算法的概念及表示
C语言之算法的概念
C语言之算法的概念算法是计算机科学中非常重要的概念,它是解决问题的一种方法或步骤的有序集合。
在C语言中,算法的概念被广泛运用于程序的设计和开发过程中。
本文将介绍算法的基本概念、特点和应用,以及在C语言中如何实现和优化算法。
一、算法的基本概念算法是解决问题的步骤的有序集合,它是由基本操作组成的序列。
算法通常由以下几个要素构成:1. 输入:算法需要接受一定的输入数据,这些数据可以是用户输入的,也可以是外部文件中读取的。
2. 输出:算法通过一定的计算过程得到输出结果,这个结果可以是屏幕上显示的,也可以是保存到文件中的。
3. 确定性:算法中的每个步骤都必须是确定的,即给定相同的输入,算法总能得到相同的输出。
这保证了算法的可靠性和可重复性。
4. 有限性:算法必须能在有限时间内终止,即经过有限次的基本操作后,算法会结束并给出输出。
二、算法的特点算法具有以下几个特点:1. 可行性:算法必须是可行的,即它可以在计算机系统上实际运行,并且能够得到正确的结果。
2. 有效性:算法必须是有效的,即它能够在合理的时间内完成任务。
算法的效率通常可以通过时间复杂度和空间复杂度来衡量。
3. 可读性:算法必须是可读的,即能够被程序员和其他相关人员轻松理解和维护。
良好的算法应该具有清晰的逻辑结构和合理的命名。
4. 通用性:算法应该是通用的,即它可以解决广泛的问题,并且具有一定的灵活性和可扩展性。
三、算法的应用算法在计算机科学中的应用广泛,几乎贯穿于程序的设计和开发的始终。
以下是一些常见的算法应用领域:1. 搜索算法:搜索算法用于在一组数据中查找特定的元素,例如线性搜索、二分搜索等。
2. 排序算法:排序算法用于将一组数据按照一定的规则进行排序,例如冒泡排序、快速排序、归并排序等。
3. 图算法:图算法用于解决与图相关的问题,例如最短路径问题、最小生成树问题等。
4. 动态规划算法:动态规划算法用于解决一些具有重叠子问题和最优子结构性质的问题,例如背包问题、最长公共子序列问题等。
计算机基础知识什么是算法
计算机基础知识什么是算法算法是计算机科学中的一个关键概念,它是解决问题或完成任务的一系列步骤和规则的集合。
具体而言,算法是一种有序的操作流程,用于将输入转化为输出。
在计算机编程和软件开发中,算法可以用来解决各种问题,包括排序、搜索、图形处理等。
算法的设计和分析是计算机科学中的重要研究领域。
优秀的算法设计可以提高计算效率,减少计算时间和资源的消耗。
因此,了解和掌握基本的算法知识对于学习和应用计算机科学至关重要。
在计算机基础知识中,算法的概念是一门必学的基础课程。
首先,我们来看看算法的基本特征。
算法具有以下几个基本特征:1. 有穷性:算法必须在执行有限步骤之后终止。
这意味着算法应该有明确的入口和出口,并且不会陷入无限循环或死循环。
2. 确定性:算法的每一步应该有明确的定义,不会有二义性。
换句话说,同样的输入应该产生同样的输出。
3. 可行性:算法的每一步都应该是可行的,能够通过现有的计算机硬件和软件来实现。
4. 输入:算法应该有输入,它接收来自外界的信息或数据。
5. 输出:算法应该有输出,它产生并返回处理后的结果。
在计算机编程中,我们经常会使用算法来解决各种问题。
比如,要计算两个数的和,我们可以使用如下算法:1. 输入两个数a和b。
2. 将a和b相加。
3. 输出相加的结果。
这个算法非常简单,但它符合算法的基本特征,并能够准确地解决问题。
当然,在实际应用中,我们可能会遇到更加复杂的问题和算法。
算法的复杂度是衡量算法性能的重要指标之一。
通常,我们会关注算法的时间复杂度和空间复杂度。
时间复杂度表示算法执行所需的时间量级,空间复杂度表示算法执行所需的存储空间。
通过分析算法的复杂度,我们可以选择合适的算法来解决问题,以获得更好的性能。
除了基本的算法知识,学习计算机基础知识还需要理解计算机的结构和工作原理,了解计算机网络和操作系统的基本概念,熟悉常用的编程语言和开发工具等。
这些知识将有助于我们更好地理解和应用算法。
算法的概念
算法的概念——知能阐释一、知识精讲1.算法的含义算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或看成按要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题。
说明:(1)算法一般是机械的,有时要进行大量的重复计算,只要按部就班地去做,总能算出结果。
通常把算法过程称为“数学机械化”,数学机械化的最大优点,是它可以让计算机来完成。
(2)实际上,处理任何问题都需要算法,中国象棋有中国象棋的棋谱,国际象棋有国际象棋的棋谱。
再比如,邮寄物品有其相应的手续,购买飞机票也有一系列的手续等等。
(3)求解某个问题的算法不唯一。
2.算法的特征(1)确定性:算法的每一步必须是确切定义的,且无二意性,算法只有唯一的一条执行路径,对于相同的输入只能得出相同的输出。
(2)有容性:一个算法必须在执行有穷次运算后结束,在所规定的时间和空间内,若不能获得正确结果,其算法也是不能被采用的。
(3)可行性:算法中的每一个步骤都必须能用实现算法的工具——可执行指令精确表达,并在有限步骤内完成,否则这种算法也是不会被采纳的。
(4)算法一定要根据输入的初始数据或给定的初值才能正确执行它的每一步骤。
(5)有输出,算法一定能得到问题的解,有一个或多个结果输出,达到求解问题的目的,没有输出结果的算法是没有意义的。
3.算法的描述(1)自然语言:自然语言就是人们日常使用的语言,可以是汉语、英语或数学语言等。
用自然语言描述算法的优点是通俗易懂,当算法中的操作步骤都是顺序执行时比较容易理解。
缺点是如果算法中包含判断或转向,并且操作步骤较多时,就不那么直观清晰了。
(2)框图(流程图):所谓框图,就是指用规定的图形符号来描述算法,用框图描述算法,具有直观、结构清晰、条理分明、通俗易懂、便于检查修改及交流等优点。
(3)程序设计语言:算法最终可通过程序的形式编写出来,并在计算机上执行。
程序设计语言可分为低级语言和高级语言,低级语言包括机器语言和汇编语言。
简述算法概念
简述算法概念一、算法概念算法是指用于解决问题的一系列步骤,它可以被看作是一种计算模型。
在计算机科学中,算法是指用于解决特定问题的一组有限指令序列。
这些指令描述了一个计算过程,当按照给定的顺序执行时,能够在有限时间内产生输出结果。
二、算法的分类1. 按照求解问题的性质分类(1) 数值型问题:求解数学方程、求解数值积分等。
(2) 组合型问题:如图论、网络流等。
(3) 几何型问题:求解几何图形之间关系等。
2. 按照设计思路分类(1) 贪心算法:每次选择最优策略,希望最终得到全局最优解。
(2) 分治算法:将原问题分成若干个规模较小且结构与原问题相似的子问题,递归地求解这些子问题,再将结果合并成原问题的解。
(3) 动态规划算法:将大规模复杂的问题分割成若干个小规模简单的子问题进行求解,并保存每个子问题的答案,在需要时查找已经保存好的答案来避免重复计算。
3. 按照求解策略分类(1) 穷举算法:列举所有可能的情况,再从中选出最优解。
(2) 迭代算法:通过不断迭代逼近最优解。
(3) 随机化算法:通过随机选择策略来求解问题。
三、算法的评价标准1. 正确性:算法所得结果应该与问题的实际结果一致。
2. 时间复杂度:衡量算法执行所需时间的指标,通常使用大O记号表示,例如O(n)、O(nlogn)等。
3. 空间复杂度:衡量算法执行所需空间的指标,通常使用大O记号表示,例如O(n)、O(nlogn)等。
4. 可读性:算法应该易于理解和修改,使得程序员能够快速地进行开发和维护工作。
四、常见数据结构与算法1. 数组与链表数组是一种线性数据结构,它可以存储相同类型的元素,并且可以通过下标访问。
链表也是一种线性数据结构,它由节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。
数组和链表都可以用来实现栈和队列等数据结构。
2. 排序算法排序是计算机科学中最基本的问题之一,它的目的是将一组数据按照某种规则进行排列。
常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。
算法及算法的表示
1.常用的流程符号
l
起止框:表示算法的开始和结束。
l
处理框:表示初始化或运算赋值等操作。
l
输入输出框:表示数据的输入输出操作。
l
判断框:表示根据一个条件成立与否,决定执
行两种不同操作中的其中一个。
l
流程线:表示流程的方向。
8
算法及算法的表示
2.三种基本结构的表示
(1) 顺序结构
顺序结构是简单的线性结构, 各框按顺序执行。其流程图如图 1-4所示 (2) 选择(分支)结构
直到型循环:执行过程是先执行“语句组”,再判断条 件,条件为真时,一直循环执行语句组,一旦条件为假,结 束循环,执行循环紧后的下一条语句。如图3-6(b)所示。
10
算法及算法的表示
图1-6 循环结构流程图
11
算法及算法的表示
例1-1的算法用流程 图表示如图1-7所示
例1-2的算法用流程图表示如图 1-8所示
C语言程序设计
算法及算法的表示
1.1 算法概述
算法概念
1 广义: 算法是为完成一项任务所应当遵照的一步一步
的规则的、精确的、无歧义的描述,它的总步数是 有限的。 2 狭义:
算法是解决一个问题采取的方法和步骤的描述
2
算法及算法的表示
例1-1 输入三个数,然后输出其中最大的数。 算法可以写成: (1) 输入A,B,C。 (2) 若A>B,则MAX ← A;否则MAX←B。 (3) 若C>MAX,则MAX← C。 (4) 输出MAX,MAX即为最大数。
第 (6)步。 (6)打印输出Max
4
算法及算法的表示
1.2 算法的特性
1.有穷性:算法须在执行有穷多个计算步骤后终止 2.确定性:算法的每个步骤必须都是精确定义的、无二 义性的; 3.有效性:算法中的每一个步骤必须有效地执行,并能 得到确定结果; 4.输入:一个算法中可以没有输入,也可以有一个或多 个输入信息 5.输出:一个算法应有一个或多个输出
算法的概念
gcd(60,24)=gcd(24,60 mod 24)=gcd(24,12) =gcd(12,24 mod 12)=gcd(12,0)=12
下面是该算法的一个更加结构化的描述。
1.1 算法的概念和描述
用于计算 gcd(m,n)的欧几里得算法:
第一步: 如果 n=0,返回 m的值作为结果,同时函数结束;否则,进入第二步。
第二步:m 除以 n,将余数赋给 r。
第三步: 将 n 的值赋给 m,将r 的值赋给 n,返回第一步。
我们也可以使用伪代码来描述这个算法:
算法 Euclid(m,n)
//使用欧几里得算法计算gcd(m,n)
//输入∶两个不全为0的非负整数m,n
//输出∶m,n的最大公约数
while n≠0do
{ r←mmodn
m←n
n←r
} return m
图1.2 欧几里得算法的流程图
上面的伪代码也可以用流程图来加以描述,如图1.2所示。
第一节、水文现象与桥涵水文的研究意义
第一章 算法的概念
↘1 . 1 ↘1 . 2
算法的概念和描述 算法的时间复杂度和空间复杂度
1.1 算法的概念和描述
【1.1பைடு நூலகம்1 算法的概念】
算法是一系列解决问题的清晰指令,也就是对于符合一定规范的输入在有限步骤内求
解某一问题所使用的一组定义明确的规则。通俗点说,就是计算机解题的过程。在这个过
程中,无论是形成解题思路还是编写程序,都是在实施某种算法。前者是推理实现的算法,
算法及其描述
练习:
现有一串字母“PROGRAM”给 它加密,请设计算法,用自然语言 描述。
实践练习:
一天,小猴子从树上摘下若干个桃子, 当即吃了一半,觉得不过瘾,又吃了一 个。第二天小猴子接着吃剩下的一半, 还觉得不过瘾,又吃了一个。以后每天 都是吃前一天剩下的一半后,就再多吃 了一个。到第四天,只剩下一下桃子。 试设计一个算法流程图,求小猴子第一 天摘下了多少个桃子。
求9147485和5147480两个数的最大 公约数。
三、算法的设计与选择
算法的设计,直接影响着程序 的通用性和解决问题的效率,总的 来说,一个好的算法,应该是科学 而又合理的算法。
例:用自然语言描述摩斯密码的原理
第1步:输入26个英文字母,它们分别对应1~26 个数学。 第2步:令a=1,k=3,n=26。 第3步:使a的取值范围为1≤a≤26,F(a)=(a+k) mod n,转第5步。 第4步:a=a+1,转第3步。 第5步:输出F(a)相对应的数字。 第6步:把数学转化成相当的字母,输出字母 第7步:累计字母出现顺序,转第4步。
例:分析闰年的算法描述 第一个条件:y mod 4=0 判断闰年的条件:⑴y不能被100整除; ⑵y能被400整除且y能被400整除。 判断不是闰年的条件:⑴y mod 4=0 且y mod 100=0,但y不能被400整除;⑵y不能被4 整除。
3、用伪代码描述算法
表示条件判断语句
IF 条件 THEN 执行语句一 ELSE执行语句二 END IF 条件语句中可以包含多个子语句
一、算法的概念
这个过河的方案就是这道趣味题的 算法。算法就是解决问题的方法和步 骤。在以后的编程中也要记住了,有 些步骤是可以颠倒的,不影响程序的 结果;但是有些一但颠倒了那最终的 结果也就全变了。 算法——解决问题的方法和步骤。 算法+数据结构=程序。
高一数学算法的概念(课件)
穷举算法
通过穷举所有可能性来解决问题,适用于问题 规模较小或有限的情况。
贪心算法
每一步选择当前最优解,但不能保证全局最优, 适用于某些特定问题。
分治算法
将问题划分为多个子问题,递归求解,并将子 问题的解合并成原问题的解。
动态规划算法
利用问题的重叠子问题特性,将问题拆解为多 个重叠子问题,通过保存子问题的解避免重复 计算。
高一数学算法的概念
本课件将介绍高一数学算法的概念,包括算法定义、表示方法、分类、时间 复杂度、应用、优化以及注意事项。掌握算法是学习数学的重要基础。
什么是算法?
1 算法的定义
算法是一系列解决问题的清晰指令,能够在有限时间内得到正确结果。
2 算法的特点
算法具有确定性、有穷性、输入输出和可行性等特点,使其成为解决问题的有效工具。
用
理解算法的适用范围和局 限性,避免将不适用的算 法应用于不相应的问题。
结束语
算法的重要性与应用
算法在数学和计算机科学中具有重要地位,为问题解决和创新提供基础。
日常生活中的算法应用实例
比如导航算法、推荐算法、匹配算法等在我们的生活中无处不在。
掌握算法是学习数学的重要基础
算法是数学的重要分支,通过学习算法能够提高数学问题的解决能力和思维能力。
算法的时间复杂度
时间复杂度的概念
衡量算法执行时间随问题规模 增长的增长率,用大O表示法表 示。
算法复杂度分析方法
通过统计算法语句执行次数、 循环迭代次数等来推导算法的 时间复杂度。
时间复杂度的计算与 分析
根据算法的基本操作的复杂度 以及循环和递归等结构进行时 间复杂度的计算和分析。
算法的应用
在分数的计算中的应用
算法初步知识点
高中数学必修3知识点总结第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
浙教版(2019)高中信息技术必修12.1算法的概念及描述课件(15张ppt)
如果问题求解时所有数据都是不变且已知的,则所需数据包含在算法中,不必再在执行时输人数据。如果一些初始数据需要在算法执行时临时获取以适应不同情形的问题,则算法需要包1个或多个输人。
算法的核心价值就是解决问题,而解的终极目标就是需要知道结果究竞如何
2.1.2算法的描述方式(或算法的呈现方式)
算法的特征课堂习题
下面关于算法的描述,正确的是( )
A.一个算法只能有一个输入B. 算法只能用框图来表示C.一个算法的执行步骤可以是无限的D.一个完整的算法,不管用什么方法来表示,都至少有一个输出结果
2.1.1算法的概念
3、算法三要素
①、数据
②、运算
③、控制转移(选择、循环)
用算法解决问题时,必须明确参与运算的初始数据、运算时产生的中间数据以及解决问题后的结果数据
已缴费
是住校生
到所属教室班级休息
到财务处缴费
凭缴费单到高一公寓领取生活用品,布置床铺
否
否
是
是
高一新生报到流程
2.1.1算法的概念
2、算法的特征
①、有穷性
②、可行性
③、确定性
④、0个或多个输入
⑤、1个或多个输出
一个算法的步骤必须是有限的,不能是无限的。
一个算法中的每一步操中能做到并且能在有限的时间内完成。
A.6 B.8 C.9 D.15
2.1.2算法的描述方式(或算法的呈现方式)
3、伪代码:
伪代码指的是一种比较接直观简洁、符号接近计算机程序代码的算法描述。根据它很容易转换为相应的计算机语言代码
格式1:If 格件 then (语句序列1) Else (语句序列2)
对数据计算和判断
C语言-算法及其描述方法
1 算法的概念
1.1 算法的概念
解决一个问题的方法(或步骤),称为 算法。
1.2 简单算法举例
例2.1 求1×2 × 3 × 4 × 5。 如果求100!, 需要多少个步骤?
方法一:
S1:先求1 × 2,得到结果2。
S2:将步骤1得到的乘积再乘以3,得到结果6。 S3:将6再乘以4,得24。 S4:将24再乘以5,得到120。即最后的结果。
例:求1×2 × 3 × 4 × 5,即5!=?
S1:使t=1
S2:使i=2
S3:使t×i, 乘积仍放在变量t中,即t=t×i
S4:使i的值加1,即i=i+1
S5:如果i的值不大于5,返回重新执行步骤
S3以及其后的步骤S4和S5;否则,算法结
束。
N
开始 t=1 i=2
t=t×i i=i+1
i >5?
Y
结束
图1
2.2三种基本结构
(1) 三种基本结构 ☆ 顺序结构
a
A
B
b
☆ 选择结构 又称选取结构,或称分支结构。
a
成立
P
不成立
A
B
a
成立
不成立
P
A
b
b
图a
图b
☆ 循环结构
又称重复结构,即反复执行某一部分的操作。有 两类循环结构:
a. 当型(While型)循环结构
b. 直到型(Until型)循环结构
方法二:
S1:使变量t=1
如果求100!,需要多少个步 骤?怎样修改?
S2:使变量i=2i
S4:使i的值加1,即 i=i+1
S5:如果i的值不大于5,返回重新执行步骤S3以 及其后的步骤S4和S5;否则,算法结束。
浙教版信息技术必修3.4算法及算法的表示课件(共17张ppt)
随堂演练·巩固
3.如图所示,流程图虚线框部分的控制结构属于( )
A.顺序结构 B.分支结构 C.循环结构 D.树型结构 答案:B 解析:算法中对超标情况进行判断,当超标时,执行Y指向的流程线 下的销毁,否则执行N指向的流程线下的出售,所以该算法是典型的 分支结构,又称选择结构。
随堂演练·巩固
4.(2017·11浙江学考)某算法的部分流程图如下图所示,执行这部分 流程后,输出a,b的值分别是( )
A.5,8 B.4,8 C.5,11 D.4,11 答案:C 解析:第1次循环后:a=2,b=2;第2次循环后:a=3,b=5; 第3次循环后:a=4,b=8;第 4 次循环后:a=5,b=11。
5.如图所示的算法流程图,执行情况如下:
随堂演练·巩固
(1)输入a,b的值分别为2、7,输出结果为7; (2)输入a,b的值分别为10、3,输出结果为10。 下列流程图填入虚线框中,符合条件的是( )
考点1 考点2 考点点2 考点3
例3在一次电视选秀活动中,有三个评委为每位选手打分。如果 三个评委都亮绿灯,则进入下一轮;如果两个评委亮绿灯,则进入待 定席;如果红灯数超过二盏则淘汰。最适合用到的程序结构是 ()
A.循环 B.树型 C.分支 D.顺序 答案:C 解析:该案例中,根据亮灯情况产生三种不同的结果,适合使用选 择结构的算法。
条目梳理·层析
考点1 考点2 考点3
变式某一算法流程图如下:
该算法执行后,输出s的值是( ) A.6 B.12 C.18 D.36 答案:D 图示流程图属于循环结构算法,功能是从自然数1到20中找出既 能被2整除也能被3整除的数i,并把这些i累加到s中,所以 s=6+12+18=36。
高中数学_算法与程序框图
算法与程序框图知识图谱算法与程序框图知识精讲一.算法的概念1.算法的定义由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照一定规则,解决某一类问题的明确的和有限的步骤,称为算法.通常可以编成计算机程序,让计算机执行并解决问题.2.算法的特征:(1)有穷性:算法必须在执行有限步后结束,通常还理解为实际上能够容忍的合理限度;(2)确定性:算法的每一个步骤必须有确定的含义;(3)可行性:组成算法的每个步骤和操作必须是相当基本的,原则上都是能精确地执行的;(4)输入:有零个或多个输入;(5)输出:有一个或多个输出.二.算法的描述1.用自然语言;2.用数学语言;3.用算法语言(程序设计语言);4.用程序框图(流程图).三.程序框图的概念:用一些通用的图形符号构成的一张图来表示算法,称为程序框图(简称框图).1.常用图形符号:图形符号名称符号表示的意义起、止框框图的开始或结束输入、输出框数据的输入或者结果的输出处理框赋值、执行计算语句、结果的传送判断框根据给定条件判断流程线流程进行的方向连结点连结另一页或另一部分的框图四.算法的三种基本逻辑结构:顺序结构、条件(分支)结构和循环结构.1.顺序结构:最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的.如下图,只有在执行完A 框指定的操作后,才能接着执行B 框指定的操作;2.条件(分支)结构:在一个算法中,用来处理需要根据条件是否成立有不同的流向的结构.常见的条件结构的程序框图有下面两种形式:否否是是BA A P PB A3.循环结构:从某处开始,按照一定的条件反复执行某些步骤的情况,就是循环结构,其中反复执行的步骤称为循环体.常见的循环结构的框图对应为:否是A P三点剖析一.注意事项:1.在画程序框图时,从开始框沿箭头必须能到达结束框,特别是条件分支结构应沿每条支路都能到达结束框,流程线必须加箭头表示顺序.2.对于循环结构有如下需要注意的情况:(1)循环结构非常适合计算机处理,因为计算机的运算速度非常快,执行成千上万次的重复计算,只不过是一瞬间的事,且能保证每次的结果都正确;(2)循环结构要有中止循环体的条件,不能无休止的运算下去,循环结构中一定包含条件结构,如i n ≤就是中止循环的条件;(3)循环结构的关键是,要理解“累加变量”和“用1i 代替i ”,S 是一个累加变量,i 是计数变量,每循环一次,S 和i 都要发生变化,这两步要重复计算若干次;(4)一种循环结构是先判断i n ≤是否成立,若是,执行循环体;若否,则中止循环,像这样,每次执行循环体前对控制循环条件进行判断,条件满足时执行循环体,不满足则停止,称为当型循环.除了当型循环外,常用的循环结构还有直到型循环.二.方法点拨1.画程序框图的规则:(1)使用标准的框图的符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框外,大多数框图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号;(4)一种判断框是“是”与“不是”两分支的判断,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果;(5)在图形符号内描述的语言要非常简练清楚.2.画程序框图要注意的几点:(1)起、止框是任何流程不可少的,表示程序的开始和结束;(2)输入、输出框可以用在算法中任何需要输入、输出的位置;(3)算法中间要处理数据或计算,可分别写在不同的处理框内;(4)当算法要求你对两个不同的结果进行判断时,要写在判断框内;(5)一个算法步骤到另一个算法步骤用流程线连结;(6)如果一个框图需要分开来画,要在断开处画上连结点,并标出连结的号码.程序框图例题1、下列说法正确的是()A.算法就是某个问题的解题过程;B.算法执行后可以产生不同的结果;C.解决某一个具体问题算法不同结果不同;D.算法执行步骤的次数不可以为很大,否则无法实施.例题2、指出下列哪一个不是算法()A.解方程260x -=的过程是移项和系数化为1B.从济南到温哥华需要先乘火车到北京,再从北京乘飞机到温哥华C.解方程2210x x +-=D.利用公式2πS r =,计算半径为3的圆的面积为2π3⨯例题3、下列语句中是算法的个数为()①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎;②统筹法中“烧水泡茶”的故事;③测量某棵树的高度,判断其是否是大树;④已知三角形的一部分边长和角,借助正余弦定理求得剩余的边角,再利用三角形的面积公式求出该三角形的面积A.1B.2C.3D.4随练1、下面四种叙述能称为算法的是()A.在家里一般是妈妈做饭B.做米饭要需要刷锅.添水.加热这些步骤C.在野外做饭叫野炊D.做饭必需要有米随练2、下列关于算法的说法正确的有()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后产生确定的结果.A.1个B.2个C.3个D.4个随练3、早上从起床到出门需要洗脸刷牙(5min).刷水壶(2min).烧水(8min).泡面(3min).吃饭(10min).听广播(8min)几个步骤,下列选项中最好的一种算法为()A.s1洗脸刷牙s2刷水壶s3烧水s4泡面s5吃饭s6听广播B.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭s5听广播C.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭的同时听广播D.s1吃饭的同时听广播s2泡面s3烧水的同时洗脸刷牙s4刷水壶算法的三种逻辑结构和框图表示例题1、如果执行如图所示的程序框图,那么输出的a=()A.2B.12 C.﹣1 D.以上都不正确例题2、如果执行如图所示的程序框图,那么输出的a=()A.2B.12 C.﹣1 D.以上都不正确例题3、阅读右边的程序框图,运行相应的程序,输出的S的值是()A.26B.40C.57D.无法确定随练1、如图是某算法的流程图,则执行该算法输出的结果是S=____.随练2、执行如图所示的程序框图,如果输入a=2,那么输出的a值为()A.4B.16C.256D.log316随练3、执行如图所示的程序框图,则输出的k=()A.4B.5C.6D.7拓展1、算法的有穷性是指()A.算法最后包含输出B.算法的每个操作步骤都是可执行的C.算法的步骤必须有限D.以上都不正确2、下面对算法描述正确的一项是()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3、看下面的四段话,其中不是解决问题的算法的是()A.从上海到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母.去括号.移项.合并同类项.系数化为1C.方程210x -=有两个实根D.求12345++++的值,先计算123+=,再由于336+=,6410+=,10515+=,4、根据如图程序框图,输出k 的值为()A.3B.4C.5D.65、给出计算12+14+16+…+120的值的一个程序框图如图,其中判断框内应填入的条件是()A.i >10B.i <10C.i >20D.i <206、如图所示的流程图表示一函数,记作y=f (x ),若x 0满足f (x 0)<0,且f (f (x 0))=1,则x 0=____.。
算法的概念及描述课件高中信息技术浙教版(2019)必修1(18张PPT)
输入a、b、c的值 if b**2-4*a*c>=0 :
(输出“该方程有实数根”) else:
(输出“该方程没有实数根”)
伪代码 接近 计算 机程序代码 的算法描述 方式,介于自 然语言和程 序设计语言 之间。
历年真题
7.关于算法流程图下面说法正确的是(D)
A、流程图必须包含一个判断框 B、流程图直观易懂,但是容易产生二义性 C、算法描述只能使用流程图 D、流程图中无须填写程序代码
的值为( C )
A.2 B.3 C.4 D.5
历年真题
6.某算法的流程图如图所示,依次输入x的值为3、2、1、-1后,该算法的输出结果
为( A )
A3 B4 C5 D6
伪代码描述算法
判断任意一个一元二次方程是否有实数根 1、输入a、b、c 2、如果b2-4ac>=0,输出“该方程有实数根”;否则,输出 “该方程没有实数根”
算法---程序的“灵魂”
广义上讲,算法是为了解决一类特定问题而采取的确定的、有限的步骤。 在计算机领域,算法作为一个精心设计的运算序列,描述了计算机如何将输入转换 为输出的过程。
算法的一般特征如下:
有输入:可以没有吗?
可以没有
有输出:算法必须要有吗? 必须要有
有穷性:写出所有的偶数 可行性:计算宇宙的面积
4.在《几何原本》一书中,“辗转相除法”可以求出任意两个正整数的最大公约 数,具体步骤如下: (1)输入两个正整数m和n (2)以m除以n,得到余数r (3)若r=0,则输出n的值,算法结束,否则执行步骤(4) (4)令m n,n r,并返回步骤(2)
√
历年真题
5.某算法的部分流程图如图2-1-6所示。执行这部分流程,若输入a的值为36,则输出c
算法与算法描述
3、伪代码:介于自然语言和计算机程序语言之间。
三、程序设计语言: 机器语言、汇编语言、高级语言。
开始
输入半径r
s=pi*r^2
自然语言描述: 步骤一、输入圆的半径r 步骤二、计算圆的面积s 步骤三、输出圆的面积s
输出面积s
结束
开始
输入密码
密码是 否正确
自然语言描述: 输出“密码正确, 步骤一、输入密码 请等待登陆” 步骤二、判断密码是否正确 步骤三、正确的话,输出“密码 正确,请等待登陆”;错误的话, 输出“密码错误,请重新输入”
B
8、下列流程图中能描述循环结构的是(
C
)
A (1)(2)(4)
B (1)(3)
C (2)(4)
D (2)(3)(4)
思考:尝试电脑桌面上的打字测试软 件,思考并画出其流程图
6、下列选项中,不属于计算机程序设计语言的是( A、自然语言 C、汇编语言 B、高级语言 D、机器语言
A
)。
7、一个单窗体VB程序的运行界面如右图所示。 下列说法正确的是( ) (1)窗体内有1个按钮 (2)窗体内有2个文本框 (3)窗体内有3个标签 (4)该窗体的标题(Caption)属性值是“加法计算器” A、(3)(4) B、(1)(4) C、(2)(3) D、(1)(2)
D
)
4、下列关于算法的描述错误的是(
A、算法是解决某一类问题的方法和步骤 B、一个有效的算法至少要有一个或多个输入 C、算法可以使用自然语言、伪代码、流程图等多种不同的方法来描述 D、算法必须在有限步骤内实现 5、关于算法的描述,下列选项中正确的是(
B
)
D
)
Hale Waihona Puke A、算法本身就是一种程序设计语言 B、算法的步骤可以是无穷的 C、算法必须有输入 D、算法的每一步骤必须有确切的含义
作业7算法的概念及描述
作业7算法的概念及描述
算法是一种描述操作过程步骤的工具,可以根据输入输出,更高效地
解决复杂任务和问题。
算法广泛应用于计算机科学的不同领域,包括程序
设计、算法设计、系统维护、数据处理和信息安全等,被用于解决实际问题,提高工作效率。
一个算法是一组由输入(input)和输出(output)组成的有限指令的有
序集合,其中输入可以是任何可以被算法接受的输入,如数据、文本或参数。
算法的运行过程可以分为三个步骤:首先,定义一个初始的问题(problem),其次,对问题进行分析并找到一个解决方案(solution),最后,设计一组指令来解决问题。
算法的一般特性可以细分为四个方面:输入(input)、输出(output)、可行性(feasibility)和特质(characteristics)。
输入是算法运行所需要
的数据,输出是生成的结果,可行性是算法有效执行的条件,特质是算法
的一般性质,如时间复杂度、空间复杂度、系统变化和可靠性等。
算法可以分为不同的类型,例如算法、排序算法、优化算法等等。
算
法是一种在一定范围内想要的目标的算法,如回溯、评估、逐层等。
排序
算法是按照指定的规则对元素进行排序的算法,如冒泡排序、快速排序、
插入排序等。
1-1、算法及程序实现专题(学考部分)
一、算法及算法的表示
1、算法的基本概念
(1)“算法”是解题方法的精确描述;
(2)“算法”由有限个步骤组成; (3)使用计算机解决问题一般要经历三个阶段:
第一阶段:分析问题确定要用计算机做什么。 第二阶段:寻找解决问题的途径和方法。 第三阶段:用计算机进行处理。
2、算法的常用表示方法
(3)伪代码
(4)计算机语言(如VB)
3、算法流程的三种控制结构
Step1
Yes 条件是否成立 Step1
No
Step2
Step2
顺序模式
Yes
选择模式
No
条件是否成立
Step1
循环模式
例2. 下列问题不能用算法描述的是
(
)
A.已知a、b、c的值,求一元二次方程ax +bx+c=0(a≠0) 的实数根 B.计算某个班级学生身高的平均值 C.列出方程y=2x+1的所有实数解
Height——对象的高度,以像素为单位;
Width——对象的宽度,以像素为单位;
例1、下列控件中既可用于接受用户输入文本,又可用于显示文本的控件是( A.Label B . TextBox C.Timer D.CommandButton 例2、在Visual Basic代码窗口中,语句a=t1. Text 中的Text是( A.属性名 B.属性值 C.对象名 D.窗口名 )
3、三种基本结构
Step1
Yes 条件是否成立 Step1
Step2
Step2
顺序结构
Yes
选择结构
No
条件是否成立
Step1
循环结构
顺序结构程序设计
顺序结构经典实例:交换a、b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法的概念及表示
算法是指一个明确规定的、用于解决特定问题的有限序列指令。
算法包含了一系列的步骤,这些步骤需要被按照特定顺序执行,来完成一个特定的任务。
算法是计算机程序开发的核心,它能够帮助我们解决复杂的问题,提高程序的效率和准确性。
一、算法的概念和定义
算法是一组可适用于某类问题求解的有限指令序列,它是一个解决问题的精确步骤描述,算法必须具有良好的可读性和易于理解性,同时也要具有较高的效率和可行性。
二、算法的特点
1. 确定性
算法必须以明确、清晰的方式描述每一个操作的具体实现过程,只要输入参数相同,算法就应该产生相同结果。
2. 有限性
算法必须在有限步骤内完成求解,也就是说,算法不能出现无限循环或无限递归的情况。
3. 可行性
算法实现的步骤必须是可以实际执行的。
4. 输入输出明确
算法必须明确输入和输出的格式和含义。
三、算法的表示方法
1. 伪代码表示法
伪代码是一种结构化的、类似于某种程序语言的自然语言描述,可以表示出算法的基本流程和各个步骤的实现方法,但不关注具体的编程语言。
2. 流程图表示法
流程图可以清晰地展现算法的执行过程和各个步骤的关系,方便程序员阅读和理解。
3. 程序语言表示法
在具体的编程语言中编写代码,以实现算法。
四、算法的应用范围
算法广泛应用于计算机科学领域,包括数据处理、人工智能、机器学习、计算机图形学、计算机网络等众多领域。
在实际应用中,算法可以帮助我们提高问题求解的速度和精度,并且为我们带来更多的创新思路和方法。