,木栏长35m,鸡场地面积能达到180m2吗?如果能,请你给出设计方案;如果不能,请说明理由.【解答】解:设垂直于墙地边长为xm.依题意得:x(35﹣2x)=180,2x2﹣35x+180=0.∵△<0,∴此方程无解.答:鸡场地面积不能达到180m2.23.(8分)如图,已知P是正方形ABCD内一点,以点B为旋转中心,将△ABP 按顺时针方向旋转使点A与点C重合,这时P点旋转到G点.(1)设AB地长为a,PB地长为b(b<a),在图中用阴影标出△ABP旋转到△CBG地过程中,边PA所扫过区域地面积,并用含a、b地式子表示它S=;(2)若PA=,PB=1,PC=2,连接PG,试猜想△PGC地形状,并说明理由.【解答】解:(1)如图1,由旋转得:∠PBG=∠ABC=90°,BG=PB=b,△ABP≌△CBG,∴S=S扇形BAC +S△CBG﹣S△ABP﹣S扇形BPG,=﹣,=,故答案为:;(2)如图2,△PGC是等腰直角三角形,理由是:∵∠PBG=90°,PB=BG=1,∴△PBG是等腰直角三角形,∴PG=,△PGC中,PC=2,CG=,∴PC2=PG2+CG2,∴△PGC是直角三角形,∵CG=PG,∴△PGC是等腰直角三角形.24.(10分)家乐福超市在我市开业时,玩具专柜新到一种儿童益智玩具,购进时地成本是20元/件,当超市地销售单价是30元/件时,月销售量是720件,试销后分析发现:销售单价每上涨1元,月销售量就减少30件.(1)求月销售利润y(元)与每件玩具地上涨价格x(元)之间地函数关系式;(2)每件玩具地售价定为多少元时可使月销售利润最大?最大地月利润是多少?(3)按照物价部门地规定,每件玩具地售价不能高于35元,如果专柜想要月销售利润在8400元以上,直接写出上涨价格x(元)地取值范围.【解答】解:(1)由题意可得,y=(30+x﹣20)(720﹣30x)=﹣30x2+420x+7200,即月销售利润y(元)与每件玩具地上涨价格x(元)之间地函数关系式是y=﹣30x2+420x+7200;(2)∵y=﹣30x2+420x+7200=﹣30(x﹣7)2+8670,∴当x=7时,y取得最大值,此时y=8670,∴x+30=37,答:每件玩具地售价定为37元时,可使月销售利润最大,最大地月利润是8670元;(3)由题意可得,,解得,4<x≤5,答:上涨价格x(元)地取值范围是4<x≤5.25.(10分)如图,AB是⊙O地直径,点D是⊙O上一点,∠BAD地平分线交⊙O于点C,过点C地直线与AD互相垂直,垂足为点E,直线EC与AB地延长线交于点P,连接BC,已知PB:PC=1:.(1)求证:CP是⊙O地切线;(2)若⊙O地半径为r,试探究线段PB与r地数量关系并证明;(3)当r=3时,求DE地长.【解答】解:(1)如图1,连接OC,∴OA=OC,∴∠OAC=∠OCA,∵AC是∠BAD地平分线,∴∠CAE=∠CAB,∴∠CAE=∠OCA,∴OC∥AE,∵PC⊥AE,∴PC⊥OC,∵点C在⊙O上,∴PC是⊙O地切线;(2)PB=r,理由:由(1)知,PC是⊙O地切线,∴∠PCB=∠PAC,∵∠A=∠A,∴△PBC∽△PCA,∴=,设PB=x,则PC=x,∴,∴PA=3x,∴PA=PB+AB=x+2r=3x,∴r=x,∴PB=r,(3)如图2,连接OC,由(1)知,OC⊥PC,由(2)知,BP=r=OB,∴BC=OP=r,AC=BC=r=3,在Rt△ABC中,sin∠BAC===,∴∠BAC=30°,∴∠BAD=2∠BAC=60°,连接BD,∴∠ADB=90°,∴∠ABD=30°,∴AD=AB=r=3.在Rt△ACE中,∠ACE=30°,cos∠CAE==,∴AE=3×cos30°=,∴DE=AE﹣AD=﹣3=.26.(12分)如图,矩形OABC在平面直角坐标系中,A、C两点地坐标分别为A (6,0),C(0,﹣3),直线y=﹣x与BC边相交于D点,过原点地抛物线y=ax2+bx 经过A、D两点.(1)求抛物线地解析式,并写出对称轴;(2)试判断△OCD与△ABD是否相似?并说明理由.(3)在抛物线对称轴上是否存在一点P,使得△POD为直角三角形?若存在,直接写出点P地坐标(并在“备用图”中画出P点得到地痕迹);若不存在,请说明理由.【解答】解:(1)∵四边形OABC是矩形,∴OA∥BC,∵C(0,﹣3),∴D点地纵坐标为﹣3,∵直线y=﹣x与BC边相交于D点,把A(6,0),D(4,﹣3)代入y=ax2+bx得,,解得:,∴抛物线地解析式为y=x2﹣x,其对称轴为直线x=3;(2)∵OC=3,CD=4,∴AB=OC=3,BD=2,∵,=,∴,∴△OCD与△ABD不相似;(3)设P(3,m),∴OP2=9+m2,PD2=(4﹣3)2+(﹣3﹣m)2=m2+6m+10,OD2=32+42=25,∴①当OP2+PD2=OD2时,即9+m2+m2+6m+10=25,解得:m=,②当OP2+OD2=PD2时,即9+m2+25=m2+6m+10,解得:m=4,③当OP2=OD2+PD2时,即9+m2=m2+6m+10+25,解得:m=﹣,∴点P地坐标为:(3,),(3,),(3,4),(3,﹣).赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2015学年湖北省襄阳市襄城区八年级(上)期末数学试卷带解析
2014-2015学年湖北省襄阳市襄城区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±12.(3分)下列公式中是最简分式的是()A.B.C.D.3.(3分)下列计算正确的是()A.x2+x4=x6B.x•x2=x3C.x6÷x3=x2D.(﹣x2y)2=x6y34.(3分)PM2.5是指大气中直径0.0000025米的颗粒物,将0.0000025用科学记数法表示()A.2.5×10﹣7B.25×10﹣4C.25×10﹣7D.025×10﹣55.(3分)下列轴对称图形中,对称轴最多的是()A.等腰直角三角形 B.圆C.正方形D.正三角形6.(3分)若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对7.(3分)计算:()2014×()2015的结果是()A.B.C.()4029D.()20298.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°9.(3分)下列多项式能分解因式的是()A.x2+y2B.﹣x2﹣y2 C.﹣x2+2xy﹣y2D.x2﹣xy+y210.(3分)已知a+=,则a﹣的值为()A.2 B.6 C.±D.±2二、填空题(共6小题,每小题3分,满分18分)11.(3分)当x时,分式有意义.12.(3分)已知是一个完全平方式,那么k的值为.13.(3分)一个长方形的面积是3(x2﹣y2),若它的一边长为(x+y),则它的周长是.14.(3分)已知P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2015的值为.15.(3分)如图,点A,B在数轴上,它们所对应的数分别是﹣3和,且点A,B到原点的距离相等,则x=.16.(3分)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠A=30°,DE=1,则DF的长是.三、解答题(共8小题,满分52分)17.(5分)如图是一正方体的展开图,若正方体相对两个面上的式子的值相等,求下列代数式的值:(1)求27x的值;(2)求32x﹣y的值.18.(7分)(1)请你先化简代数式+÷a,再从0,3,﹣1中选择一个适合a的值代入求值.(2)先化简,再求值:(x+2y)(x﹣2y)+(x+2y)2﹣xy,其中x=﹣1,y=﹣.19.(5分)如图,已知△ABC中∠A=60°,AB=2cm,AC=6cm,点P、Q分别是边AB、AC上的动点,点P从顶点A沿AB以1cm/s的速度向点B运动,同时点Q 从顶点C沿CA以3cm/s的速度向点A运动,当点P到达点B时点P、Q都停止运动.设运动的时间为t秒.(1)当t为何值时AP=AQ;(2)是否存在某一时刻使得△APQ是直角三角形?若存在,求出t的值;若不存在,请说明理由.20.(6分)两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9),另一位同学因看错了常数项而分解成2(x﹣2)(x ﹣4),请将原多项式分解因式.21.(6分)如图,在△ABC中,AB=AC,过BC上一点D作BC的垂线,交BA的延长线于点P.交AC于点Q.试判断△APQ的形状,并证明你的结论.22.(7分)如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D 处(如图1).(1)若折叠后点D恰为AB的中点(如图2),则θ=;(2)若θ=45°,四边形OABC的直角∠OCB沿直线l折叠后,点B落在点四边形OABC的边AB上的E处(如图3),求a的值.23.(8分)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?24.(8分)如图,四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,E是AB 延长线上一点,且CE⊥AE,CF⊥AD.(1)求证:BE=DF;(2)试探究线段AB、AD、AF之间的数量关系,并说明理由.2014-2015学年湖北省襄阳市襄城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±1【解答】解:由x2﹣1=0,得x=±1.①当x=1时,x﹣1=0,∴x=1不合题意;②当x=﹣1时,x﹣1=﹣2≠0,∴x=﹣1时分式的值为0.故选:C.2.(3分)下列公式中是最简分式的是()A.B.C.D.【解答】解:A、=,故本选项错误;B、=2(b﹣a),故本选项错误;C、=x+y,故本选项错误;D、是最简分式,故本选项正确;故选D.3.(3分)下列计算正确的是()A.x2+x4=x6B.x•x2=x3C.x6÷x3=x2D.(﹣x2y)2=x6y3【解答】解:A、x2+x4不是同类项不能合并,故错误;B、x•x2=x3,故正确;C、x6÷x3=x4,故错误;D、(﹣x2y)2=x4y2,故错误;故选B.4.(3分)PM2.5是指大气中直径0.0000025米的颗粒物,将0.0000025用科学记数法表示()A.2.5×10﹣7B.25×10﹣4C.25×10﹣7D.025×10﹣5【解答】解:将0.0000025用科学记数法表示为2.5×10﹣6.故选:B.5.(3分)下列轴对称图形中,对称轴最多的是()A.等腰直角三角形 B.圆C.正方形D.正三角形【解答】解:等腰直角三角形有1条对称轴,圆有无数条对称轴,正方形有4条对称轴,正三角形有3条对称轴,所以,对称轴最多的是圆.故选B.6.(3分)若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对【解答】解:①11cm是腰长时,腰长为11cm,②11cm是底边时,腰长=(26﹣11)=7.5cm,所以,腰长是11cm或7.5cm.故选C.7.(3分)计算:()2014×()2015的结果是()A.B.C.()4029D.()2029【解答】解:()2014×()2015=()2014×()2014×=(×)2014×=,8.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°【解答】解:∵△ABC中,AC=AD,∠DAC=80°,∴∠ADC==50°,∵AD=BD,∠ADC=∠B+∠BAD=50°,∴∠B=∠BAD=()°=25°.故选C.9.(3分)下列多项式能分解因式的是()A.x2+y2B.﹣x2﹣y2 C.﹣x2+2xy﹣y2D.x2﹣xy+y2【解答】解:A.不能分解;B.﹣x2﹣y2 =﹣(x2+y2),不能分解;C.﹣x2+2xy﹣y2=﹣(x2﹣2xy+y2)=﹣(x﹣y)2,故能够分解;D.不能分解.故选C.10.(3分)已知a+=,则a﹣的值为()A.2 B.6 C.±D.±2【解答】解:∵a+=,∴(a+)2=10,∴a2+2+=10,则a2+=8,∴(a﹣)2=a2+﹣2=8﹣2=6,故a﹣的值为:±.二、填空题(共6小题,每小题3分,满分18分)11.(3分)当x≠时,分式有意义.【解答】解:根据题意得:3x﹣5≠0.解得:x≠,故答案为x.12.(3分)已知是一个完全平方式,那么k的值为±1.【解答】解:∵是一个完全平方式,∴(﹣)2=,∴k=±1.故答案为±1.13.(3分)一个长方形的面积是3(x2﹣y2),若它的一边长为(x+y),则它的周长是8x﹣4y.【解答】解:3(x2﹣y2)÷(x+y),=3(x+y)(x﹣y)÷(x+y),=3(x﹣y),周长=2[3(x﹣y)+(x+y)],=2(3x﹣3y+x+y),=2(4x﹣2y),=8x﹣4y.所以它的周长是:8x﹣4y.故答案为:8x﹣4y.14.(3分)已知P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2015的值为﹣1.【解答】解:∵P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,∴a﹣1=2,b﹣1=﹣5,解得:a=3,b=﹣4,∴(a+b)2015=(﹣1)2015=﹣1.故答案为:﹣1.15.(3分)如图,点A,B在数轴上,它们所对应的数分别是﹣3和,且点A,B到原点的距离相等,则x= 2.5.【解答】解:根据题意得:﹣3+=0,去分母得:﹣6+3x+1﹣x=0,解得:x=2.5,经检验x=2.5是分式方程的解.故答案为:2.5.16.(3分)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠A=30°,DE=1,则DF的长是3.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴AB=2BC,∵AB=2BD,∴BC=BD,∵在△ACB和△FDB中,,∴△ACB≌△FDB,(ASA)∴DF=AC,BD=BC,∵DE垂直平分AB,∴BE=AE,∴∠EBA=∠A=30°,∴BE=2DE=2,∴BC=,∴DF=AC=BC=3,故答案为3.三、解答题(共8小题,满分52分)17.(5分)如图是一正方体的展开图,若正方体相对两个面上的式子的值相等,求下列代数式的值:(1)求27x的值;(2)求32x﹣y的值.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“3x”与“2”是相对面,“3y”与“4”是相对面,∵正方体相对两个面上的式子的值相等,∴3x=2,3y=4,(1)27x=(3x)3=23=8;(2)32x﹣y=32x÷3y=(3x)2÷3y=22÷4=4÷4=1.18.(7分)(1)请你先化简代数式+÷a,再从0,3,﹣1中选择一个适合a的值代入求值.(2)先化简,再求值:(x+2y)(x﹣2y)+(x+2y)2﹣xy,其中x=﹣1,y=﹣.【解答】解:(1)+÷a====,当a=3时,原式=﹣;(2)(x+2y)(x﹣2y)+(x+2y)2﹣xy=x2﹣4y2+x2+4xy+4y2﹣xy=2x2+3xy,当x=﹣1,y=﹣时,原式==3.19.(5分)如图,已知△ABC中∠A=60°,AB=2cm,AC=6cm,点P、Q分别是边AB、AC上的动点,点P从顶点A沿AB以1cm/s的速度向点B运动,同时点Q 从顶点C沿CA以3cm/s的速度向点A运动,当点P到达点B时点P、Q都停止运动.设运动的时间为t秒.(1)当t为何值时AP=AQ;(2)是否存在某一时刻使得△APQ是直角三角形?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)由已知得:AP=t,CQ=3t,∴AQ=6﹣3t,∴t=6﹣3t,解得,∴当时,AP=AQ;(2)存在.分两种情况:①当∠APQ=90°时,∵∠A=60°,∴∠AQP=30°,∴AQ=2AP,即6﹣3t=2t,解得;②当∠AQP=90°时,此时∠APQ=30°,∴AP=2AQ,即t=2(6﹣3t),解得.综上所述,当或时△APQ为直角三角形.20.(6分)两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9),另一位同学因看错了常数项而分解成2(x﹣2)(x ﹣4),请将原多项式分解因式.【解答】解:设原多项式为ax2+bx+c(其中a、b、c均为常数,且abc≠0).∵2(x﹣1)(x﹣9)=2(x2﹣10x+9)=2x2﹣20x+18,∴a=2,c=18;又∵2(x﹣2)(x﹣4)=2(x2﹣6x+8)=2x2﹣12x+16,∴b=﹣12.∴原多项式为2x2﹣12x+18,将它分解因式,得2x2﹣12x+18=2(x2﹣6x+9)=2(x﹣3)2.21.(6分)如图,在△ABC中,AB=AC,过BC上一点D作BC的垂线,交BA的延长线于点P.交AC于点Q.试判断△APQ的形状,并证明你的结论.【解答】解:△APQ是等腰三角形.证明:∵∠QDB=∠DQC+∠C,∠PDC=∠B+∠P,又∵AB=AC,∴∠B=∠C,∴∠P=∠DQC=∠AQP,∴AP=AQ,∴△APQ是等腰三角形.22.(7分)如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D 处(如图1).(1)若折叠后点D恰为AB的中点(如图2),则θ=30°;(2)若θ=45°,四边形OABC的直角∠OCB沿直线l折叠后,点B落在点四边形OABC的边AB上的E处(如图3),求a的值.【解答】解:(1)如图2,延长ND交OA的延长线于M,∵四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,∴∠CON=∠DON=θ,∠ODN=∠C=90°,∵点D为AB的中点,∴D点为MN的中点,∴OD垂直平分MN,∴OM=ON,∴∠MOD=∠NOD=θ,∴∠θ+∠θ+∠θ=90°,∴∠θ=30°;故答案为30°;(2)如图3,作ED⊥OA于D,∵四边形OABC的直角∠OCB沿直线l折叠后,点B落在点四边形OABC的边AB 上的E处,∴AB⊥直线l,OD=OC=3,DE=BC=2,∵θ=45°,AB⊥直线l,即直线l平分∠AOC,∴∠A=45°,∴△ADE为等腰直角三角形,∴AD=DE=2,∴OA=OD+AD=3+2=5,∴a=5.23.(8分)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【解答】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000﹣1500)=105000(元);故甲公司的施工费较少.24.(8分)如图,四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,E是AB 延长线上一点,且CE⊥AE,CF⊥AD.(1)求证:BE=DF;(2)试探究线段AB、AD、AF之间的数量关系,并说明理由.【解答】(1)证明:∵AC平分∠BAD,CE⊥AB,CF⊥AD ∴CE=CF∵∠ABC+∠D=180°,∠ABC+∠EBC=180°∴∠EBC=∠D∵∠CEB=∠CFD=90°∴△CBE≌△CDF,∴BE=DF.(2)解:结论:AB+AF=2AF,理由:∵CE=CF,AC=AC∴△ACE≌△ACF∴AE=AF,∵BE=DF.∴AB+AD=AE﹣BE+AF+DF=2AF.。
2013-2019年湖北省襄阳市中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2013—2019湖北省襄阳市年中考数学试题汇编(含参考答案与解析)1、2013年湖北省襄阳市中考数学试题及参考答案与解析 (2)2、2014年湖北省襄阳市中考数学试题及参考答案与解析 (25)3、2015年湖北省襄阳市中考数学试题及参考答案与解析 (48)4、2016年湖北省襄阳市中考数学试题及参考答案与解析 (72)5、2017年湖北省襄阳市中考数学试题及参考答案与解析 (98)6、2018年湖北省襄阳市中考数学试题及参考答案与解析 (121)7、2019年湖北省襄阳市中考数学试题及参考答案与解析 (144)2013年湖北省襄阳市中考数学试题及参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分)1.2的相反数是()A.﹣2 B.2 C.12D.12-2.四川芦山发生7.0级地震后,一周内,通过铁路部门已运送救灾物资15810吨,将15810吨,将15180用科学记数法表示为()A.1.581×103B.1.581×104C.15.81×103D.15.81×1043.下列运算正确的是()A.4a﹣a=3 B.a•a2=a3C.(﹣a3)2=a5D.a6÷a2=a34.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°5.不等式组21217xx-⎧⎨--⎩≥>的解集在数轴上表示正确的是()A.B.C.D.6.如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55°B.50°C.45°D.40°7.分式方程121x x=+的解为()A.x=3 B.x=2 C.x=1 D.x=﹣18.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A.B.C.D.9.如图,平行四边形ABCD 的对角线交于点O ,且AB=5,△OCD 的周长为23,则平行四边形ABCD 的两条对角线的和是( )A .18B .28C .36D .4610.二次函数y=﹣x 2+bx+c 的图象如图所示:若点A (x 1,y 1),B (x 2,y 2)在此函数图象上,x 1<x 2<1,y 1与y 2的大小关系是( )A .y 1≤y 2B .y 1<y 2C .y 1≥y 2D .y 1>y 211.七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m 3) 0.2 0.25 0.3 0.4 0.5 家庭数(个)12241那么这组数据的众数和平均数分别是( )A .0.4和0.34B .0.4和0.3C .0.25和0.34D .0.25和0.312.如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E 、B ,E 是半圆弧的三等分点,弧BE 的长为23π,则图中阴影部分的面积为( )A .9π B C 32π- D 23π-二、填空题(本大题共5小题,每小题3分,共15分)13.计算:)|3|1-+= .14有意义的x 的取值范围是 . 15.如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为 m .16.襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是 .17.在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是 .三、解答题(本大题共9小题,满分69分)18.(6分)先化简,再求值:2222a b ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中,1a =+1b = 19.(6分)如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度,站在教学楼上的C 处测得旗杆低端B 的俯角为45°,测得旗杆顶端A 的仰角为30°,如旗杆与教学楼的水平距离CD 为9m ,则旗杆的高度是多少?(结果保留根号)20.(6分)有一人患了流感,经过两轮传染后共有64人患了流感. (1)求每轮传染中平均一个人传染了几个人? (2)如果不及时控制,第三轮将又有多少人被传染?21.(6分)某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图. 根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第 小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?22.(6分)平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函数myx的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.23.(7分)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.24.(9分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B (元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.25.(10分)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.26.(13分)如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD 的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.①当t为秒时,△PAD的周长最小?当t为秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分)1.2的相反数是()A.﹣2 B.2 C.12D.12【知识考点】相反数.【思路分析】根据相反数的表示方法:一个数的相反数就是在这个数前面添上“﹣”号.【解答过程】解:2的相反数是﹣2.故选A.【总结归纳】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.四川芦山发生7.0级地震后,一周内,通过铁路部门已运送救灾物资15810吨,将15810吨,将15180用科学记数法表示为()A.1.581×103B.1.581×104C.15.81×103D.15.81×104【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:15180=1.581×104,故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算正确的是()A.4a﹣a=3 B.a•a2=a3C.(﹣a3)2=a5D.a6÷a2=a3【知识考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.。
2015年湖北省襄阳市南漳县中考数学一模试卷(解析版)
2015年湖北省襄阳市南漳县中考数学模拟试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.(3分)﹣3的倒数为()A.﹣3 B.﹣ C.3 D.2.(3分)如图,AB∥CD,∠BED=70°,BC平分∠ABE,则∠C的度数为()A.105°B.70°C.35°D.17.5°3.(3分)环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为()A.2.5×10﹣5B.2.5×105C.2.5×10﹣6D.2.5×1064.(3分)下列交通标志中既是中心对称图形,又是轴对称图形的是()A.B.C.D.5.(3分)不等式组:的解集在数轴上表示正确的是()A.B.C.D.6.(3分)下列几何体中,主视图是矩形,俯视图是圆的几何体是()A.三棱柱B.圆柱C.长方体D.圆锥7.(3分)如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.12cm B.9cm C.6cm D.3cm8.(3分)我市某一周的最大风力情况如表所示:则这周最大风力的众数与中位数分别是()A.7,5 B.5,5 C.5,1.75 D.5,49.(3分)将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()A.y=2x﹣1 B.y=2x﹣2 C.y=2x+1 D.y=2x+210.(3分)一元二次方程﹣x2+2x=﹣1的两个实数根为α,β,则α+β与α•β的值分别为()A.2,﹣1 B.﹣2,﹣1 C.2,1 D.﹣2,111.(3分)如图,在△ABC中,BC边的垂直平分线DE交边BC于点D,交边AB 于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为()A.18 B.12 C.6 D.412.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,直角∠EPF的顶点P是BC的中点,将∠EPF绕顶点P旋转,两边PE,PF分别交AB,AC于点E,F.下列四个结论:=S△ABC.①AE=CF;②△PEF是等腰直角三角形;③EF=AP;④S四边形AEPF在∠EPF旋转过程中,上述四个结论始终正确的有()A.①②③B.②③④C.①③④D.①②④二、填空题:本大题共5个小题,每小题3分,共15分.把答案填在答题卡的相应位置上.图513.(3分)如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为.14.(3分)在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有20个红球,且摸出白球的概率是,则估计袋子中大概有球的个数.15.(3分)如图,点A,B,D在同一直线上,△ABC和△BDE都是等边三角形,连接AE,CD相交于点P,则∠CPE的度数为度.16.(3分)某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为元时,可获得最大利润.17.(3分)矩形ABCD的∠A的平分线AE分BC成两部分的比为1:3,若矩形ABCD的面积为36,则其周长为.三、解答题:本大题共9小题,共69分,解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.18.(6分)先化简,再计算:,其中a是一元二次方程x2﹣2x﹣2=0的正数根.19.(6分)某中学为了更好地开展阳光体育运动,号召学生参加跳绳、乒乓球、羽毛球、篮球四项运动.九(1)班积极响应学校号召,要求全班学生根据自己的爱好只参加其中一项.九(1)班班主任将本班学生参加四项活动情况进行统计,绘制了两幅统计图的一部分(如图),请你结合图中的信息,解答下列问题:(1)九(1)班共有名学生参加四项活动;(2)将两个统计图补充完整;(3)学校准备从该班参加篮球运动的6名学生中随机选2名,组成校篮球队.若参加篮球运动的6名学生中,有4名男生2名女生,则学校选取的2名学生中,恰好男女生各一名的概率是多少?20.(6分)如图,AB为⊙O的直径,弦CD⊥AB于点P,CD=4,AP:PB=3:1.(1)求⊙O的半径;(2)求图中阴影部分的面积.21.(6分)某服装专卖店老板预测一种春季女装能畅销市场,就用8000元购进一批这种女装,面市后果然供不应求,老板又用17600元购进了第二批同样女装,所购数量是第一批购进数量的2倍,但单价贵了8元.老板销售这种女装时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,老板共盈利多少元?22.(6分)如图,直线y1=x+1分别交x轴,y轴于点A,C,点P是直线AC与双曲线y2=(x>0)在第一象限内的交点,PB⊥x轴于点B,△PAB的面积为4.(1)求双曲线的解析式;(2)根据图象直接写出y1<y2的x的取值范围.23.(7分)如图,△ABC中,∠BAC=45°,AD⊥BC,BD=1,CD=3,将△ABD沿AB折叠得到△ABE,将△ACD沿AC折叠得到△ACF,延长EB和FC交于点G.(1)判定四边形AEGF的形状,并证明你的结论;(2)求△ABC的面积.24.(10分)已知甲、乙两仓库共库存优质大米280吨,且甲仓库库存量比乙仓库库存量多40吨.现计划将这批优质大米运往A,B两地销售,其中A地需要150吨,B地需要130吨.从甲仓库运一吨到A,B两地的费用分别是50元和40元;从乙仓库运一吨到A,B两地的费用分别是30元和60元.设从甲仓库运往A地x吨优质大米,运这批优质大米的总费用为y元.(1)求甲、乙仓库各有优质大米多少吨?(2)求出y与x之间的函数关系式?(3)请你设计出运这批优质大米的总费用最少的方案,并求出最小费用.25.(10分)如图,△ABC内接于⊙O,∠A=60°,点F是直径BD的延长线上一点,且CF=CB.(1)求∠CBF的度数;(2)判断直线CF与⊙O的位置关系,并证明;(3)若AB=3,BC=2,tan∠AEB=3,求线段DE的长.26.(12分)如图,已知直线y1=x+b和抛物线y2=﹣x2+ax+b都经过点B(0,1)和点C,过点C作CM⊥x轴于点M,且CM=.(1)求出抛物线的解析式;(2)动点P从点O出发,以每秒1个单位长度的速度,沿OM向点M运动,过点P作PE⊥x轴分别交抛物线和直线于点E,F.当点P运动多少秒时,四边形EFMC为菱形?(3)在(2)的条件下,在直线AC上确定一点Q,使得以点E、F、Q为顶点的三角形与△AMC相似,并求出点Q的坐标.2015年湖北省襄阳市南漳县中考数学模拟试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.(3分)﹣3的倒数为()A.﹣3 B.﹣ C.3 D.【分析】据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣,故选:B.2.(3分)如图,AB∥CD,∠BED=70°,BC平分∠ABE,则∠C的度数为()A.105°B.70°C.35°D.17.5°【分析】根据平行线的性质求出∠ABE,求出∠ABC,根据平行线的性质求出∠C=∠ABC,代入求出即可.【解答】解:∵AB∥CD,∠BED=70°,∴∠ABE=∠BED=70°,∵BC平分∠ABE,∴∠ABC=∠ABE=35°,∵AB∥CD,∴∠C=∠ABC=35°,故选:C.3.(3分)环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为()A.2.5×10﹣5B.2.5×105C.2.5×10﹣6D.2.5×106【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0025=2.5×10﹣6;故选:C.4.(3分)下列交通标志中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:根据轴对称图形与中心对称图形的概念,知:A:是轴对称图形,而不是中心对称图形;B、C:两者都不是;D:既是中心对称图形,又是轴对称图形.故选:D.5.(3分)不等式组:的解集在数轴上表示正确的是()A.B.C.D.【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.【解答】解:解不等式组得,再分别表示在数轴上,如图:故选:B.6.(3分)下列几何体中,主视图是矩形,俯视图是圆的几何体是()A.三棱柱B.圆柱C.长方体D.圆锥【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、三棱柱主视图是矩形,俯视图是三角形,故此选项错误;B、圆柱主视图是矩形,俯视图是圆,故此选项正确;C、长方体主视图是矩形,俯视图是矩形,故此选项错误;D、圆锥主视图是等腰三角形,俯视图是圆,故此选项错误;故选:B.7.(3分)如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.12cm B.9cm C.6cm D.3cm【分析】首先根据平行四边形的对角线互相平分,可得点O是AC的中点,然后根据点E是BC的中点,可得OE是△ABC的中位线,据此求出AB的长为多少即可.【解答】解:∵对角线AC,BD交于点O,∴点O是AC的中点,∵点E是BC的中点,∴OE是△ABC的中位线,∴AB=2OE=2×3=6(cm),即AB的长为6cm.故选:C.8.(3分)我市某一周的最大风力情况如表所示:则这周最大风力的众数与中位数分别是()A.7,5 B.5,5 C.5,1.75 D.5,4【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:最大风力为5级的天数为3天,故众数为5级;一周中风力为5级的天数位于第四个数,因此中位数也是5级,故选:B.9.(3分)将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()A.y=2x﹣1 B.y=2x﹣2 C.y=2x+1 D.y=2x+2【分析】根据函数图象平移的法则进行解答即可.【解答】解:直线y=2x向右平移1个单位后所得图象对应的函数解析式为y=2(x﹣1),即y=2x﹣2.故选:B.10.(3分)一元二次方程﹣x2+2x=﹣1的两个实数根为α,β,则α+β与α•β的值分别为()A.2,﹣1 B.﹣2,﹣1 C.2,1 D.﹣2,1【分析】根据根与系数的关系求得α+β=2,α•β=﹣1,然后将其代入通分后的代数式进行求值.【解答】解:∵一元二次方程﹣x2+2x=﹣1的两个实数根为α,β,整理此方程:x2﹣2x﹣1=0,∴α+β=2,α•β=﹣1,故选:A.11.(3分)如图,在△ABC中,BC边的垂直平分线DE交边BC于点D,交边AB 于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为()A.18 B.12 C.6 D.4【分析】由DE是BC边的垂直平分线,根据线段垂直平分线的性质,可得BE=CE,BD=CD,又由△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,可得EC+ED+CD=24①,BE+CD﹣ED=12②,继而求得答案.【解答】解:∵DE是BC边的垂直平分线,∴BE=CE,BD=CD,∵△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,∴EC+ED+CD=24①,(AB+AC+BC)﹣(AE+ED+CD+AC)=(AE+BE+2CD)﹣(AE+ED+CD)=BE+CD﹣ED=12②,①﹣②得:2ED=12,解得:ED=6.故选:C.12.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,直角∠EPF的顶点P是BC的中点,将∠EPF绕顶点P旋转,两边PE,PF分别交AB,AC于点E,F.下列四个结论:①AE=CF;②△PEF是等腰直角三角形;③EF=AP;④S=S△ABC.四边形AEPF在∠EPF旋转过程中,上述四个结论始终正确的有()A.①②③B.②③④C.①③④D.①②④【分析】根据等腰直角三角形的性质得:AP⊥BC,AP=BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确.【解答】解:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴AP⊥BC,AP=BC=PC,∠BAP=∠CAP=45°=∠C.∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA,在△AEP与△CPF中,,∴△APE≌△CPF(ASA).∴AE=CF;EP=PF,故①②正确;∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故③错误;∵△AEP≌△CPF,∴S=S△CPF(全等三角形的面积相等),△AEP又∵S=S△AEP+S△AFP,四边形AEPF=S△APC=S△ABC,∴S四边形AEPF=S△ABC.故④正确.即S四边形AEPF故选:D.二、填空题:本大题共5个小题,每小题3分,共15分.把答案填在答题卡的相应位置上.图513.(3分)如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为﹣﹣2.【分析】由题意知,AB间的距离为+1,点B关于点A的对称点为C,则AC 间的距离也为+1,所以,点C所表示的数为﹣(+1)﹣1=﹣﹣2.【解答】解:如图,∵数轴上A,B两点表示的数分别为﹣1和,∴AB=﹣(﹣1)=+1,∵点B关于点A的对称点为C,∴AC=+1,∴点C所表示的数为﹣(+1)﹣1=﹣﹣2.故答案为:﹣﹣2.14.(3分)在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有20个红球,且摸出白球的概率是,则估计袋子中大概有球的个数25.【分析】设袋中共有球x个,根据概率公式列出等式解答.【解答】解:设袋中共有球x个,∵其中有20个红球,且摸出白球的概率是,∴=,解得x=25.故答案为:25.15.(3分)如图,点A,B,D在同一直线上,△ABC和△BDE都是等边三角形,连接AE,CD相交于点P,则∠CPE的度数为120度.【分析】由题中条件可得△ABE≌△CBD,得出对应边、对应角相等,进而可得出结论.【解答】解:∵△ABC与△BDE为等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABE=∠CBD,在△ABE与△CBD中,,∴△ABE≌△CBD,∴AE=CD,∠BDC=∠AEB,∵∠AEB+∠EAB=60°,∴∠ADP+∠EAD=60°,∴∠CPE=∠APB=180°﹣(∠PAD+∠PDA)=120°,故答案为:120°.16.(3分)某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为65元时,可获得最大利润.【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【解答】解:设最大利润为w元,则w=(x﹣30)(100﹣x)=﹣(x﹣65)2+1225,∵﹣1<0,0<x<100,∴当x=65时,二次函数有最大值1225,∴定价是65元时,利润最大.故答案为:65.17.(3分)矩形ABCD的∠A的平分线AE分BC成两部分的比为1:3,若矩形ABCD的面积为36,则其周长为30或14.【分析】根据角平分线定义求出∠DAE=∠EAB,根据矩形的性质得出AD=BC,DC=AB,DC∥AB,求出∠DEA=∠EAB,求出∠EAB=∠BEA,推出AB=BE,①设BE=x,CE=3x,则AD=4x,AB=x,得出x•4x=36,求出x即可;②设BE=3x,CE=x,则AD=4x,AB=3x,得出4x•3x=36,求出x即可.【解答】解:∵AE平分∠DAB,∴∠DAE=∠EAB,∵四边形ABCD是矩形,∴AD=BC,DC=AB,AD∥BC,∴∠DEA=∠BEA,∴∠EAB=∠BEA,∴AB=BE,①设BE=x,CE=3x,则AD=4x,AB=x,∵矩形ABCD的面积为36,∴x•4x=36,解得:x=3,即AD=BC=4x=12,AB=CD=x=3,∴矩形的周长为:AB+BC+CD+AD=2×(3+12)=30;②设BE=3x,CE=x,则AD=4x,AB=3x,∵矩形ABCD的面积为36,∴3x•4x=36,解得:x=,即AD=BC=4x=4,AB=CD=3x=3,∴矩形的周长为:AB+BC+CD+AD=2×(4+3)=14;故答案为:30或14.三、解答题:本大题共9小题,共69分,解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.18.(6分)先化简,再计算:,其中a是一元二次方程x2﹣2x﹣2=0的正数根.【分析】先根据分式混合运算的法则把原式进行化简,再求出a的值代入进行计算即可.【解答】解:原式=÷=•=.解x2﹣2x﹣2=0得,x1=1+,x1=1﹣,∵a是一元二次方程x2﹣2x﹣2=0的正数根,∴a=1+,∴原式==﹣.19.(6分)某中学为了更好地开展阳光体育运动,号召学生参加跳绳、乒乓球、羽毛球、篮球四项运动.九(1)班积极响应学校号召,要求全班学生根据自己的爱好只参加其中一项.九(1)班班主任将本班学生参加四项活动情况进行统计,绘制了两幅统计图的一部分(如图),请你结合图中的信息,解答下列问题:(1)九(1)班共有40名学生参加四项活动;(2)将两个统计图补充完整;(3)学校准备从该班参加篮球运动的6名学生中随机选2名,组成校篮球队.若参加篮球运动的6名学生中,有4名男生2名女生,则学校选取的2名学生中,恰好男女生各一名的概率是多少?【分析】(1)用跳绳的人数除以跳绳所占的百分比即可得到全班人数;(2)用全班人数乘以羽毛球运动所占的百分比即可得到参加羽毛球的人数,再分别计算出参加篮球和乒乓球运动的百分比,然后补全统计图;(3)先画出树状图,展示所有30种等可能的结果数,再找出一男一女生所占结果数,然后根据概率公式求解.【解答】解:(1)九(1)班的人数=16÷40%=40(人);故答案为400;(2)参加羽毛球运动的人数=40×25%=10(人),参加篮球球运动的百分比=×100%=15%,参加乒乓球运动的百分比=1﹣40%﹣25%﹣15%=20%,如图,(3)画树状图为:共有30种等可能的结果数,其中一男一女生占16种,所以恰好男女生各一名的概率==.20.(6分)如图,AB为⊙O的直径,弦CD⊥AB于点P,CD=4,AP:PB=3:1.(1)求⊙O的半径;(2)求图中阴影部分的面积.【分析】(1)连接OC,OD,利用垂径定理得CP=2,AP=3x,PB=x,则AB=4x,OC=2x,OP=x,利用勾股定理可得结果;(2)根据OP=2,OC=4,利用直角三角形的性质易得∠COD=120°,利用扇形和三角形的面积公式,求得阴影部分面积.【解答】解:(1)连接OC,OD,设AP=3x,PB=x,则AB=4x,OC=2x,OP=x,∵CD⊥AB,∴CP=DP=2,∴x2+(2)2=(2x)2,解得:x=2或x=﹣2(舍去),∴OC=4,∴⊙O的半径为4;(2)∵OP=2,OC=4,∴在Rt△OCP中,∠OCP=30°,∠COP=60°,∴∠COD=120°,∵S阴影=S扇形OCD﹣S△OCD=﹣×4×2=,∴阴影部分的面积为:.21.(6分)某服装专卖店老板预测一种春季女装能畅销市场,就用8000元购进一批这种女装,面市后果然供不应求,老板又用17600元购进了第二批同样女装,所购数量是第一批购进数量的2倍,但单价贵了8元.老板销售这种女装时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,老板共盈利多少元?【分析】设第一批进货的单价为x元,则第二批进货的单价为(x+8)元,根据第二批进货是第一批购进数量的2倍,列方程求出x的值,然后求出盈利.【解答】解:设第一批进货的单价为x元,则第二批进货的单价为(x+8)元,由题意得,×2=,解得:x=80,经检验;x=80是原分式方程的解,且符合题意,则第一次进货100件,第二次进货的单价为88元,第二次进货200件,总盈利为:(100﹣80)×100+(100﹣88)×(200﹣10)+10×(100×0.8﹣88)=4200(元).答:在这两笔生意中,老板共盈利4200元.22.(6分)如图,直线y1=x+1分别交x轴,y轴于点A,C,点P是直线AC与双曲线y2=(x>0)在第一象限内的交点,PB⊥x轴于点B,△PAB的面积为4.(1)求双曲线的解析式;(2)根据图象直接写出y1<y2的x的取值范围.【分析】(1)求出直线y=x+1与x轴,y轴于点A,C,根据点P在直线y=x+1上,可设点P的坐标为(m,m+1),根据S=AB•PB就可以得到关于m的△APB方程,求出m的值即可得到结果;(2)根据图象即可求出y1<y2的x的取值范围.【解答】解:(1)y=x+1,令x=0,则y=1;令y=0,则x=﹣2,∴点A的坐标为(﹣2,0),点C的坐标为(0,1),∵点P在直线y=x+1上,可设点P的坐标为(m,m+1),=AB•PB=4,又∵S△APB∴(2+m)(m+1)=4,即:m2+4m﹣12=0,∴m1=﹣6,m2=2,∵点P在第一象限,∴m=2,∴点P的坐标为(2,2),∵点P在双曲线y2=(x>0)上,∴k=4,∴双曲线的解析式为:y﹣,(2)由图象知:y1<y2的x的取值范围为:0<x<2.23.(7分)如图,△ABC中,∠BAC=45°,AD⊥BC,BD=1,CD=3,将△ABD沿AB折叠得到△ABE,将△ACD沿AC折叠得到△ACF,延长EB和FC交于点G.(1)判定四边形AEGF的形状,并证明你的结论;(2)求△ABC的面积.【分析】(1)由折叠的性质得出∠BAE=∠BAD,∠E=∠ADB=90°,AE=AD,∠FAC=∠DAC,∠F=∠ADC=90°,AF=AD,证出∠EAF=90°,得出四边形AEGF是矩形,由AE=AF,即可得出结论;(2)设AD=x,则GF=GE=AE=x,BC=4,BG=x﹣1,GC=x﹣3,在Rt△BGC中,根据勾股定理得出方程,解方程求出AD,△ABC的面积=BC×AD,即可得出结果.【解答】(1)解:四边形AEGF是正方形;理由如下:∵AD⊥BC,∴∠ADB=∠ADC=90°,由折叠的性质得:∠BAE=∠BAD,∠E=∠ADB=90°,AE=AD,∠FAC=∠DAC,∠F=∠ADC=90°,AF=AD,∴AE=AF,∵∠BAC=45°,∴∠EAF=90°,∴四边形AEGF是矩形,又∵AE=AF,∴四边形AEGF是正方形;(2)解:∵四边形AEGF是正方形,∴∠G=90°,设AD=x,则GF=GE=AE=x,由折叠的性质得:BE=BD=1,CF=CD=3,∴BC=4,BG=x﹣1,GC=x﹣3,在Rt△BGC中,根据勾股定理得:GC2+BG2=BC2,即(x﹣3)2+(x﹣1)2=42,解得:x=2±(负值舍去),∴AD=2+,∴△ABC的面积=BC×AD=×4×(2+)=4+2.24.(10分)已知甲、乙两仓库共库存优质大米280吨,且甲仓库库存量比乙仓库库存量多40吨.现计划将这批优质大米运往A,B两地销售,其中A地需要150吨,B地需要130吨.从甲仓库运一吨到A,B两地的费用分别是50元和40元;从乙仓库运一吨到A,B两地的费用分别是30元和60元.设从甲仓库运往A地x吨优质大米,运这批优质大米的总费用为y元.(1)求甲、乙仓库各有优质大米多少吨?(2)求出y与x之间的函数关系式?(3)请你设计出运这批优质大米的总费用最少的方案,并求出最小费用.【分析】(1)设甲仓库有优质大米x吨,则乙仓库有优质大米(280﹣x)吨,根据甲仓库库存量比乙仓库库存量多40吨建立方程,解方程即可;(2)根据总运费=甲库运往A地需要的费用+甲库运往B地需要的费用+乙库运往A地需要的费用+乙库运往B地需要的费用,经过化简得出y与x的关系式;(3)根据函数的性质求出运费最省和最多的方案.【解答】解:(1)设甲仓库有优质大米x吨,则乙仓库有优质大米(280﹣x)吨,根据题意得x﹣(280﹣x)=40,解得x=160,280﹣x=120.答:甲仓库有优质大米160吨,乙仓库有优质大米120吨;(2)设从甲仓库运往A地x吨优质大米,则从甲库运往B地(160﹣x)吨,由乙库运往A地(150﹣x)吨,运往B地(x﹣30)吨.所以y=50x+40(160﹣x)+30(150﹣x)+60(x﹣30)=40x+9100;(3)根据已知可知30≤x≤150,所以,当x=30时,总运费最省,为40×30+9100=10300元;故运这批优质大米的总费用最少的方案是:从甲仓库运往A地30吨优质大米,运往B地130吨,由乙库运往A地120吨,运往B地0吨.最小费用是10300元.25.(10分)如图,△ABC内接于⊙O,∠A=60°,点F是直径BD的延长线上一点,且CF=CB.(1)求∠CBF的度数;(2)判断直线CF与⊙O的位置关系,并证明;(3)若AB=3,BC=2,tan∠AEB=3,求线段DE的长.【分析】(1)连接OA,根据圆周角定理求出∠BOC,再由OB=OC得出∠OBC=∠OCB=30°,从而求得∠CBF的度数;(2)由CF=CB得出∠F=30°,进而求得∠BCF=120°,继而由∴∠OCF=∠BCF﹣∠OCB=90°,可得出OC⊥FC,从而得出CF是⊙O的切线.(3)作BG⊥AC于G,CH⊥BF于H,根据直角三角函数和勾股定理求得AE、BE、CE,然后根据相交弦定理就可求得DE的长.【解答】(1)解:连接OC,∵∠A=60°,∴∠BOC=2∠A=120°,又∵OB=OC,∴∠OBC=∠OCB=30°,即∠CBF=30°.(2)相切;证明:∵CF=CB,∴∠CBF=∠F=30°,∴∠BCF=120°,∴∠OCF=∠BCF﹣∠OCB=90°,∴OC⊥FC,∴CF是⊙O的切线.(3)解:作BG⊥AC于G,CH⊥BF于H,∵∠A=60°,AB=3,∴AG=AB=,BG=AB=,∵tan∠AEB=3,∴=3,∴EG==,∴AE=AG+GE=,∴BE==,∵∠FBC=30°,BC=2,∴HC=BC=∵tan∠AEB=3,∴tan∠HEC=3,∴=3,∴HE=,∴EC==,∵DE•BE=CE•AE,∴DE===.26.(12分)如图,已知直线y1=x+b和抛物线y2=﹣x2+ax+b都经过点B(0,1)和点C,过点C作CM⊥x轴于点M,且CM=.(1)求出抛物线的解析式;(2)动点P从点O出发,以每秒1个单位长度的速度,沿OM向点M运动,过点P作PE⊥x轴分别交抛物线和直线于点E,F.当点P运动多少秒时,四边形EFMC为菱形?(3)在(2)的条件下,在直线AC上确定一点Q,使得以点E、F、Q为顶点的三角形与△AMC相似,并求出点Q的坐标.【分析】(1)把点B的坐标代入y1=x+b,求得b=1,从而可得到直线的解析式为y1=x+1,把y=代入y1=x+1,得x=3,从而求得点C(3,),把B(0,1),C(3,)代入y2=﹣x2+ax+b得到关于a,b的方程组,解得a、b的值,从而可求得抛物线的解析式;(2)由菱形的性质可知:EF=FM=CM,设OP=t,则EF=EP﹣FP=﹣t2+t=;FM==,从而可解得t的值;(3)由(2)可知t=1,从而可求得点E、F的坐标,然后再求得点A的坐标:①过点过点E作,EQ1⊥CF,可知:△EQ1F∽△AMC,由菱形的性质可知点Q1是CF的中点,从而可求得点Q1的坐标;②过点E作EQ2∥x轴,交直线BC与点Q2,△EQ2F∽△AMC,将y=4代入y1=x+1,得x=6,所以点Q2的坐标为(6,4).【解答】解:(1)把B(0,1)代入y1=x+b,得b=1,∴y1=x+1,把y=代入y1=x+1,得x=3,∴C(3,),把代B(0,1),C(3,)代入y2=﹣x2+ax+b得解得∴y2=﹣x2+x+1.(2)∵四边形EFMC为菱形,则EF=FM=CM,设OP=t,则EF=EP﹣FP=﹣t2+t+1﹣(t+1)=﹣t2+t;FM==;∴﹣t2+t=①;=②;解①得:t=1或2解②得:t=1或3∴当点P运动1秒时,四边形EFMC为菱形;(3)如图1所示:由(2)可知t=1,所以点F的横坐标为x=1,将x=1代入y1=x+1,得y1=,将x=2代入y2=﹣x2+x+1,得:y2=4.∴点E(1,4)、F(1,),将y=0代入y1=x+1,得x=﹣2,∴点A的坐标为(﹣2,0)①过点E作,EQ1⊥CF,∵四边形EFMC为菱形,∴∠ECF=∠ACM,FE=FC.∴∠EFC=∠ECF.又∵∠EQ1F=∠AMC=90°,∴△EQ1F∽△AMC.∵EF=EC,EQ1⊥FC,∴FQ1=CQ1.∵F(1,),C(3,),且点Q1是CF的中点,∴点Q1的坐标为(2,2);②过点E作EQ2∥x轴,交直线BC与点Q2.∵EQ2∥x轴,∴∠EQ2F=∠CAM,∠Q2EF=∠FPA=90°∴∠Q2EF=∠AMC=90°∴△EQ2F∽△AMC.将y=4代入y1=x+1,得x=6,∴点Q2的坐标为(6,4).综上所述,点Q的坐标为(2,2)或(6,4).。
2015年湖北省襄阳市樊城区中考适应性数学试卷(解析版)
2015年湖北省襄阳市樊城区中考适应性数学试卷一、选择题:(每小题3分,共36分)1.(3分)数轴上A点表示的数的倒数是()A.2 B.﹣2 C.D.﹣2.(3分)为了解本班学生每天零花钱使用情况,张明随机调查了15名同学,结果如下表:关于这15名同学每天使用的零花钱,下列说法错误的是()A.众数是3元B.平均数是2.5元C.极差是5元D.中位数是3元3.(3分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣bc)4÷(﹣bc)2=b2c2D.x6÷x3=x24.(3分)函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1 C.x≠1 D.x≥﹣2或x≠15.(3分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG6.(3分)如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°7.(3分)顺次连接对角线互相垂直的四边形各边中点,所得到的四边形一定是()A.梯形B.菱形C.矩形D.正方形8.(3分)如图,已知D、E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE :S四边形DBCE=1:8,那么AE:AC等于()A.1:9 B.1:3 C.1:8 D.1:29.(3分)如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间满足()A.B.R=3r C.R=2r D.10.(3分)关于x的一元二次方程(m﹣2)x2+4x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m>﹣2 B.m≥﹣2 C.m>﹣2且m≠2 D.m≥﹣2且m≠211.(3分)如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C.D.12.(3分)如图,一个半径为1的圆形纸片在边长为a(a≥2)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.3﹣πD.不能求出具体值二、填空题:(每小题3分,共18分)13.(3分)如图,过反比例函数y=图象上三点A、B、C分别作直角三角形和矩形,图中S1+S2=5,则S3=.14.(3分)若关于x的方程+=2的解为正数,则m的取值范围是.15.(3分)一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是.16.(3分)设α、β是方程2x2﹣6x+3=0的两个根,那么α+β﹣αβ的值为.17.(3分)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长等于cm.三、解答题(共66分)18.(5分)先化简,再求值:(+)•,其中x=tan60°.19.(5分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此区教育局对我区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生,并把图①补充完整;(2)图②中C级所占的圆心角的度数为;(3)从抽样调查的学生中,抽取一名学生学习态度达标(达标包括A级和B级)的概率是多少?20.(6分)如图所示,二次函数y1=﹣x2+nx+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C(0,3).(1)求二次函数解析式,并写出顶点坐标;(2)令直线BC的解析式为y2,分析并观察图象,直接写出当y1<y2时,x的取值范围.21.(7分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B′A′C=30°)按图①方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB与A′B′相交于点O.(1)当旋转角为度时,CF=CB′;(2)在上述条件下,AB与A′B′垂直吗?请说明理由.22.(7分)新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?23.(7分)已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE 沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.24.(10分)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.25.(10分)如图,PA为⊙O的切线,A为切点.过A作OP的垂线AB,垂足为点C,交⊙O于点B.延长BO与⊙O交于点D,与PA的延长线交于点E.(1)求证:PB为⊙O的切线;(2)试探究线段AD、AB、CP之间的等量关系,并加以证明;(3)若OC=3,=,sinE=.26.(12分)在正方形AOBC中,OB=OA=4,分别以OB,OA所在直线为x轴和y轴建立如图所示的平面直角坐标系,F是边BC上的一个动点,过F点的一次函数y=﹣x+k的图象与AC边交于点E.(1)在点F的运动过程中,∠EOF的取值范围是;(2)令五边形AOBFE的面积为S,求出S与k的函数关系式,当S取最大值时,求k的值;(3)在(2)的条件下,P为线段OB上一动点,作∠CBx的角平分线BM交一次图象于M,连接PM交BC于Q.则点M的坐标为①若∠APM=90°,求出P点的坐标;②在①的条件下,若P点不与O、B重合,连接AQ,探究正方形AOBC内有哪些三角形相似,直接写出结论.2015年湖北省襄阳市樊城区中考适应性数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分)1.(3分)数轴上A点表示的数的倒数是()A.2 B.﹣2 C.D.﹣【分析】根据乘积是1的两数互为倒数,即可解答.【解答】解:数轴上点A表示的数是﹣2,1÷(2)=﹣,故选:D.2.(3分)为了解本班学生每天零花钱使用情况,张明随机调查了15名同学,结果如下表:关于这15名同学每天使用的零花钱,下列说法错误的是()A.众数是3元B.平均数是2.5元C.极差是5元D.中位数是3元【分析】根据众数的定义,极差的定义,算术平均数的求法,以及中位数的定义分别求解即可得到答案;【解答】解:A、每天花3元的人数最多,是5人,所以,众数是3元,故本选项错误;B、平均数=(0×1+1×3+3×5+4×4+5×2)=×44≈2.93元,故本选项正确;C、极差为5﹣0=5元,故本选项错误;D、按照从小到大的顺序排列,15个人中第8人的零花钱数是3元,所以,中位数是3元,故本选项错误.故选:B.3.(3分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣bc)4÷(﹣bc)2=b2c2D.x6÷x3=x2【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;单项式的除法,同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、幂的乘方,应底数不变,指数相乘,所以(x3)3=x9,故本选项错误;B、是同底数幂的乘法,应底数不变,指数相加,所以a6•a4=a10,故本选项错误;C、(﹣bc)4÷(﹣bc)2=(﹣bc)4﹣2=b2c2,正确;D、是同底数幂的除法,应底数不变,指数相减,所以a6÷a3=a3,故本选项错误;故选:C.4.(3分)函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1 C.x≠1 D.x≥﹣2或x≠1【分析】根据二次根式的性质和分式的意义,被开方数≥0,分母不等于0,就可以求解.【解答】解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x﹣1≠0,解得x≠1,故x≥﹣2且x≠1.故选:B.5.(3分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG【分析】由平面图形的折叠及正方体的展开图解题.注意找准红心“”标志所在的相邻面.【解答】解:由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE.故选:A.6.(3分)如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°【分析】此题的解法灵活,可以首先根据平行线的性质求得∠EFB,再根据三角形的外角性质求得∠E;也可以首先根据平行线的性质求得∠CFB,再根据对顶角相等求得∠AFE,最后再根据三角形的内角和定理即可求解.【解答】解:方法1:∵AB∥CD,∠C=115°,∴∠EFB=∠C=115°.又∠EFB=∠A+∠E,∠A=25°,∴∠E=∠EFB﹣∠A=115°﹣25°=90°;方法2:∵AB∥CD,∠C=115°,∴∠CFB=180°﹣115°=65°.∴∠AFE=∠CFB=65°.在△AEF中,∠E=180°﹣∠A﹣∠AEF=180°﹣25°﹣65°=90°.故选:C.7.(3分)顺次连接对角线互相垂直的四边形各边中点,所得到的四边形一定是()A.梯形B.菱形C.矩形D.正方形【分析】根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形.【解答】解:如图,AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF∥AC,EH∥BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).故选:C.8.(3分)如图,已知D、E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE :S四边形DBCE=1:8,那么AE:AC等于()A.1:9 B.1:3 C.1:8 D.1:2【分析】由题可知:△ADE∽△ABC,相似比为AE:AC,由S△ADE :S四边形DBCE=1:8,得S△ADE:S△ABC=1:9,根据相似三角形面积的比等于相似比的平方.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴S△ADE :S△ABC=AE2:AC2,∵S△ADE :S四边形DBCE=1:8,∴S△ADE :S△ABC=1:9,∴AE:AC=1:3.故选:B.9.(3分)如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间满足()A.B.R=3r C.R=2r D.【分析】首先连接OC,根据切线的性质得到OC⊥OB,再根据等腰三角形的性质可得到∠COB=60°,从而进一步求出∠B=30°,再利用直角三角形中30°角所对的边等于斜边的一半,可得到R与r的关系.【解答】解:连接OC,∵C为切点,∴OC⊥AB,∵OA=OB,∴∠COB=∠AOB=60°,∴∠B=30°,∴OC=OB,∴R=2r.故选:C.10.(3分)关于x的一元二次方程(m﹣2)x2+4x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m>﹣2 B.m≥﹣2 C.m>﹣2且m≠2 D.m≥﹣2且m≠2【分析】根据题意得△>0且m﹣2≠0,从而直接解出答案.【解答】解:由题意得:△>0且m﹣2≠0,则△=16﹣4×(m﹣2)(﹣1)=4m+8>0,∴m>﹣2且m≠2,故选:C.11.(3分)如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C.D.【分析】根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点P在DC上运动时,y随着x的增大而增大,当点P在CB上运动时,y不变,据此作出选择即可.【解答】解:当点P由点A向点D运动,即0≤x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选:B.12.(3分)如图,一个半径为1的圆形纸片在边长为a(a≥2)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.3﹣πD.不能求出具体值【分析】过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得AD=.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.【解答】解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=1,AD=.∴S=O1D•AD=.由S四形形ADO1E=2S△ADO1=.△ADO1∵由题意,∠DO1E=120°,得S扇形O1DE=,∴圆形纸片不能接触到的部分的面积为3(﹣)=3﹣π.故选:C.二、填空题:(每小题3分,共18分)13.(3分)如图,过反比例函数y=图象上三点A、B、C分别作直角三角形和矩形,图中S1+S2=5,则S3=5.【分析】根据过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|即可得到结果.【解答】解:∵过反比例函数y=图象上三点A、B、C分别作直角三角形和矩形,∴S1=S2=,S3=|k|,∴S3=S1+S2=5,故答案为:5.14.(3分)若关于x的方程+=2的解为正数,则m的取值范围是m<6且m≠0.【分析】首先解方程求得方程的解,根据方程的解是正数,即可得到一个关于m 的不等式,从而求得m的范围.【解答】解:∵关于x的方程+=2有解,∴x﹣2≠0,∴x≠2,去分母得:2﹣x﹣m=2(x﹣﹣2),即x=2﹣,根据题意得:2﹣>0且2﹣≠2,解得:m<6且m≠0.故答案是:m<6且m≠0.15.(3分)一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是180°.【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,有=2πr,∴n=180.故答案为:180°.16.(3分)设α、β是方程2x2﹣6x+3=0的两个根,那么α+β﹣αβ的值为.【分析】根据根与系数的关系,可得出α+β和αβ的值,再代入α+β﹣αβ求值即可.【解答】解:∵α,β是方程2x2﹣6x+3=0的两个实数根,∴α+β=3,αβ=,又∵原式=(α+β)﹣αβ,∴原式=3﹣=.故答案为.17.(3分)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长等于2cm.【分析】连接A、C,则EF垂直平分AC,推出△OEC∽△BCA,根据勾股定理,可以求出AC的长度,根据相似比求出OE即可.【解答】解:连接AC,与EF交于O点,∵E点在AB上,F在CD上,因为A、C点重合,EF是折痕,∴AO=CO,EF⊥AC,∵AB=8,BC=4,∴AC=4,∵AE=CE,∴∠EAO=∠ECO,∴△OEC∽△BCA,∴OE:BC=OC:BA,∴OE=,∴EF=2OE=2.故答案为:2.三、解答题(共66分)18.(5分)先化简,再求值:(+)•,其中x=tan60°.【分析】原式括号中第二项变形后,利用同分母分式的减法法则计算,约分得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=•=,当x=tan60°=时,原式=.19.(5分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此区教育局对我区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生,并把图①补充完整;(2)图②中C级所占的圆心角的度数为54°;(3)从抽样调查的学生中,抽取一名学生学习态度达标(达标包括A级和B级)的概率是多少?【分析】(1)根据A级的人数是50人,所占的百分比是25%,根据百分比的意义即可求得总人数;利用总人数减去其它组的人数,即可求得C级的人数,进而补全图①;(2)C级所占的圆心角的度数用360度乘以对应的百分比即可求得;(3)将A级和B级所占百分比相加即可求解.【解答】解:(1)抽查的总人数是:50÷25%=200(人);C级的人数是:200﹣50﹣120=30(人).图①补充如下:(2)C级所占的圆心角的度数是:360×(1﹣25%﹣60%)=54°;(3)从抽样调查的学生中,抽取一名学生学习态度达标(达标包括A级和B级)的概率是:25%+60%=85%=.故答案为200;54°.20.(6分)如图所示,二次函数y1=﹣x2+nx+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C(0,3).(1)求二次函数解析式,并写出顶点坐标;(2)令直线BC的解析式为y2,分析并观察图象,直接写出当y1<y2时,x的取值范围.【分析】(1)把A点和C点坐标分别代入y1=﹣x2+nx+m中得到关于m、n的方程组,然后解方程组求出m和n的值即可得到二次函数解析式,再把解析式配成顶点式得到顶点坐标;(2)根据抛物线与x轴的交点问题求出B点坐标,然后观察函数图象,写出直线BC在抛物线上方所对应的自变量的范围即可.【解答】解:(1)把A(3,0),C(0,3)分别代入y1=﹣x2+nx+m得,解得,所以二次函数解析式为y1=﹣x2+2x+3;因为y1=﹣x2+2x+3=﹣(x﹣1)2+4,所以二次函数图象的顶点坐标为(1,4);(2)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则B(﹣1,0),所以当x<﹣1或x>0时,y1<y2.21.(7分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B′A′C=30°)按图①方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB与A′B′相交于点O.(1)当旋转角为30度时,CF=CB′;(2)在上述条件下,AB与A′B′垂直吗?请说明理由.【分析】(1)由CF=CB′可知∠CFB′=∠CB′F=60°,从而可求得∠FCB′的度数,然后可求得∠A′CA=30°;(2)由∠A′CA=30°,可求得∠ECB=60°,然后可求得∠A′EO=∠BEC=60°,从而可求得∠A′OE=90°.【解答】解:(1)∵CF=CB′,∴∠CFB′=∠CB′F=60°.∴∠A′CA=90°﹣∠FCB′=90°﹣60°=30°.故旋转角为30°时,CF=CB′;故答案为:30°.(2)∵∠A′CA=30°,∴∠BCE=∠ACB﹣∠A′CA=90°﹣30°=60°.∴∠B=∠BCE=∠BEC=60°.∴∠A′EO=60°.∴∠A′EO+∠A′=60°+30°=90°.∴∠A′OE=90°.∴AB⊥A′B′.22.(7分)新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?【分析】根据题意知一件玩具的利润为(30+x﹣20)元,月销售量为(230﹣10x),然后根据月销售利润=一件玩具的利润×月销售量列出一元二次方程求解即可.【解答】解:设每件玩具上涨x元,则售价为(30+x)元,则根据题意,得(30+x﹣20)(230﹣10x)=2520.整理方程,得x2﹣13x+22=0.解得:x1=11,x2=2,当x=11时,30+x=41>40,∴x=11 不合题意,舍去.∴x=2,∴每件玩具售价为:30+2=32(元).答:每件玩具的售价定为32元时,月销售利润恰为2520元.23.(7分)已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE 沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.【分析】(1)根据平移的性质,可得:BE=FC,再证明Rt△ABE≌Rt△CDG可得:BE=DG;(2)要使四边形ABFG是菱形,须使AB=BF;根据条件找到满足AB=BF的AB与BC满足的数量关系即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD.∵AE是BC边上的高,且CG是由AE沿BC方向平移而成.∴CG⊥AD.∴∠AEB=∠CGD=90°.∵AE=CG,∴Rt△ABE≌Rt△CDG(HL).∴BE=DG;(2)解:当BC=AB时,四边形ABFG是菱形.证明:∵AB∥GF,AG∥BF,∴四边形ABFG是平行四边形.∵Rt△ABE中,∠B=60°,∴∠BAE=30°,∵BC=AB∴BE=CF∴EF=AB∴AB=BF∴四边形ABFG是菱形,24.(10分)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.【分析】(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=﹣90x+300.设y=0时,求出x的值可知乙车到达终点所用的时间.【解答】解:(1)方法一:由图知y是x的一次函数,设y=kx+b.∵图象经过点(0,300),(2,120),∴解得,∴y=﹣90x+300.即y关于x的表达式为y=﹣90x+300.方法二:由图知,当x=0时,y=300;x=2时,y=120.所以,这条高速公路长为300千米.甲车2小时的行程为300﹣120=180(千米).∴甲车的行驶速度为180÷2=90(千米/时).∴y关于x的表达式为y=300﹣90x(y=﹣90x+300).(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=﹣150x+300,2<x≤时,S=150x﹣300<x≤5时,S=60x;(3)在s=﹣150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚40分钟到达,40分钟=小时,所以在y=﹣90x+300中,当y=0,x=.所以,相遇后乙车到达终点所用的时间为﹣2=2(小时).乙车与甲车相遇后的速度a=(300﹣2×60)÷2=90(千米/时).∴a=90(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.25.(10分)如图,PA为⊙O的切线,A为切点.过A作OP的垂线AB,垂足为点C,交⊙O于点B.延长BO与⊙O交于点D,与PA的延长线交于点E.(1)求证:PB为⊙O的切线;(2)试探究线段AD、AB、CP之间的等量关系,并加以证明;(3)若OC=3,=,sinE=.【分析】(1)要证PB是⊙O的切线,只要连接OA,再证∠PBO=90°即可;(2)由∠OBP=∠BCO=90°,根据射影定理得到△OCB∽△PBC,得到,由于OC=AD,BC=AB,于是得到结果;(3)证明△ADE∽△POE,得到,设OC=t,则BC=2t,AD=2t,由△PBC∽△BOC,可求出sin∠E的值.【解答】(1)证明:连接OA∵PA为⊙O的切线,∴∠PAO=90°,∵OA=OB,OP⊥AB于C,∴BC=CA,PB=PA,在△PBO和△PAO中,∴△PBO≌△PAO,∴∠PBO=∠PAO=90°∴PB为⊙O的切线(2)∵∠OBP=∠BCO=90°,∴△OCB∽△PBC,∴,∴BC2=OC•PC,∵OC=AD,BC=AB,∴=AD•PC,∴AB2=2AD•PC;(3)解:∵BD是直径,∠BAD=90°由(1)知∠BCO=90°∴AD∥OP,∴△ADE∽△POE,∴=,由AD∥OC得AD=2OC,∵BC=2OC,设OC=3,则BC=6,AD=6.∵∠OBC+∠PBC=90°,∠BOC+∠OBC=90°,∴∠BOC=∠PBC,∵∠OCB=∠BCP,∴△PBC∽△BOC,∴PC=2BC=12,OP=15.∴===,可设EA=2m,EP=5m,则PA=3m.∵PA=PB,∴PB=3m,sinE==.26.(12分)在正方形AOBC中,OB=OA=4,分别以OB,OA所在直线为x轴和y轴建立如图所示的平面直角坐标系,F是边BC上的一个动点,过F点的一次函数y=﹣x+k的图象与AC边交于点E.(1)在点F的运动过程中,∠EOF的取值范围是0°≤∠EOF≤90°;(2)令五边形AOBFE的面积为S,求出S与k的函数关系式,当S取最大值时,求k的值;(3)在(2)的条件下,P为线段OB上一动点,作∠CBx的角平分线BM交一次图象于M,连接PM交BC于Q.则点M的坐标为(6,2)①若∠APM=90°,求出P点的坐标;②在①的条件下,若P点不与O、B重合,连接AQ,探究正方形AOBC内有哪些三角形相似,直接写出结论.【分析】(1)易知直线y=﹣x+k与x轴成45°角,从而有∠CEF=∠CFE=45°,则有CE=CF.先考虑点F运动到点C、点B对应的∠EOF的值,就可求出∠EOF的取值范围;、S,然后根据S与k的函数关系式,(2)用k的代数式依次表示BF、CF、S△CEF就可求出S取最大值时k的值;(3)如图2①,过点M作MH⊥BD于H.易证MB=MD,∠BMD=90°,根据等腰三角形的性质及直角三角形斜边上的中线等于斜边的一半可得BH=HD=MH=BD=2,求出OH,即可得到点M的坐标.①如图2①,易证△AOP ∽△PHM,根据相似三角形的性质即可求出OP,即可得到点P的坐标;②如图2②,易证△AOP∽△PBQ,则有=.由PB=OP=2可得=.再由∠AOP=∠APQ=90°可得△AOP∽△APQ.【解答】解:(1)如图1,易知直线y=﹣x+k与x轴成45°角,从而有∠CEF=∠CFE=45°,则有CE=CF.当点F运动到点C时,∠EOF=0°;当点F运动到点B时,∠EOF=90°.故答案为0°≤∠EOF≤90°;(2)如图1,当x=4时,y=﹣4+k,则点F(4,﹣4+k),∴BF=﹣4+k,CF=4﹣(﹣4+k)=8﹣k,=CE•CF=CF2=(8﹣k)2,∴S△ECF∴S=16﹣(8﹣k)2,∴当k=8时,S取到最大值;(3)如图2①,过点M作MH⊥BD于H.∵BM平分∠CBD,∴∠MBD=∠CBD=45°,∴∠MBD=∠MDB=∠BCD=45°,∴BD=BC=4,MB=MD,∠BMD=90°,∵MH⊥BD,∴BH=HD=MH=BD=2,∴OH=4+2=6,∴点M的坐标为(6,2).故答案为(6,2);①如图2①,∵∠APM=90°,∠AOP=90°,∴∠APO+∠HPM=180°﹣90°=90°,∠APO+∠OAP=90°,∴∠OAP=∠HPM.又∵∠AOP=∠PHM=90°,∴△AOP∽△PHM,∴=,∴=,解得OP=2或OP=4,∴点P的坐标为(2,0)或(4,0);②如图2②,在正方形AOBC内,△AOP∽△PBQ∽△APQ.理由:∵P点不与O、B重合,∴OP=2,PB=4﹣2=2.由①得∠OAP=∠BPQ.又∵∠AOP=∠PBQ=90°,∴△AOP∽△PBQ,∴=.∵PB=OP=2,∴=.∵∠AOP=∠APQ=90°,∴△AOP∽△APQ,∴△AOP∽△PBQ∽△APQ.。
2015年襄阳中考数学
备考建议:
1.第一轮系统复习注重对各知识点的梳理,知识 系统化,并进行查漏补缺。
2.第二轮专题复习中归纳订正各种试卷中的错题, 不断改错,规范答题。
3.第三轮的模拟冲刺复习中认真领悟老师讲授的 知识、方法和题型以及易错点,对解答题认真 审题,全面思考,注意分类讨论。
中考数学试卷(2014年襄阳) 12.(3分)(2014•襄阳)如图,在矩形ABCD中,点E,F分别在边AB,BC 上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接 BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④ △PBF是等边三角形.其中正确的是( D )
A.①②B.②③C.①③D.①④
17.(3分)(2014•襄阳)在▱ABCD中,BC边上的高为4,AB=5,AC=2, 则▱ABCD的周长等于 12或20 .
24.(10分)(2014•襄阳)我市为创建“国家级森林城市”政府将对江边一 处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树 苗不得多于乙种树苗,.某承包商以26万元的报价中标承包了这项工程.根 据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的 购买价及成活率如表: 品种购买价甲20(元/棵)成活率90%,乙32(元/棵) 成活率95%。设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息 解答下列问题:
26.(12分)(2014•襄阳)如图,在平面直角坐标系中,矩形OCDE的三个顶 点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛 物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动 时间为t秒. (1)填空:点A坐标为 (1,4) ;抛物线的解析式为 y=﹣(x﹣1) 2+4 . (2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时, 点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时, 另一个点随之停止运动.当t为何值时,△PCQ为直角三角形? (3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过 点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接 AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?
2015年湖北省襄阳市中考物理试卷(含详细答案)
物理试卷 第1页(共20页) 物理试卷 第2页(共20页)绝密★启用前湖北省襄阳市2015年初中毕业生学业水平考试物 理本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分60分,考试时间55分钟。
第Ⅰ卷(选择题 共12分)一、单项选择题(本题共6小题,每小题2分,共12分。
下列各题均有四个选项,其中只有一个选项符合题意)1.在国际单位制中,质量的基本单位是( ) A .千克B .伏特C .牛顿D .千米 2.下列事例中属于声音传递信息的是( )A .阳光从东方射过来了B .雷声从东方传过来了C .云朵从东方跑过来了D .花香从东方飘过来了 3.夏天,人在电风扇下吹风感到凉爽,这是因为( )A .电风扇吹来的是冷风B .电风扇吹风可降低室内温度C .电风扇吹风可加速人体汗水的蒸发,吸收了皮肤的热量D .以上说法都正确4.电视机的荧光屏上经常有许多灰尘,这主要是因为( )A .灰尘的自然堆积B .荧光屏有较强的吸附灰尘的能力C .电视机工作时,屏表面温度较高,吸附灰尘D .电视机工作时,屏表面有静电吸附灰尘 5.关于家庭用电,下列说法正确的是( )A .家庭电路中电流过大,一定是电路发生了短路B .连入电路中的用电器总功率越大,干路中的电流就越大C .保险丝熔断了,可以用铜丝或铁丝代替D .空气开关跳闸后,重新闭合开关就可以了6.小明乘坐公交车时,站在离车门较近的位置而且双手没有扶任何物体,为了避免汽车启动时摔倒,他应将身体( ) A .保持直立B .向汽车运动方向倾斜C .向汽车运动的反方向倾斜D .任何站姿都可以第Ⅱ卷(非选择题 共48分)二、填空题(本题共10小题,每空1分,共19分)7.家用电器在一段时间内消耗的电能,可以通过 计量出来。
指南针静止时都指向同一方向,说明地球周围存在着 。
8.大厦玻璃幕墙反射强光刺眼是由于光的 反射造成的。
凸透镜可以用来矫正 (填“近视”或“远视”)眼。
2015数学试题(正题)答案
2015年襄阳市初中毕业生学业水平考试数学试题参考答案及评分标准评分说明1.若有与参考答案不同的解法而解答过程准确者,参照评分标准分步给分;2.学生在答题过程中省略某些非关键性步骤,不扣分;学生在答题过程中省略了关键性步骤,后面解答准确者,只扣省略关键性步骤分,不影响后面得分.一、选择题(本大题共12个小题,每小题3分,共36分)二、填空题(本大题共5个小题,每小题3分,共15分)13. 0 14. x =15 15. 32 16. 3-π317. 55°或35°三、解答题(本大题共9个小题,共69分)18. (本小题满分6分)解: 原式=(5x +3y x 2-y 2 -2x x 2-y 2)÷1x 2y -xy 2=5x +3y -2x x 2-y2×(x 2y -xy 2) …………………2分=3(x +y )(x +y )(x -y )×xy (x -y ) ………………………………………………………..3分 =3xy. …………………………………………………………………......……4分 把x =3+2,y =3-2代入,得原式=3(3+2)(3-2)=3. ……………………………………………………..6分 19. (本小题满分6分)解:(1)∵反比例函数y =mx 的图象过点A(1,4),∴m =4.∴反比例函数解析式为y =4x. ………………………………….....………….................1分∵反比例函数y =4x 过点B(n ,-2),∴4n=-2. ∴ n =-2.∴B 点坐标为(-2,-2). ……………………………………………………............…2分 ∵直线y =ax +b 经过点A(1,4)和点B(-2,-2),∴4,2 2.a b a b .... ……………………………………….......………….................…3分解这个方程组,得2,2.a b ∴y =2x +2. ...…………….........…….................…4分(2)x <-2或0<x <1 . ………………………………………….......…….............…6分20. (本小题满分6分)(分)第20题图(1)12,40;(每空1分) . …………....…2分补全统计图见右图. ……………....…3分 (2)108°; ……………....…......……...…4分(3)23. ……………………....…......…..…6分21. (本小题满分6分)解:设矩形猪舍垂直于住房墙的一边长为xm ,则矩形猪舍的另一边长为(26-2x )m . ... 1分依题意,得 x (26-2x )=80. ……………………………………………………....…3分 化简,得 x 2-13x +40=0.解这个方程,得 x 1=5,x 2=8. ………………………………………………..........…5分 当x =5时,26-2x =16>12(舍去);当x =8时,26-2x =10<12.答: 所建矩形猪舍的长为10m ,宽为8m. …………………………………….........…6分22. (本小题满分6分)解:(1)过点A 作AE ⊥BC 于点E. ………1分∵cos C =22,∴∠C =45°.在Rt △ACE 中,CE =AC·cos C =1.∴AE =CE =1. …………………………….....…2分在Rt △ABE 中,∵tan B =13,∴ AE BE =13.∴BE =3AE =3. ∴BC =BE +CE =3+1=4. ……………………………….........3分(2)∵AD 是△ABC 的中线,∴CD =12BC =2.∴DE =CD -CE =2-1=1. ……………………...........…………………….…...….4分 ∵AE ⊥BC ,∴∠ADC =45°. ……………………………....................…….…....…5分∴sin ∠ADC =22. …………………………………………………………...…....6分23.(本小题满分7分)(1)证明:由旋转可知,∠EAF =∠BAC ,AF =AC ,AE =AB.∴∠EAF +∠BAF =∠BAC +∠BAF ,即∠BAE =∠CAF. ......………………...1分又∵AB =AC ,∴AE =AF. .........….………2分 ∴△ABE ≌△ACF. ∴BE =CF. ........………….3分(2)∵四边形ACDE 是菱形,AB =AC =1,∴AC ∥DE ,DE =AE =AB =1. ….......…....…4分又∵∠BAC =45°, ∴∠AEB =∠ABE =∠BAC =45°. ....….……...5分 ∵∠AEB +∠BAE +∠ABE =180°, ∴∠BAE =90°. …………………………....6分 ∴BE =AB 2+AE 2=12+12= 2. ∴BD =BE -DE =2-1. …………………......7分24.(本小题满分10分)45°F ED CB A第23题图E AB C D 第22题图解:(1)y =700-20(x -45)=-20x +1600. …………………………………........…2分 (2)P =(x -40)(-20x +1600)=-20x 2+2400x -64000 …………….…….......…….4分=-20(x -60)2+8000. ………………………………..………......................…5分 ∵x ≥45,a =-20<0,∴当x =60时,P 最大值=8000(元).即当每盒售价定为60元时,每天销售的利润最大,最大利润为8000元. ….......6分 (3)由题意,得-20(x -60)2+8000=6000. 解这个方程,得 x 1=50, x 2=70. .....7分 ∵抛物线P =-20(x -60)2+8000的开口向下,∴当50≤x ≤70时,每天销售粽子的利润不低于6000元. ……………...............8分 又∵x ≤58,∴50≤x ≤58.∵在y =-20x +1600中,k =-20<0,∴y 随x 的增大而减小. ……..............…9分 ∴当x =58时,y 最小值=-20×58+1600=440. …………………………...............10分 即超市每天至少销售粽子440盒. 25.(本小题满分10分) (1)证明: 连接OC.∵PE 与⊙O 相切,∴OC ⊥PE. ∴∠OCP =90°. …1分 ∵AE ⊥PE ,∴∠AEP =90°=∠OCP. ∴OC ∥AE. ∴∠CAD =∠OCA. …………………………………2分∵OA =OC ,∴∠OCA =∠OAC. ∴∠CAD =∠OAC.∴AC 平分∠BAD. …………………………………3分(2)PB ,AB 之间的数量关系为 AB =3PB. 理由如下: ∵AB 为⊙O 的直径,∴∠ACB =90°. ∴∠BAC +∠ABC =90°.∵OB =OC ,∴∠OCB =∠ABC. ∵∠PCB +∠OCB =90°,∴∠PCB =∠PAC. ……………………………………4分 ∵∠P =∠P , ∴△PCA ∽△PBC. ∴PC PB =PAPC. ∴PC 2=PB·PA. ……………………………………………….........…5分 ∵PB ∶PC =1∶2,∴ PC =2PB. ∴PA =4PB. ∴AB =3PB. …...................….6分(3)解: 过点O 作OH ⊥AD 于点H ,则AH =12AD =32,四边形OCEH 是矩形.∴OC =HE. ∴AE =32+OC. …………………………………………..……………..7分∵OC ∥AE ,∴△PCO ∽△PEA. ∴OC AE =POPA . ………………………….…………8分∵AB =3PB ,AB =2OB ,∴OB =32PB.∴OC 32+OC =PB +OB PB +AB =PB +32PBPB +3PB . ∴OC =52. ∴AB =5. ……………………..……9分 ∵△PBC ∽△PCA ,∴PB PC =BC AC =12. ∴AC =2BC.在Rt △ABC 中,AC 2+BC 2=AB 2,∴(2BC)2+BC 2=52. ∴BC = 5. ∴AC =2 5.∴S △ABC =12AC ·BC =5. 即△ABC 的面积为5. ………………………………...10分26. (本小题满分12分)解:(1)过点E 作EG ⊥x 轴于点G.∵四边形OABC 是边长为2的正方形,D 是OA 的中点,A第25题图∴OA =OC =2,OD =1,∠AOC =∠DGE =90°. ∵∠CDE =90°,∴∠ODC +∠GDE =90°. 又∵∠ODC +∠OCD =90°,∴∠OCD =∠GDE.∵DC =DE, ∴△ODC ≌△GED. ……………………………………........………....1分 ∴EG =OD =1,DG =OC =2.∴点E 的坐标为(3,1). …………………………………………………………........…2分 又∵抛物线的对称轴为直线AB ,即直线x =2,∴可设抛物线的解析式为y =a (x -2)2+k . …………………………………......……3分由题意,得42,1.a k a k 解这个方程组,得1,32.3a k ∴抛物线的解析式为y =13 (x -2)2+23. ……………………….……………….......…5分(2)①若△DFP ∽△COD ,则∠PDF =∠DCO.∴PD ∥OC. ………………………………………………………….. .….... .…........6分 ∴∠PDO =∠OCP =∠AOC =90°. ∴四边形PDOC 为矩形.∴PC =OD =1. ∴t =1. ………………………………………......….…............….7分②若△PFD ∽△COD ,则∠DPF =∠DCO ,PD CD =DFOD.∴∠PCF =90°-∠DCO =90°-∠DPF =∠PDF. ∴PC =PD. ∴DF =12CD.∵CD 2=OD 2+OC 2=22+12=5,∴CD = 5. ∴DF =125. …….......…...............8分∵PD CD =DF OD ,∴PC =PD =52×5=52. ∴t =52. …………………….................…...9分 所以,当t 等于1或 52时,以点P ,F ,D 为顶点的三角形与△COD 相似.(3)存在. 满足条件的点有三组,坐标分别为:M 1(2,1),N 1(4,2) ; …………………………………………………...…............10分 M 2(2,3),N 2(0,2) ; ………………………………………….............…............11分M 3(2,13),N 3(2,23)....….............12分。
【2015中考真题】湖北省襄阳市中考数学试题及解析
2015年湖北省襄阳市中考数学试卷一、选择题,共12小题,每小题3分,共36分1.(3分)(2015•大连)﹣2的绝对值是()A.2B.﹣2 C.D.2.(3分)(2015•湖北)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用A.3.7×106B.3.7×105C.37×104D.3.7×1043.(3分)(2015•湖北)在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.4.(3分)(2015•湖北)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降5.(3分)(2015•湖北)下列运算中正确的是()A.a3﹣a2=a B.a3•a4=a12C.a6÷a2=a3D.(﹣a2)3=﹣a66.(3分)(2015•湖北)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°7.(3分)(2015•湖北)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE 平分∠ACB.若BE=2,则AE的长为()A .B .1 C . D .2 8.(3分)(2015•湖北)下列说法中正确的是( ) A . “任意画出一个等边三角形,它是轴对称图形”是随机事件B . “任意画出一个平行四边形,它是中心对称图形”是必然事件C . “概率为0.0001的事件”是不可能事件D . 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 9.(3分)(2015•湖北)点O 是△ABC 的外心,若∠BOC=80°,则∠BAC 的度数为( ) A . 40° B . 100° C . 40°或140° D . 40°或100° 10.(3分)(2015•湖北)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( )A . 4B . 5C . 6D . 911.(3分)(2015•湖北)二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=在同一平面直角坐标系中的图象可能是( )A .B .C .D .12.(3分)(2015•湖北)如图,矩形纸片ABCD 中,AB=4,BC=8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( )A . A F=AEB . △ABE ≌△AGFC . E F=2D .A F=EF二、填空题,共5小题,每小题3分,共15分 13.(3分)(2015•湖北)计算:2﹣1﹣= .14.(3分)(2015•湖北)分式方程﹣=0的解是 .15.(3分)(2015•湖北)若一组数据1,2,x,4的众数是1,则这组数据的方差为.16.(3分)(2015•湖北)如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为.17.(3分)(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.三、简单题,共9小题,共69分18.(6分)(2015•湖北)先化简,再求值:(+)÷,其中x=,y=﹣.19.(6分)(2015•湖北)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.20.(6分)(2015•湖北)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数分数段(分手为x分)频数百分比60≤x<70 8 20%70≤x<80 a 30%80≤x≤90 16 b%90≤x<100 4 10%(1)表中的a=,b=;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.21.(6分)(2015•湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.(6分)(2015•湖北)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.23.(7分)(2015•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.24.(10分)(2015•湖北)为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(10分)(2015•湖北)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.26.(12分)(2015•湖北)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA 的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.2015年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题,共12小题,每小题3分,共36分2.(3分)(2015•湖北)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用C4.(3分)(2015•湖北)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降考点:函数的图象.分析:根据函数的图象对各选项进行逐一分析即可.解答:解:A、∵由图象可知,在凌晨4点函数图象在最低点﹣3,∴凌晨4时气温最低为﹣3℃,故本选项正确;B、∵由图象可知,在14点函数图象在最高点8,∴14时气温最高为8℃,故本选项正确;C、∵由图象可知,从4时至14时,气温随时间增长而上上升,不是从0点,故本选项错误;D、∵由图象可知,14时至24时,气温随时间增长而下降,故本选项正确.故选C.点评:本题考查的是函数的图象,能根据函数图象在坐标系中的增减性判断出函数的增减性是解答此题的关键.5.(3分)(2015•湖北)下列运算中正确的是()A.a3﹣a2=a B.a3•a4=a12C.a6÷a2=a3D.(﹣a2)3=﹣a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据同底数幂的除法,可判断C;根据积的乘方,可判断D.解答:解:A、合并同类项系数相加字母部分不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.6.(3分)(2015•湖北)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°考点:平行线的性质.分析:根据三角形外角性质可得∠3=30°+∠1,由于平行线的性质即可得到∠2=∠3=60°,即可解答.解:如图,7.(3分)(2015•湖北)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE 平分∠ACB.若BE=2,则AE的长为()边的一半得出AE=CE=1.∴AE=CE=1.B、“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C、“概率为0.0001的事件”是随机事件,选项错误;D、任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.故选B.点评:本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(3分)(2015•湖北)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°考点:三角形的外接圆与外心;圆周角定理.专题:分类讨论.分析:利用圆周角定理以及圆内接四边形的性质得出∠BAC的度数.解答:解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.点评:此题主要考查了圆周角定理以及圆内接四边形的性质,利用分类讨论得出是解题关键.10.(3分)(2015•湖北)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4B.5C.6D.9考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两层3列,故可得出该几何体的小正方体的个数.解答:解:综合三视图,我们可得出,这个几何体的底层应该有3个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为3+1=4个,故选A.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.11.(3分)(2015•湖北)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()C D∵对称轴为直线x=﹣>0,图象在第一三象限,12.(3分)(2015•湖北)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A 重合,则下列结论错误的是()F=2EF=2,二、填空题,共5小题,每小题3分,共15分13.(3分)(2015•湖北)计算:2﹣1﹣=0.分析:原式第一项利用负整数指数幂法则计算,第二项利用立方根定义计算即可得到结果.解答:解:原式=﹣14.(3分)(2015•湖北)分式方程﹣=0的解是15.解答:解:去分母得:x ﹣5﹣10=0, 解得:x=15,经检验x=15是分式方程的解. 故答案为:15. 点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 15.(3分)(2015•湖北)若一组数据1,2,x ,4的众数是1,则这组数据的方差为 1.5 .考点:方差;众数. 分析: 根据众数的定义先求出x 的值,再根据方差的计算公式S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]进行计算即可.解答:解:∵数据1,2,x ,4的众数是1, ∴x=1,∴平均数是(1+2+1+4)÷4=2,则这组数据的方差为[(1﹣2)2+(2﹣2)2+(1﹣2)2+(4﹣2)2]=1.5;故答案为:1.5. 点评:本题考查了众数和方差:众数是一组数据中出现次数最多的数;一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]. 16.(3分)(2015•湖北)如图,P 为⊙O 外一点,PA ,PB 是⊙O 的切线,A ,B 为切点,PA=,∠P=60°,则图中阴影部分的面积为﹣π .考点: 扇形面积的计算;切线的性质. 分析: 连结PO 交圆于C ,根据切线的性质可得∠OAP=90°,根据含30°的直角三角形的性质可得OA=1,再求出△PAO 与扇形AOC 的面积,由S 阴影=2×(S △PAO ﹣S 扇形AOC )则可求得结果. 解答:解:连结AO ,连结PO 交圆于C . ∵PA ,PB 是⊙O 的切线,A ,B 为切点,PA=,∠P=60°, ∴∠OAP=90°,OA=1,∴S 阴影=2×(S △PAO ﹣S 扇形AOC )=2×(×1×﹣)=﹣π.故答案为:﹣π.17.(3分)(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为55°或35°.的度数.ABD==55∴∠A=∠ABD=∠BDE=70°=35°.三、简单题,共9小题,共69分18.(6分)(2015•湖北)先化简,再求值:(+)÷,其中x=,y=﹣.••+﹣19.(6分)(2015•湖北)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.(2)根据函数的图象即可得出一次函数的值小于反比例函数的值的x的取值范围.解答:解:(1)∵反比例函数y=的图象过点A(1,4),,即∴反比例函数的解析式为:y=.y=∴﹣2=,.20.(6分)(2015•湖北)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数90≤x<100 4 10%请根据图表提供的信息,解答下列问题:(1)表中的a=12,b=40;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是108°;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.考点:列表法与树状图法;频数(率)分布表;频数(率)分布直方图.分析:(1)首先根据第一小组的频数和频率求得总人数,然后减去其它小组的频数即可求得a值,根据总人数和第三小组的频数即可求得b值;(2)用周角乘以相应分数段所占的百分比即可求得圆心角的度数;(3)列表将所有等可能的结果列举出来利用概率公式求解即可.解答:解:(1)∵60≤x<70小组的频数为8,占20%,∴8÷20%=40人,∴a=40﹣8﹣16﹣4=12,b%=×100%=40%,故答案为:12,40;(2)∵70≤x<80小组所占的百分比为30%,∴70≤x<80对应扇形的圆心角的度数360°×30%=108°,故答案为:108°;(3)用A、B表示男生,用a、b表示女生,列表得:A B a bA AB A a A bB B A Ba B ba aA aB abb bA bB ba∵共有12种等可能的结果,其中一男一女的有8种,∴P(一男一女)==.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和概率公式.21.(6分)(2015•湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.(6分)(2015•湖北)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.,求出∠据tanB=,求出BE的长即可;(2)根据AD是△ABC的中线,求出BD的长,得到DE的长,得到答案.cosC=在Rt△ABE中,tanB=,即=,BC=2ADC=23.(7分)(2015•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.AC=BE=AC=﹣24.(10分)(2015•湖北)为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(10分)(2015•湖北)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.:圆的综合题.AD=,四边形得AE=+OC,由OC∥AE,可得△PCO∽△PEA,然后由相似三角形的对应边成比∴,2AD= +OCPB,,,,∴S△ABC=AC•BC=5.26.(12分)(2015•湖北)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA 的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.=,根据等腰三角形的判定与性质,可得DF于CD的关系,根据相似三角形的中,抛物线的解析式为y=(x﹣2)2+;,=∴DF=CD.22222,∵=,PC=PD=×=,,综上所述:t=1或t=时,以点P,F,D为顶点的三角形与△COD相似;))。
湖北省襄阳市中考数学试卷及答案(Word解析版)
湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题(3*12=36分)1.(3分)(•襄阳)2的相反数是()A.﹣2 B.2C.D.考点:相反数.分析:根据相反数的表示方法:一个数的相反数就是在这个数前面添上“﹣”号.解答:解:2的相反数是﹣2.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(•襄阳)四川芦山发生7.0级地震后,一周内,通过铁路部门已运送救灾物资15810吨,将15810吨,将15180用科学记数法表示为()A.1.581×103B.1.581×104C.15.81×103D.15.81×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:15180=1.581×104,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(•襄阳)下列运算正确的是()A.4a﹣a=3 B.a•a2=a3C.(﹣a3)2=a5D.a6÷a2=a3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、4a﹣a=3a,选项错误;B、正确;C、(﹣a3)2=a6,选项错误;D、a6÷a2=a4,选项错误.故选B.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.4.(3分)(•襄阳)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.解答:解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选C.点评:本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.5.(3分)(•襄阳)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:根据不等式组的解法求出不等式组的解集,再根据>,≥向右画;<,≤向左画,在数轴上表示出来,从而得出正确答案.解答:解:,由①得:x≤1,由②得:x>﹣3,则不等式组的解集是﹣3<x≤1;故选D.点评:此题考查了一元一次不等式组的解法和在数轴上表示不等式的解集,掌握不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线是解题的关键.6.(3分)(•襄阳)如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55°B.50°C.45°D.40°考点:平行线的性质.分析:首先根据平行线的性质可得∠ABC+∠DCB=180°,进而得到∠BCD的度数,再根据角平分线的性质可得答案.解答:解:∵CD∥AB,∴∠ABC+∠DCB=180°,∵∠BCD=70°,∴∠ABC=180°﹣70°=110°,∵BD平分∠ABC,∴∠ABD=55°,故选:A.点评:此题主要考查了平行线的性质以及角平分线定义,关键是掌握两直线平行,同旁内角互补.7.(3分)(•襄阳)分式方程的解为()A.x=3 B.x=2 C.x=1 D.x=﹣1考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x+1=2x,解得:x=1,经检验x=1是分式方程的解.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.(3分)(•襄阳)如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A.B.C.D.考点:简单组合体的三视图.分析:判断出组合体的左视图、主视图及俯视图,即可作出判断.解答:解:几何体的左视图和主视图是相同的,则不同的视图是俯视图,俯视图是D选项所给的图形.故选D.点评:本题考查了简单组合体的三视图,属于基础题,注意理解三视图观察的方向.9.(3分)(•襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.46考点:平行四边形的性质.分析:由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线可作一个整体.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=5,∵△OCD的周长为23,∴OD+OC=23﹣5=18,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36,故选C.点评:本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.10.(3分)(•襄阳)二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是()A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2考点:二次函数图象上点的坐标特征.分析:对于二次函数y=﹣x2+bx+c,根据a<0,抛物线开口向下,在x<0的分支上y随x的增大而增大,故y1<y2.解答:解:∵a<0,x1<x2<1,∴y随x的增大而增大∴y1<y2.故选:B.点评:此题主要考查了二次函数图象上点的坐标特征,本题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数y=ax2+bx+c(a≠0)的图象性质.11.(3分)(•襄阳)七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m3)0.2 0.25 0.3 0.4 0.5家庭数(个) 1 2 2 4 1那么这组数据的众数和平均数分别是()A.0.4和0.34 B.0.4和0.3 C.0.25和0.34 D.0.25和0.3考点:众数;加权平均数.分析:根据众数及平均数的定义,结合表格信息即可得出答案.解答:解:将数据从新排列为:0.2,0.25,0.25,0.3,0.3,0.4,0.4,0.4,0.4,0.5,则中位数为:0.4;平均数为:(0.2+0.25+0.25+0.3+0.3+0.4+0.4+0.4+0.4+0.5)=0.34.故选A.点评:本题考查了众数及平均数的知识,解答本题的关键是熟练掌握中位数及平均数的定义.12.(3分)(•襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A.B.C.D.考点:扇形面积的计算;弧长的计算.分析:首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC﹣S扇形BOE=图中阴影部分的面积求出即可.解答:解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=30°,∵弧BE的长为π,∴=π,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC==3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=﹣=﹣.故选:D.点评:此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出∴△BOE和△ABE面积相等是解题关键.二、填空题(3*5=15分)13.(3分)(•襄阳)计算:|﹣3|+=4.考点:实数的运算;零指数幂.分析:分别进行绝对值及零指数幂的运算,然后合并即可得出答案.解答:解:原式=3+1=4.故答案为:4.点评:本题考查了实数的运算,涉及了零指数幂绝对值,掌握各部分的运算法则是关键.14.(3分)(•襄阳)使代数式有意义的x的取值范围是x≥且x≠3.考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,2x﹣1≥0且3﹣x≠0,解得x≥且x≠3.故答案为:x≥且x≠3.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.15.(3分)(•襄阳)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.2 m.考点:垂径定理的应用;勾股定理.分析:过O作OC垂直于AB,利用垂径定理得到C为AB的中点,在直角三角形AOC中,由水面高度与半径求出OC的长,即可得出排水管内水的深度.解答:解:过O作OC⊥AB,交AB于点C,可得出AC=BC=AB=0.4m,由直径是1m,半径为0.5m,在Rt△AOC中,根据勾股定理得:OC===0.3(m),则排水管内水的深度为:0.5﹣0.3=0.2(m).故答案为:0.2.点评:此题考查了垂径定理的应用,以及勾股定理,熟练掌握定理是解本题的关键.16.(3分)(•襄阳)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是.考点:列表法与树状图法.专题:图表型.分析:可以看做是李老师先选择第一站,然后儿子再进行选择,画出树状图,再根据概率公式解答.解答:解:李老师先选择,然后儿子选择,画出树状图如下:一共有9种情况,都选择古隆中为第一站的有1种情况,所以,P(都选择古隆中为第一站)=.故答案为:.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(•襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是6或2.考点:图形的剪拼;勾股定理.分析:先根据题意画出图形,此题要分两种情况,再根据勾股定理求出斜边上的中线,最后根据直角三角形中,斜边上的中线等于斜边的一半即可求出斜边的长.解答:解:①如图所示:,连接CD,CD==,∵D为AB中点,∴AB=2CD=2;②如图所示:,连接EF,EF==3,∵E为AB中点,∴AB=2EF=6,故答案为:6或2.点评:此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.三、解答题(69分)18.(6分)(•襄阳)先化简,再求值:,其中,a=1+,b=1﹣.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把a、b的值代入进行计算即可解答:解:原式=÷=÷=×=﹣,当a=1+,b=1﹣时,原式=﹣=﹣=﹣.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(•襄阳)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.解答:解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,在Rt△BCD中,∵tan∠BCD=,∴tan45°=,∴BD=9m,∴AB=AD+BD=3+9(m).答:旗杆的高度是(3+9)m.点评:此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.20.(6分)(•襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?考点:一元二次方程的应用.分析:(1)设每轮传染中平均每人传染了x人,根据经过两轮传染后共有64人患了流感,可求出x,(2)进而求出第三轮过后,又被感染的人数.解答:解:(1)设每轮传染中平均每人传染了x人,1+x+x(x+1)=64x=7或x=﹣9(舍去).答:每轮传染中平均一个人传染了7个人;(2)64×7=448(人).答:第三轮将又有448人被传染.点评:本题考查了一元二次方程的应用,先求出每轮传染中平均每人传染了多少人数是解题关键.21.(6分)(•襄阳)某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第三小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数;概率公式.分析:(1)首先求得总人数,然后求得第四组的人数,即可作出统计图;(2)利用总人数260乘以所占的比例即可求解;(3)利用概率公式即可求解.解答:解:(1)总人数是:10÷20%=50(人),第四组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,,中位数位于第三组;(2)该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×260=104(人);(3)成绩是优秀的人数是:10+6+4=20(人),成绩为满分的人数是4,则从成绩为优秀的女生中任选一人,她的成绩为满分的概率是=0.2.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题22.(6分)(•襄阳)平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函数y=的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.考点:反比例函数综合题.分析:(1)把点C(3,3)代入反比例函数y=,求出m,即可求出解析式;(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,根据线段之间的数量关系进一步求出点D的坐标,再点D′与点D关于x轴对称,求出D′坐标,进而判断点D′是不是在双曲线;(3)根据C(3,3),D′(﹣3,﹣3)得到点C和点D′关于原点O中心对称,进一步得出D′O=CO=D′C,由S△AD′C=2S△AOC=2×AO•CE求出面积的值.解答:解:(1)∵点C(3,3)在反比例函数y=的图象上,∴3=,∴m=9,∴反比例函数的解析式为y=;(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,∴AF=BE,DF=CE,∵A(﹣4,0),B(2,0),C(3,3),∴DF=CE=3,OA=4,OE=3,OB=2,∴OF=OA﹣AF=OA﹣BE=OA﹣(OE﹣OB)=4﹣(3﹣2)=3,∴D(﹣3,3),∵点D′与点D关于x轴对称,∴D′(﹣3,﹣3),把x=﹣3代入y=得,y=﹣3,∴点D′在双曲线上;(3)∵C(3,3),D′(﹣3,﹣3),∴点C和点D′关于原点O中心对称,∴D′O=CO=D′C,∴S△AD′C=2S△AOC=2×AO•CE=2××4×3=12,即S△AD′C=12.点评:本题主要考查反比例函数综合题的知识点,解答本题的关键是熟练掌握反比例函数的性质以及点的对称性等知识点,此题难度不大,是一道不错的中考试题.23.(7分)(•襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为60度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.考点:全等三角形的判定与性质;等边三角形的性质;旋转的性质.专题:几何综合题.分析:(1)根据等边三角形的性质可得AB=AD,AE=AC,∠BAD=∠CAE=60°,然后求出∠BAE=∠DAC,再利用“边角边”证明△BAE和△DAC全等,根据全等三角形对应边相等即可得证;(2)①求出∠DAE,即可得到旋转角度数;②当AC=2AB时,△BDD′与△CPD′全等.根据旋转的性质可得AB=BD=DD′=AD′,然后得到四边形ABDD′是菱形,根据菱形的对角线平分一组对角可得∠ABD′=∠DBD′=30°,菱形的对边平行可得DP∥BC,根据等边三角形的性质求出AC=AE,∠ACE=60°,然后根据等腰三角形三线合一的性质求出∠PCD′=∠ACD′=30°,从而得到∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PD′C=30°,然后利用“角边角”证明△BDD′与△CPD′全等.解答:(1)证明:∵△ABD和△ACE都是等边三角形.∴AB=AD,AE=AC,∠BAD=∠CAE=60°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC,在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴BE=CD;(2)解:①∵∠BAD=∠CAE=60°,∴∠DAE=180°﹣60°×2=60°,∵边AD′落在AE上,∴旋转角=∠DAE=60°;②当AC=2AB时,△BDD′与△CPD′全等.理由如下:由旋转可知,AB′与AD重合,∴AB=BD=DD′=AD′,∴四边形ABDD′是菱形,∴∠ABD′=∠DBD′=∠ABD=×60°=30°,DP∥BC,∵△ACE是等边三角形,∴AC=AE,∠ACE=60°,∵AC=2AB,∴AE=2AD′,∴∠PCD′=∠ACD′=∠ACE=×60°=30°,又∵DP∥BC,∴∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PCD′=∠PD′C=30°,在△BDD′与△CPD′中,,∴△BDD′≌△CPD′(ASA).故答案为:60.点评:本题考查了全等三角形的判定与性质,等边三角形的性质,以及旋转的性质,综合性较强,但难度不大,熟练掌握等边三角形的性质与全等三角形的判定是姐提到过.24.(9分)(•襄阳)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.考点:一次函数的应用.分析:(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.解答:解:(1)由题意,得y A=(10×30+3x)×0.9=2.7x+270,y B=10×30+3(x﹣20)=3x+240,(2)当y A=y B时,2.7x+270=3x+240,得x=100;当y A>y B时,2.7x+270>3x+240,得x<100;当y A<y B时,2.7x+270=3x+240,得x>100∴当2≤x<100时,到B超市购买划算,当x=100时,两家超市一样划算,当x>100时在A 超市购买划算.(3)由题意知x=15×10=150>100,∴选择A超市,y A=2.7×150+270=675元,先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球(10×15﹣20)×30.9=351元,共需要费用10×30+351=651(元).∵651<675,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.点评:本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.25.(10分)(•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.考点:切线的性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.专题:证明题.分析:(1)连结OD,由AB为⊙O的直径,根据圆周角定理得AB为⊙O的直径得∠ACB=90°,再由ACD=∠BCD=45°,则∠DAB=∠ABD=45°,所以△DAB为等腰直角三角形,所以DO⊥AB,根据切线的性质得OD⊥PD,于是可得到DP∥AB;(2)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到AD==5;由△ACE为等腰直角三角形,得到AE=CE==3,在Rt△AED中利用勾股定理计算出DE=4,则CD=7,易证得∴△PDA∽△PCD,得到===,所以PA=PD,PC=PD,然后利用PC=PA+AC可计算出PD.解答:(1)证明:连结OD,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°,∴∠DAB=∠ABD=45°,∴△DAB为等腰直角三角形,∴DO⊥AB,∵PD为⊙O的切线,∴OD⊥PD,∴DP∥AB;(2)解:在Rt△ACB中,AB==10,∵△DAB为等腰直角三角形,∴AD==5,∵AE⊥CD,∴△ACE为等腰直角三角形,∴AE=CE===3,在Rt△AED中,DE===4,∴CD=CE+DE=3+4=7,∵AB∥PD,∴∠PDA=∠DAB=45°,∴∠PAD=∠PCD,而∠DPA=∠CPD,∴△PDA∽△PCD,∴===,∴PA=PD,PC=PD,而PC=PA+AC,∴PD+6=PD,∴PD=.点评:本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理定理、等腰直角三角形的性质和三角形相似的判定与性质.26.(13分)(•襄阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD 的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.①当t为2秒时,△PAD的周长最小?当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据抛物线的轴对称性可得抛物线与x轴的另一个交点B的坐标;(2)先根据梯形ABCD的面积为9,可求c的值,再运用待定系数法可求抛物线的解析式,转化为顶点式可求顶点E的坐标;(3)①根据轴对称﹣最短路线问题的求法可得△PAD的周长最小时t的值;根据等腰三角形的性质可分三种情况求得△PAD是以AD为腰的等腰三角形时t的值;②先证明△APN∽△PDM,根据相似三角形的性质求得PN的值,从而得到点P的坐标.解答:解:(1)由抛物线的轴对称性及A(﹣1,0),可得B(﹣3,0).(2)设抛物线的对称轴交CD于点M,交AB于点N,由题意可知AB∥CD,由抛物线的轴对称性可得CD=2DM.∵MN∥y轴,AB∥CD,∴四边形ODMN是矩形.∴DM=ON=2,∴CD=2×2=4.∵A(﹣1,0),B(﹣3,0),∴AB=2,∵梯形ABCD的面积=(AB+CD)•OD=9,∴OD=3,即c=3.∴把A(﹣1,0),B(﹣3,0)代入y=ax2+bx+3得,解得.∴y=x2+4x+3.将y=x2+4x+3化为顶点式为y=(x+2)2﹣1,得E(﹣2,﹣1).(3)①当t为2秒时,△PAD的周长最小;当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形.②存在.∵∠APD=90°,∠PMD=∠PNA=90°,∴∠PDM+∠APN=90°,∠DPM+∠PDM=90°,∴∠PDM=∠APN,∵∠PMD=∠ANP,∴△APN∽△PDM,∴=,∴=,∴PN2﹣3PN+2=0,∴PN=1或PN=2.∴P(﹣2,1)或(﹣2,2).故答案为:2;4或4﹣或4+.点评:考查了二次函数综合题,涉及的知识点为:抛物线的轴对称性,梯形的面积计算,待定系数法求抛物线的解析式,抛物线的顶点式,轴对称﹣最短路线问题,等腰三角形的性质,相似三角形的判定和性质,综合性较强,有一定的难度.。
2014-2015年湖北省襄阳市襄城区初三上学期期末数学试卷及参考答案
2014-2015学年湖北省襄阳市襄城区初三上学期期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0B.x2﹣2=(x+3)2C.D.x2﹣1=02.(3分)在下列图案中,是中心对称图形的是()A.B.C.D.3.(3分)下列事件中,属于随机事件的是()A.方程x2+1=0在实数范围内有解B.从长度分别为15cm,20cm,30cm,40cm的4根小木条中任意取3根为边拼成三角形C.直线y=k(x+1)过定点(﹣1,0)D.三角形的外角和为180°4.(3分)已知a<0,则点P(a2,﹣a+1)关于原点的对称点P′在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)如图,AB是⊙O的直径,AB=4,AC是弦,AC=,∠AOC=()A.120°B.130°C.140°D.150°6.(3分)已知△ABC如图,则下列4个三角形中,与△ABC相似的是()A.B.C.D.7.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则cosA的值为()A.B.C.D.8.(3分)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2B.3:1C.1:1D.1:29.(3分)对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣3)B.图象在第二、四象限C.x>0时,y随x的增大而增大D.x<0时,y随x增大而减小10.(3分)矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为()A.B.C.D.11.(3分)政府为了解决市民看病难的问题,决定下调药品价格,某种药品经过连续两次降价后,由每盒200元下调至128元,这种药品平均每次降价的百分率是()A.10%B.15%C.20%D.25%12.(3分)如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC绕点A顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有()①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个B.2个C.3个D.4个二、填空题(共5小题,每小题3分,满分15分)13.(3分)在2,﹣2,0,四个数中,任取一个,恰好使分式有意义的概率是.14.(3分)已知在等腰三角形ABC中,BC=8,AB,AC的长为方程x2﹣10x+m=0的根,则m=.15.(3分)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)16.(3分)如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为.17.(3分)圆锥形冰淇淋纸盒的母线长是13cm,高是12cm,则该圆锥纸盒的侧面积等于.三、解答题(共9小题,满分69分)18.(6分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出旋转后的图形;(2)点A1的坐标为;(3)在旋转过程中,点B经过的路径为弧BB1,求弧BB1的长为多少.19.(6分)如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B 在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S=10,求此反比例函数的解析四边形ABCD式.20.(6分)如图,有一长方形的仓库,一边长为5米,现要将它改建为简易住房,改建后的住房分为客厅、卧室和卫生间三部分,其中客厅和卧室都为正方形,且卧室的面积大于卫生间的面积,若改建后卫生间的面积为6m2,试求长方形仓库另一边的长.21.(6分)钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)22.(6分)已知:如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC 于点F、G,若∠1=∠2,探索线段FD、FG、EF之间的关系并说明理由.23.(7分)某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?24.(8分)有四张卡片(背面完全相同),分别写有数字1、2、﹣1、﹣2,把它们背面朝上洗匀后,甲同学抽取一张记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字,用字母b、c分别表示甲、乙两同学抽出的数字.(1)用列表法求关于x的方程x2+bx+c=0有实数解的概率;(2)求(1)中方程有两个相等实数解的概率.25.(12分)如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.26.(12分)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,4)两点,与x轴交于另一点B,(1)求抛物线的解析式;(2)求P在第一象限的抛物线上,P点的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式并求出m的最大值;(3)在(2)的条件下,抛物线上一点D的纵坐标为m的最大值,连接BD,在抛物线是否存在点E(不与点A,B,C重合)使得∠DBE=45°?若不存在,请说明理由;若存在,请求E点的坐标.2014-2015学年湖北省襄阳市襄城区初三上学期期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0B.x2﹣2=(x+3)2C.D.x2﹣1=0【解答】解:一定是一元二次方程的是x2﹣1=0,故选:D.2.(3分)在下列图案中,是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.3.(3分)下列事件中,属于随机事件的是()A.方程x2+1=0在实数范围内有解B.从长度分别为15cm,20cm,30cm,40cm的4根小木条中任意取3根为边拼成三角形C.直线y=k(x+1)过定点(﹣1,0)D.三角形的外角和为180°【解答】解:A、方程x2+1=0在实数范围内有解是不可能事件,故A不符合题意;B、从长度分别为15cm,20cm,30cm,40cm的4根小木条中任意取3根为边拼成三角形是随机事件,故B符合题意;C、直线y=k(x+1)过定点(﹣1,0)是必然事件,故C不符合题意;D、三角形的外角和为180°是必然事件,故D不符合题意;故选:B.4.(3分)已知a<0,则点P(a2,﹣a+1)关于原点的对称点P′在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵a<0,则点P(a2,﹣a+1)关于原点的对称点P′为:(﹣a2,a﹣1),∴﹣a2<0,a﹣1<0,∴P′在第三象限.故选:C.5.(3分)如图,AB是⊙O的直径,AB=4,AC是弦,AC=,∠AOC=()A.120°B.130°C.140°D.150°【解答】解:如图,作OD⊥AC,垂足为D∵AB=4∴OA=2∵AC=∴AD=∵sin∠DOA==∴∠DOA=60°∴∠AOC=120°.故选:A.6.(3分)已知△ABC如图,则下列4个三角形中,与△ABC相似的是()A.B.C.D.【解答】解:∵由图可知,AB=AC=6,∠B=75°,∴∠C=75°,∠A=30°,A、三角形各角的度数分别为75°,52.5°,52.5°,B、三角形各角的度数都是60°,C、三角形各角的度数分别为75°,30°,75°,D、三角形各角的度数分别为40°,70°,70°,∴只有C选项中三角形各角的度数与题干中三角形各角的度数相等,故选:C.7.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则cosA的值为()A.B.C.D.【解答】解:由勾股定理,得AB==5,cosA==,故选:A.8.(3分)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2B.3:1C.1:1D.1:2【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.9.(3分)对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣3)B.图象在第二、四象限C.x>0时,y随x的增大而增大D.x<0时,y随x增大而减小【解答】解:A、∵反比例函数y=,∴xy=3,故图象经过点(1,3),故A选项错误;B、∵k>0,∴图象在第一、三象限,故B选项错误;C、∵k>0,∴x>0时,y随x的增大而减小,故C选项错误;D、∵k>0,∴x<0时,y随x增大而减小,故D选项正确.故选:D.10.(3分)矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为()A.B.C.D.【解答】解:矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式是:y=(x>0).是反比例函数,且图象只在第一象限.故选:C.11.(3分)政府为了解决市民看病难的问题,决定下调药品价格,某种药品经过连续两次降价后,由每盒200元下调至128元,这种药品平均每次降价的百分率是()A.10%B.15%C.20%D.25%【解答】解:设这种药品平均每次降价的百分率为x,则第一次下调后的价格为200(1﹣x),第二次下调的价格为200(1﹣x)2,根据题意列得:200(1﹣x)2=128,解得:x=0.2=20%,或x=1.8=180%(舍去),则这种药品平均每次降价的百分率为20%.故选:C.12.(3分)如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC绕点A顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有()①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个B.2个C.3个D.4个【解答】解:∵在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=∠C=30°,∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴△AEC≌△AFB,∴∠ABF=∠C=30°,∴∠FBD=30°+30°=60°,∴①正确;∵∠ABC=∠DAE=30°,∴∠ABC+∠BAD=∠DAE+∠BAD,即∠ADC=∠BAE,∵∠ABC=∠C,∴△ABE∽△DCA,∴②正确;∵∠C=∠ABC=∠DAE=30°,∠BAC=120°,∴∠BAD+∠EAC=120°﹣∠DAE=90°,∴∠ABC+∠BAD<90°,∴∠ADC<90°,∴∠DAC>60°,∴∠EAC>30°,即∠DAE≠∠EAC,∴③错误;∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴AF=AE,∠EAC=∠BAF,∵∠BAC=120°,∠DAE=30°,∴∠BAD+∠EAC=90°,∴∠DAB+∠BAF=90°,即△AFD是直角三角形,∵在△DAE中,∠ADE=∠BAC+∠BAD,∠AED=∠C+∠EAC,∠ABC=∠C,但是根据已知不能推出∠BAD=∠EAC,∴∠ADE和∠AED不相等,∴AD和AE不相等,即△AFD是直角三角形,但是不一定是等腰三角形,∴④错误;故选:B.二、填空题(共5小题,每小题3分,满分15分)13.(3分)在2,﹣2,0,四个数中,任取一个,恰好使分式有意义的概率是.【解答】解:∵在2,﹣2,0,四个数中,任取一个,恰好使分式有意义的有﹣2,0,.∴使分式有意义的概率为:.故答案为:.14.(3分)已知在等腰三角形ABC中,BC=8,AB,AC的长为方程x2﹣10x+m=0的根,则m=25或16.【解答】解:当AB=BC=8,把x=8代入方程得64﹣80+m=0,解得m=16,此时方程为x2﹣10x+16=0,解得x1=8,x2=2;当AB=AC,则AB+AC=10,所以AB=AC=5,则m=5×5=25.故答案为:25或16.15.(3分)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)【解答】解:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1,∠ABC=120°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),==.∴图中阴影部分面积为:S扇形OBC故答案为:.16.(3分)如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为6.【解答】解:根据题意可知:S=|k|=3,△ABO由于反比例函数的图象位于第一象限,k>0,则k=6.故答案为:6.17.(3分)圆锥形冰淇淋纸盒的母线长是13cm,高是12cm,则该圆锥纸盒的侧面积等于65πcm2.【解答】解:圆锥的母线AB=13cm,圆锥的高AO=12cm,圆锥的底面半径OB=r,在Rt△AOB中,r===5(cm),∴S=πrl=π×5×13=65πcm2.故答案为:65πcm2三、解答题(共9小题,满分69分)18.(6分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出旋转后的图形;(2)点A1的坐标为(﹣2,3);(3)在旋转过程中,点B经过的路径为弧BB1,求弧BB1的长为多少.【解答】解:(1)如图,△A1OB1为所作;(2)点A1的坐标为(﹣2,3);(3)OB==,所以弧BB1的长==π.故答案为(﹣2,3).19.(6分)如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B 在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,=10,求此反比例函数的解析过点D作x轴的垂线交x轴于点C.若S四边形ABCD式.【解答】解:∵OD=2AD,∴=,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴===,∴=()2=,∵S=10,四边形ABCD=8,∴S△ODC∴OC×CD=8,OC×CD=16,∵双曲线在第二象限,∴k=﹣16,故反比例函数的解析式为:y=﹣.20.(6分)如图,有一长方形的仓库,一边长为5米,现要将它改建为简易住房,改建后的住房分为客厅、卧室和卫生间三部分,其中客厅和卧室都为正方形,且卧室的面积大于卫生间的面积,若改建后卫生间的面积为6m2,试求长方形仓库另一边的长.【解答】解:设长方形的另一边的长为x米,由题意得:(x﹣5)[5﹣(x﹣5)]=6,整理得:x2﹣15x+56=0,解得:x1=7,x2=8,∵卧室的面积大于卫生间的面积,∴x1不符合题意,舍去,∴长方形的另一边的长为8m;答:长方形的另一边的长为8m.21.(6分)钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)【解答】解:过点B作BD⊥AC于D.由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,∴∠ACB=180°﹣∠BAC﹣∠ABC=30°,在Rt△ABD中,BD=AB•sin∠BAD=20×=10(海里),在Rt△BCD中,BC===20(海里).答:此时船C与船B的距离是20海里.22.(6分)已知:如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC 于点F、G,若∠1=∠2,探索线段FD、FG、EF之间的关系并说明理由.【解答】解:DF2=FG•EF,理由是:∵AD∥BE,∴∠1=∠E.又∠EFB=∠AFD,BE=AD,∴△FEB≌△FAD;∴BF=DF,∵∠1=∠E,∠1=∠2,∴∠2=∠E.又∵∠GFB=∠BFE,∴△BFG∽△EFB,∴,∴BF2=FG•EF,∴DF2=FG•EF.23.(7分)某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?【解答】解:根据题意知,A(﹣2,﹣4.4),B(2,﹣4.4),设这个函数为y=kx2.将A的坐标代入,得y=﹣1.1x2,∴E、F两点的横坐标就应该是﹣1.2和1.2,∴将x=1.2代入函数式,得y≈﹣1.6,∴GH=CH﹣CG=4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.24.(8分)有四张卡片(背面完全相同),分别写有数字1、2、﹣1、﹣2,把它们背面朝上洗匀后,甲同学抽取一张记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字,用字母b、c分别表示甲、乙两同学抽出的数字.(1)用列表法求关于x的方程x2+bx+c=0有实数解的概率;(2)求(1)中方程有两个相等实数解的概率.【解答】解:(1)列表得:(1,﹣2)(2,﹣2)(﹣1,﹣2)(﹣2,﹣2)(1,﹣1)(2,﹣1)(﹣1,﹣1)(﹣2,﹣1)(1,2)(2,2)(﹣1,2)(﹣2,2)(1,1)(2,1)(﹣1,1)(﹣2,1)∴一共有16种等可能的结果,∵关于x的方程x2+bx+c=0有实数解,即b2﹣4c≥0,∴关于x的方程x2+bx+c=0有实数解的有(1,﹣1),(1,﹣2),(2,1),(2,﹣1),(2,﹣2),(﹣1,﹣1),(﹣1,﹣2),(﹣2,1),(﹣2,﹣1),(﹣2,﹣2)共10种情况,∴关于x的方程x2+bx+c=0有实数解的概率为:=;(2)(1)中方程有两个相等实数解的有(﹣2,1),(2,1),∴(1)中方程有两个相等实数解的概率为:=.25.(12分)如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.【解答】(1)证明:连结OD,如图,∵△ABC为等边三角形,∴∠C=∠A=∠B=60°,而OD=OB,∴△ODB是等边三角形,∠ODB=60°,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:∵OD∥AC,点O为AB的中点,∴OD为△ABC的中位线,∴BD=CD=6.在Rt△CDF中,∠C=60°,∴∠CDF=30°,∴CF=CD=3,∴AF=AC﹣CF=12﹣3=9,在Rt△AFG中,∵∠A=60°,∴FG=AF×sinA=9×=;(3)解:过D作DH⊥AB于H.∵FG⊥AB,DH⊥AB,∴FG∥DH,∴∠FGD=∠GDH.在Rt△BDH中,∠B=60°,∴∠BDH=30°,∴BH=BD=3,DH=BH=3.在Rt△AFG中,∵∠AFG=30°,∴AG=AF=,∵GH=AB﹣AG﹣BH=12﹣﹣3=,∴tan∠GDH===,∴tan∠FGD=tan∠GDH=.26.(12分)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,4)两点,与x 轴交于另一点B,(1)求抛物线的解析式;(2)求P在第一象限的抛物线上,P点的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式并求出m的最大值;(3)在(2)的条件下,抛物线上一点D的纵坐标为m的最大值,连接BD,在抛物线是否存在点E(不与点A,B,C重合)使得∠DBE=45°?若不存在,请说明理由;若存在,请求E点的坐标.【解答】解:(1)抛物线y=﹣x2+bx+c经过A(﹣1,0)、C(0,4)两点,∴解得∴抛物线的解析式y=﹣x2+3x+4(2)令﹣x2+3x+4=0,解得x1=﹣1,x2=4,∴B(4,0)设直线BC的解析式为y=kx+a∴解得,∴直线BC的解析式为y=﹣x+4设P点的坐标为(t,﹣t2+3t+4),则Q点的坐标为(t,﹣t+4)∴m=(﹣t2+3t+4)﹣(﹣t+4)=﹣(t﹣2)2+4整理得m=﹣(t﹣2)2+4,∴当t=2时,m的最大值为4(3)存在∵抛物线一点D的纵坐标为m的最大值4,∴﹣x2+3x+4=4,解得x1=0(舍),x2=3∴D(3,4),CD=3∵C(0,4),∴CD∥x轴,∵OC=OB=4,∴△BOC为直角三角形,过点D作DH⊥BC于H,过点E作EF⊥x于点F,在△CDB中,CD=3,∠DCB=45°∴CH=DH=,∵CB=4,∴BH=CB﹣CH=∵∠DBE=∠CBO=45°∴∠DBE﹣∠CBE=∠CBO﹣∠CBE,即∠DBC=∠EBF∴tan∠DBC===设EF=3a∴BF=5a∴OF=5a﹣4∴F(4﹣5a,0),E(4﹣5a,3a)∵点E在抛物线上∴3a=﹣(4﹣5a)2+3(4﹣5a)+4解得a1=0 a2=∴E(﹣,).。
初中数学中考襄阳试题解析
2 013年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题(3*12=36分)1.(3分)(2013•襄阳)2的相反数是()A.﹣2 B.2C.D.考点:相反数.分析:根据相反数的表示方法:一个数的相反数就是在这个数前面添上“﹣”号.解答:解:2的相反数是﹣2.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•襄阳)四川芦山发生7.0级地震后,一周内,通过铁路部门已运送救灾物资15810吨,将15810吨,将15180用科学记数法表示为()A.1.581×103B.1.581×104C.15.81×103D.15.81×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:15180=1.581×104,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2013•襄阳)下列运算正确的是()A.4a﹣a=3 B.a•a2=a3C.(﹣a3)2=a5D.a6÷a2=a3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、4a﹣a=3a,选项错误;B、正确;C、(﹣a3)2=a6,选项错误;D、a6÷a2=a4,选项错误.故选B.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.4.(3分)(2013•襄阳)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A 的度数.解答:解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选C.点评:本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.5.(3分)(2013•襄阳)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:根据不等式组的解法求出不等式组的解集,再根据>,≥向右画;<,≤向左画,在数轴上表示出来,从而得出正确答案.解答:解:,由①得:x≤1,由②得:x>﹣3,则不等式组的解集是﹣3<x≤1;故选D.点评:此题考查了一元一次不等式组的解法和在数轴上表示不等式的解集,掌握不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线是解题的关键.6.(3分)(2013•襄阳)如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55°B.50°C.45°D.40°考点:平行线的性质.分析:首先根据平行线的性质可得∠ABC+∠DCB=180°,进而得到∠BCD的度数,再根据角平分线的性质可得答案.解答:解:∵CD∥AB,∴∠ABC+∠DCB=180°,∵∠BCD=70°,∴∠ABC=180°﹣70°=110°,∵BD平分∠ABC,∴∠ABD=55°,故选:A.点评:此题主要考查了平行线的性质以及角平分线定义,关键是掌握两直线平行,同旁内角互补.7.(3分)(2013•襄阳)分式方程的解为()A.x=3 B.x=2 C.x=1 D.x=﹣1考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x+1=2x,解得:x=1,经检验x=1是分式方程的解.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.(3分)(2013•襄阳)如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A.B.C.D.考点:简单组合体的三视图.分析:判断出组合体的左视图、主视图及俯视图,即可作出判断.解答:解:几何体的左视图和主视图是相同的,则不同的视图是俯视图,俯视图是D选项所给的图形.故选D.点评:本题考查了简单组合体的三视图,属于基础题,注意理解三视图观察的方向.9.(3分)(2013•襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.46考点:平行四边形的性质.分析:由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线可作一个整体.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=5,∵△OCD的周长为23,∴OD+OC=23﹣5=18,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36,故选C.点评:本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.10.(3分)(2013•襄阳)二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是()A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2考点:二次函数图象上点的坐标特征.分析:对于二次函数y=﹣x2+bx+c,根据a<0,抛物线开口向下,在x<0的分支上y随x的增大而增大,故y1<y2.解答:解:∵a<0,x1<x2<1,∴y随x的增大而增大∴y1<y2.故选:B.点评:此题主要考查了二次函数图象上点的坐标特征,本题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数y=ax2+bx+c(a≠0)的图象性质.11.(3分)(2013•襄阳)七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m3)0.2 0.25 0.3 0.4 0.5家庭数(个) 1 2 2 4 1那么这组数据的众数和平均数分别是()A.0.4和0.34 B.0.4和0.3 C.0.25和0.34 D.0.25和0.3考点:众数;加权平均数.分析:根据众数及平均数的定义,结合表格信息即可得出答案.解答:解:将数据从新排列为:0.2,0.25,0.25,0.3,0.3,0.4,0.4,0.4,0.4,0.5,则中位数为:0.4;平均数为:(0.2+0.25+0.25+0.3+0.3+0.4+0.4+0.4+0.4+0.5)=0.34.故选A.点评:本题考查了众数及平均数的知识,解答本题的关键是熟练掌握中位数及平均数的定义.12.(3分)(2013•襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A.B.C.D.考点:扇形面积的计算;弧长的计算.分析:首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC﹣S扇形BOE=图中阴影部分的面积求出即可.解答:解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=30°,∵弧BE的长为π,∴=π,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC==3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=﹣=﹣.故选:D.点评:此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出∴△BOE和△ABE面积相等是解题关键.二、填空题(3*5=15分)13.(3分)(2013•襄阳)计算:|﹣3|+=4.考点:实数的运算;零指数幂.分析:分别进行绝对值及零指数幂的运算,然后合并即可得出答案.解答:解:原式=3+1=4.故答案为:4.点评:本题考查了实数的运算,涉及了零指数幂绝对值,掌握各部分的运算法则是关键.14.(3分)(2013•襄阳)使代数式有意义的x的取值范围是x≥且x≠3.考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,2x﹣1≥0且3﹣x≠0,解得x≥且x≠3.故答案为:x≥且x≠3.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.15.(3分)(2013•襄阳)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB 为0.8m,则排水管内水的深度为0.2m.考点:垂径定理的应用;勾股定理.分析:过O作OC垂直于AB,利用垂径定理得到C为AB的中点,在直角三角形AOC中,由水面高度与半径求出OC的长,即可得出排水管内水的深度.解答:解:过O作OC⊥AB,交AB于点C,可得出AC=BC=AB=0.4m,由直径是1m,半径为0.5m,在Rt△AOC中,根据勾股定理得:OC===0.3(m),则排水管内水的深度为:0.5﹣0.3=0.2(m).故答案为:0.2.点评:此题考查了垂径定理的应用,以及勾股定理,熟练掌握定理是解本题的关键.16.(3分)(2013•襄阳)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是.考点:列表法与树状图法.专题:图表型.分析:可以看做是李老师先选择第一站,然后儿子再进行选择,画出树状图,再根据概率公式解答.解答:解:李老师先选择,然后儿子选择,画出树状图如下:一共有9种情况,都选择古隆中为第一站的有1种情况,所以,P(都选择古隆中为第一站)=.故答案为:.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2013•襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是6或2.考点:图形的剪拼;勾股定理.分析:先根据题意画出图形,此题要分两种情况,再根据勾股定理求出斜边上的中线,最后根据直角三角形中,斜边上的中线等于斜边的一半即可求出斜边的长.解答:解:①如图所示:,连接CD,CD==,∵D为AB中点,∴AB=2CD=2;②如图所示:,连接EF,EF==3,∵E为AB中点,∴AB=2EF=6,故答案为:6或2.点评:此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.三、解答题(69分)18.(6分)(2013•襄阳)先化简,再求值:,其中,a=1+,b=1﹣.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把a、b的值代入进行计算即可解答:解:原式=÷=÷=×=﹣,当a=1+,b=1﹣时,原式=﹣=﹣=﹣.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(2013•襄阳)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.解答:解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,在Rt△BCD中,∵tan∠BCD=,∴tan45°=,∴BD=9m,∴AB=AD+BD=3+9(m).答:旗杆的高度是(3+9)m.点评:此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.20.(6分)(2013•襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?考点:一元二次方程的应用.分析:(1)设每轮传染中平均每人传染了x人,根据经过两轮传染后共有64人患了流感,可求出x,(2)进而求出第三轮过后,又被感染的人数.解答:解:(1)设每轮传染中平均每人传染了x人,1+x+x(x+1)=64x=7或x=﹣9(舍去).答:每轮传染中平均一个人传染了7个人;(2)64×7=448(人).答:第三轮将又有448人被传染.点评:本题考查了一元二次方程的应用,先求出每轮传染中平均每人传染了多少人数是解题关键.21.(6分)(2013•襄阳)某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第三小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数;概率公式.分析:(1)首先求得总人数,然后求得第四组的人数,即可作出统计图;(2)利用总人数260乘以所占的比例即可求解;(3)利用概率公式即可求解.解答:解:(1)总人数是:10÷20%=50(人),第四组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,,中位数位于第三组;(2)该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×260=104(人);(3)成绩是优秀的人数是:10+6+4=20(人),成绩为满分的人数是4,则从成绩为优秀的女生中任选一人,她的成绩为满分的概率是=0.2.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题22.(6分)(2013•襄阳)平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函数y=的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.考点:反比例函数综合题.分析:(1)把点C(3,3)代入反比例函数y=,求出m,即可求出解析式;(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,根据线段之间的数量关系进一步求出点D的坐标,再点D′与点D关于x轴对称,求出D′坐标,进而判断点D′是不是在双曲线;(3)根据C(3,3),D′(﹣3,﹣3)得到点C和点D′关于原点O中心对称,进一步得出D′O=CO=D′C,由S△AD′C=2S△AOC=2×AO•CE求出面积的值.解答:解:(1)∵点C(3,3)在反比例函数y=的图象上,∴3=,∴m=9,∴反比例函数的解析式为y=;(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,∴AF=BE,DF=CE,∵A(﹣4,0),B(2,0),C(3,3),∴DF=CE=3,OA=4,OE=3,OB=2,∴OF=OA﹣AF=OA﹣BE=OA﹣(OE﹣OB)=4﹣(3﹣2)=3,∴D(﹣3,3),∵点D′与点D关于x轴对称,∴D′(﹣3,﹣3),把x=﹣3代入y=得,y=﹣3,∴点D′在双曲线上;(3)∵C(3,3),D′(﹣3,﹣3),∴点C和点D′关于原点O中心对称,∴D′O=CO=D′C,∴S△AD′C=2S△AOC=2×AO•CE=2××4×3=12,即S△AD′C=12.点评:本题主要考查反比例函数综合题的知识点,解答本题的关键是熟练掌握反比例函数的性质以及点的对称性等知识点,此题难度不大,是一道不错的中考试题.23.(7分)(2013•襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为60度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.考点:全等三角形的判定与性质;等边三角形的性质;旋转的性质.专题:几何综合题.分析:(1)根据等边三角形的性质可得AB=AD,AE=AC,∠BAD=∠CAE=60°,然后求出∠BAE=∠DAC,再利用“边角边”证明△BAE和△DAC全等,根据全等三角形对应边相等即可得证;(2)①求出∠DAE,即可得到旋转角度数;②当AC=2AB时,△BDD′与△CPD′全等.根据旋转的性质可得AB=BD=DD′=AD′,然后得到四边形ABDD′是菱形,根据菱形的对角线平分一组对角可得∠ABD′=∠DBD′=30°,菱形的对边平行可得DP∥BC,根据等边三角形的性质求出AC=AE,∠ACE=60°,然后根据等腰三角形三线合一的性质求出∠PCD′=∠ACD′=30°,从而得到∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PD′C=30°,然后利用“角边角”证明△BDD′与△CPD′全等.解答:(1)证明:∵△ABD和△ACE都是等边三角形.∴AB=AD,AE=AC,∠BAD=∠CAE=60°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC,在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴BE=CD;(2)解:①∵∠BAD=∠CAE=60°,∴∠DAE=180°﹣60°×2=60°,∵边AD′落在AE上,∴旋转角=∠DAE=60°;②当AC=2AB时,△BDD′与△CPD′全等.理由如下:由旋转可知,AB′与AD重合,∴AB=BD=DD′=AD′,∴四边形ABDD′是菱形,∴∠ABD′=∠DBD′=∠ABD=×60°=30°,DP∥BC,∵△ACE是等边三角形,∴AC=AE,∠ACE=60°,∵AC=2AB,∴AE=2AD′,∴∠PCD′=∠ACD′=∠ACE=×60°=30°,又∵DP∥BC,∴∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PCD′=∠PD′C=30°,在△BDD′与△CPD′中,,∴△BDD′≌△CPD′(ASA).故答案为:60.点评:本题考查了全等三角形的判定与性质,等边三角形的性质,以及旋转的性质,综合性较强,但难度不大,熟练掌握等边三角形的性质与全等三角形的判定是姐提到过.24.(9分)(2013•襄阳)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B (元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.考点:一次函数的应用.分析:(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.解答:解:(1)由题意,得y A=(10×30+3x)×0.9=2.7x+270,y B=10×30+3(x﹣20)=3x+240,(2)当y A=y B时,2.7x+270=3x+240,得x=100;当y A>y B时,2.7x+270>3x+240,得x<100;当y A<y B时,2.7x+270=3x+240,得x>100∴当2≤x<100时,到B超市购买划算,当x=100时,两家超市一样划算,当x>100时在A 超市购买划算.(3)由题意知x=15×10=150>100,∴选择A超市,y A=2.7×150+270=675元,先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球(10×15﹣20)×30.9=351元,共需要费用10×30+351=651(元).∵651<675,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.点评:本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.25.(10分)(2013•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD 于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.考点:切线的性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.专题:证明题.分析:(1)连结OD,由AB为⊙O的直径,根据圆周角定理得AB为⊙O的直径得∠ACB=90°,再由ACD=∠BCD=45°,则∠DAB=∠ABD=45°,所以△DAB为等腰直角三角形,所以DO⊥AB,根据切线的性质得OD⊥PD,于是可得到DP∥AB;(2)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到AD==5;由△ACE为等腰直角三角形,得到AE=CE==3,在Rt△AED中利用勾股定理计算出DE=4,则CD=7,易证得∴△PDA∽△PCD,得到===,所以PA=PD,PC=PD,然后利用PC=PA+AC可计算出PD.解答:(1)证明:连结OD,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°,∴∠DAB=∠ABD=45°,∴△DAB为等腰直角三角形,∴DO⊥AB,∵PD为⊙O的切线,∴OD⊥PD,∴DP∥AB;(2)解:在Rt△ACB中,AB==10,∵△DAB为等腰直角三角形,∴AD==5,∵AE⊥CD,∴△ACE为等腰直角三角形,∴AE=CE===3,在Rt△AED中,DE===4,∴CD=CE+DE=3+4=7,∵AB∥PD,∴∠PDA=∠DAB=45°,∴∠PAD=∠PCD,而∠DPA=∠CPD,∴△PDA∽△PCD,∴===,∴PA=PD,PC=PD,而PC=PA+AC,∴PD+6=PD,∴PD=.点评:本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理定理、等腰直角三角形的性质和三角形相似的判定与性质.26.(13分)(2013•襄阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD 的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.①当t为2秒时,△PAD的周长最小?当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据抛物线的轴对称性可得抛物线与x轴的另一个交点B的坐标;(2)先根据梯形ABCD的面积为9,可求c的值,再运用待定系数法可求抛物线的解析式,转化为顶点式可求顶点E的坐标;(3)①根据轴对称﹣最短路线问题的求法可得△PAD的周长最小时t的值;根据等腰三角形的性质可分三种情况求得△PAD是以AD为腰的等腰三角形时t的值;②先证明△APN∽△PDM,根据相似三角形的性质求得PN的值,从而得到点P的坐标.解答:解:(1)由抛物线的轴对称性及A(﹣1,0),可得B(﹣3,0).(2)设抛物线的对称轴交CD于点M,交AB于点N,由题意可知AB∥CD,由抛物线的轴对称性可得CD=2DM.∵MN∥y轴,AB∥CD,∴四边形ODMN是矩形.∴DM=ON=2,∴CD=2×2=4.∵A(﹣1,0),B(﹣3,0),∴AB=2,∵梯形ABCD的面积=(AB+CD)•OD=9,∴OD=3,即c=3.∴把A(﹣1,0),B(﹣3,0)代入y=ax2+bx+3得,解得.∴y=x2+4x+3.将y=x2+4x+3化为顶点式为y=(x+2)2﹣1,得E(﹣2,﹣1).(3)①当t为2秒时,△PAD的周长最小;当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形.②存在.∵∠APD=90°,∠PMD=∠PNA=90°,∴∠PDM+∠APN=90°,∠DPM+∠PDM=90°,∴∠PDM=∠APN,∵∠PMD=∠ANP,∴△APN∽△PDM,∴=,∴=,∴PN2﹣3PN+2=0,∴PN=1或PN=2.∴P(﹣2,1)或(﹣2,2).故答案为:2;4或4﹣或4+.点评:考查了二次函数综合题,涉及的知识点为:抛物线的轴对称性,梯形的面积计算,待定系数法求抛物线的解析式,抛物线的顶点式,轴对称﹣最短路线问题,等腰三角形的性质,相似三角形的判定和性质,综合性较强,有一定的难度.。
湖北省襄阳市中考数学试题及解析(2015)
湖北省襄阳市中考数学试卷(2015)一、选择题,共12小题,每小题3分,共36分D2.中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用科学记C D4.如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()7.如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB .若BE=2,则AE 的长为( )D10.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( )11.二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是( ). D12.如图,矩形纸片ABCD 中,AB=4,BC=8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( )二、填空题,共5小题,每小题3分,共15分13.计算:2﹣1﹣=.14.分式方程﹣=0的解是.15.若一组数据1,2,x,4的众数是1,则这组数据的方差为.16.如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为.17.在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.三、简单题,共9小题,共69分18.先化简,再求值:(+)÷,其中x=,y=﹣.19.如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.20.为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和(1)表中的a=,b=;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.21.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.23.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.24.为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.26.边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E 两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题,共12小题,每小题3分,共36分D2.中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用科学记C D4.如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()解:如图,7.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()DCE=110.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()11.二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=在同一平面直角坐标系中的图象可能是( ) . D>y=12.如图,矩形纸片ABCD 中,AB=4,BC=8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( ),EF=2,二、填空题,共5小题,每小题3分,共15分13.计算:2﹣1﹣=0.﹣14.分式方程﹣=0的解是15.15.若一组数据1,2,x,4的众数是1,则这组数据的方差为 1.5.则这组数据的方差为[16.如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为﹣π.PA=(×﹣﹣π故答案为:﹣πABD==55ABD=∠BDE=三、简单题,共9小题,共69分18.先化简,再求值:(+)÷,其中x=,y=﹣.••x=,﹣19.如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.y=的图象过点,即.y=的图象过点2=,,20.为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和(1)表中的a=12,b=40;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是108°;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.b%==.21.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.cosC=,即=,CD=ADC=23.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.BE=AC=DE=24.为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要25.如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.AH=AD= +OCOB=,OC=,,AC=2AC26.边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E 两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.中,(;=.CDCD=.=,PC=PD=×,t=t=时,以点),第21页(共21页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年湖北省襄阳市中考数学试卷一、选择题,共12小题,每小题3分,共36分2.(3分)(2015•湖北)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370B4.(3分)(2015•湖北)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()6.(3分)(2015•湖北)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()7.(3分)(2015•湖北)如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB .若BE=2,则AE 的长为( )B10.(3分)(2015•湖北)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( )11.(3分)(2015•湖北)二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=在同一平面直角坐标系中的图象可能是( ).12.(3分)(2015•湖北)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()F=2二、填空题,共5小题,每小题3分,共15分13.(3分)(2015•湖北)计算:2﹣1﹣=.14.(3分)(2015•湖北)分式方程﹣=0的解是.15.(3分)(2015•湖北)若一组数据1,2,x,4的众数是1,则这组数据的方差为.16.(3分)(2015•湖北)如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为.17.(3分)(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A 的度数为.三、简单题,共9小题,共69分18.(6分)(2015•湖北)先化简,再求值:(+)÷,其中x=,y=﹣.19.(6分)(2015•湖北)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.20.(6分)(2015•湖北)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图(1)表中的a=,b=;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.21.(6分)(2015•湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.(6分)(2015•湖北)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.23.(7分)(2015•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC 绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.24.(10分)(2015•湖北)为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(10分)(2015•湖北)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.26.(12分)(2015•湖北)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.2015年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题,共12小题,每小题3分,共36分2.(3分)(2015•湖北)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370B4.(3分)(2015•湖北)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()6.(3分)(2015•湖北)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()解:如图,7.(3分)(2015•湖北)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()BCE=1CE=110.(3分)(2015•湖北)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( )11.(3分)(2015•湖北)二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=在同一平面直角坐标系中的图象可能是( ).>图象在第一三象限,12.(3分)(2015•湖北)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()F=2EF=2,二、填空题,共5小题,每小题3分,共15分13.(3分)(2015•湖北)计算:2﹣1﹣=0.﹣14.(3分)(2015•湖北)分式方程﹣=0的解是15.15.(3分)(2015•湖北)若一组数据1,2,x,4的众数是1,则这组数据的方差为 1.5.[))﹣则这组数据的方差为[,则方差[)﹣﹣16.(3分)(2015•湖北)如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为﹣π.,∠××)﹣故答案为:﹣17.(3分)(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A 的度数为55°.三、简单题,共9小题,共69分18.(6分)(2015•湖北)先化简,再求值:(+)÷,其中x=,y=﹣.••+y=﹣19.(6分)(2015•湖北)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.y=,即y=2=.20.(6分)(2015•湖北)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图(1)表中的a=12,b=40;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是108°;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.×=21.(6分)(2015•湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.(6分)(2015•湖北)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.cosC=,求出∠,求出cosC=tanB=,即=BC=2ADC=23.(7分)(2015•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC 绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.BE=AC=BE=AC=﹣24.(10分)(2015•湖北)为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(10分)(2015•湖北)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.AD=,四边形+OCAD=,四边形+OCPB,,,,26.(12分)(2015•湖北)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.=,(;,= CD,=PC=PD=×=,,t=时,以点))参与本试卷答题和审题的老师有:星期八;sd2011;2300680618;CJX;1987483819;HJJ;zhjh;gbl210;lantin;守拙;sjzx;sks;zcl5287;73zzx;1286697702;gsls;zcx(排名不分先后)菁优网2015年7月9日。