地层孔隙压力与破裂压力的计算方法
地层破裂压力
PM —射孔孔眼的孔眼摩阻;
PI —瞬时停泵压力; GDF —地层破裂压力梯度;
汇报完毕
不妥之处敬请批评指正
1、理论计算方法—Eaton法
该理论认为,地下岩层处于均匀水平地应力状态,其中充满着层理、
微裂隙和(张开或隐形的)天然裂缝,流体在压力作用下将沿这些薄弱
面侵入,使其张开并向岩层延伸,且张开裂缝的流体压力只需克服垂直 裂缝面的地应力。
三、地层破裂压力的采集方法
2、测井分析法:
利用测井资料得出泊松比后,按下式计算地层破裂压力:
地层破裂压力
一、地层破裂压力定义
地层产生水力裂缝时的井底流体压力称为地层破裂压力。 地层破裂压力的高低与岩石弹性性质、孔隙压力、天然裂缝的发育 情况以及该地区的地应力等因素有关。
地层破裂压力与地层中部深度的比值称为破裂压力梯度。
二、地层破裂压力的作用
1、地层破裂压力是确定井下管柱、井下工具、井口装置与泵注设备 压力极限的μ—岩石泊松比; α—应力系数; σz —孔眼围岩轴向应力,MPa Pp—地层孔隙压力
三、地层破裂压力的采集方法
3、利用现场施工参数计算
Pf —施工泵注前置液使的最高井底压裂压力(此时,可认为是压开地 层时的井底破裂压力);
Pw —泵注前置液时最高地面泵注压力;
2、根据破裂压力确定压裂施工时的地面最高泵压、泵注排量以及需
用设备功率。 3、根据破裂压力梯度可以大致推断水力裂缝的形态。一般认为,在 压力系数为1.0的正常油藏中。 ①如果破裂压力梯度小于0.015MPa/m 时,多为水平裂缝;
②如果破裂压力梯度大于0.02MPa/m时,多为垂直裂缝。
三、地层破裂压力的采集方法
破裂压力计算概述
破裂压力计算概述1引言1.1破裂压力概念地层破裂压力(P B)定义为使地层产生水力裂缝或张开原有裂缝时的井底压力,要实现水力加砂压裂的前提条件是应该有足够的地面泵压使井底目的层地层开裂。
实际生产中通常用破裂压力梯度G B(地层破裂压力P B与地层深度H的比值)表示破裂压力的大小,破裂压力梯度值G B一般由压裂实践统计得出。
地层破裂压力与岩石弹性性质、孔隙压力、天然裂缝发育情况以及该地区的地应力等因素有关。
在压裂施工中的地层破裂压力还可以这样来理解就是裂缝即将开启而未开启时的井底压力;在压裂施工作业中,如果起泵初期压力有比较明显的降落时,那么我们就可以确定出破裂压力来这一数值可用下面这一关系式来描述:地层破裂压力=裂施工作业初期的最高套管压力+层中部的液柱压力1.2破裂压力的获取途径水力压裂是油气井最常用的一种增产措施,而地层破裂压力是压裂设计和施工工艺的一项重要参数,确定该参数正确与否,将关系到能否保证压开地层等问题。
该参数的获取有两种途径:一是进行室内岩石力学实验或井场水力压裂施工;二是从测井资料中提取。
目前,用测井资料估算砂泥岩剖面地层破裂压力的方法与技术较为成熟。
由于碳酸盐岩地层原生孔隙很小,次生孔隙的发育使岩石的刚性大大减弱,并呈现出明显的非均质性与各向异性,同时不同的构造部位受构造应力作用的强度难以确定,最小水平主应力和岩体抗张强度的度量较难,造成用测井资料计算的地层破裂压力精度较低。
碳酸盐岩地层破裂压力与测井响应具有密切的关系。
利用能够反映碳酸盐岩地层基本特性和岩石力学性质的测井信息,预测碳酸盐岩地层的破裂压力是一种经济、简便的可靠途径。
1957年,Hubbert和Willis根据三轴压缩试验,首先提出了地层破裂压力预测模式即H-W模式。
到目前为止,国内外提出了许多预测地层破裂压力的方法。
比较常用的有Eaton法,Stephen法,黄荣樽法等。
1997年Holbrook发表了适于预测张性盆地裂缝扩展压力的一种方法。
地层破裂(漏失)压力试验
四、地层破裂压力试验
数据处理 2、有关参数的计数 地层实际的漏失压力或破裂压力等于地层漏失或破裂时的地面表压加上井内钻井液的静液压力。
2.3、最小水平主地应力 Pmin=PGS+0.00981ρH 式中 Pmin—最小水平主地应力,MPa; PGS—瞬时停泵地面表压,MPa。 2.4、岩石抗拉强度,MPa, St=PGF-PGR 式中: St—试漏层岩石抗拉强度,MPa; PGR—重张时地面表压,MPa。
一、地层破裂压力
地层破裂压力是指某一深度地层发生破碎和裂缝时所能承受的压力。当达到地层破裂压力时,地层原有的裂缝扩大延伸或无裂缝的地层产生裂缝。
一、地层破裂压力
一般情况(遵循压实规律)下,地层破裂压力随着井深的增加而增大。 在钻井时,钻井液柱压力的下限要保持与地层压力相平衡,实现压力控制。而其上限则不能超过地层的破裂压力,以避免压裂地层造成井漏。
五、现场地层漏失压力试验
五、现场地层漏失压力试验
某井试漏时井深1206米,泵排量16.35升∕冲,钻井液密度1.20克∕厘米3
累计泵冲
立压(kPa)
累计泵冲
立压(kPa)
5
836
45
14986
10
2991
50
15015
15
5123
55
15021
20
7264
60
15018
25
9391
试漏前的准备 试漏层段 确定: (SY 5430—92)《地层破裂压力测定套管鞋试漏法 》 试漏层段应选在套管鞋下第一个3~5m厚的易漏层。 井控教科书:当钻至套管鞋以下第一个砂岩层时(或出套管鞋3-5米), Q/SYCQZ《长庆区域钻井井控实施细则》钻出套管鞋进入地层5 m ~ 15 m, 《长庆油田钻井井控实施细则》钻出套管鞋进入第一个砂层3-5m时
现场地层压力计算
在此处键入公式。
六、地层压力计算1、地层孔隙压力和压力梯度(1)地层孔隙压力H g p f p ⨯⨯⨯=-ρ310式中,P p ——地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa ; ρf ——地层流体密度,g/cm 3; g ——重力加速度,9.81m/s 2;H ——该点到水平面的重直高度(或等于静液柱高度),m 。
在陆上井中,H 为目的层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm ,则,H g p m h ⨯⨯⨯=-ρ310式中,p h ——静液柱压力,MPa ; ρm ——钻井液密度,g/cm 3; H ——目的层深度,m ; g ——重力加速度,9.81m/s 2。
在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0.6~3.3m ,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。
(2)地层孔隙压力梯度HP G Pp =式中 G p ——地层孔隙压力梯度,MPa/m 。
其它单位同上式。
2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力])1[(1081.93o ρρΦ+Φ-⨯=-m H P式中 P o ——上覆岩层压力,MPa ; H ——目的层深度,m ; Φ——岩石孔隙度,%;ρ——岩层孔隙流体密度,g/cm 3; ρm ——岩石骨架密度,g/cm 3。
(2)上覆岩层压力梯度HP G oo =式中,G o ——上覆岩层压力梯度,MPa/m ;P o ——上覆岩层压力,MPa ; H ——深度(高度),m 。
(3)压力间关系z p P p O σ+=式中,P o ——上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa ;σz ——有效上覆岩层压力(骨架颗粒间压力或垂直的骨架应力),MPa 。
3、地层破裂压力和压力梯度 (1)地层破裂压力(伊顿法)p p z f P P P +--=)(1σμμ式中, P f ——地层破裂压力(为岩石裂缝开裂时的井内流体压力),MPa ; μ——地层的泊松比;σz ——有效上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa 。
地层破裂压力计算综述
・
—
J I
吉休 《 余 】 被
【 窑 J 虼
以确定地层破裂压 力的 系数 ,考虑 了井壁上应 力集 中的影响 ,及似定 无构造应 力,地层抗涨强度 为零 ( 0 且取均匀水平应力 ( = ) = ) 条件下 .并根据 当井 内液柱压力增大使井壁上有效J向应力由压缩状 f 爿 态变 为零时开始起裂为条件 ,其模型为 :
2 , v
pB Pw+ Pn— pr Pu — ‘ 1
( 8) f较新, an o I 受构造运动影响较小的连续沉积盆地 .其他情况效果欠佳 . . .
( ) n e o 法 1 7 年A dr n 2 A dr n s 9 3 n e o 等探 索从测 井资料 中获 得足 s
学 术 研 讨
l 煞 ?韭 身 l '_ 粤 兰 9 _ 2 2 4
地 层 破 裂压 力 计算 综述
常 菁 铉
( 都理工大学能 源学院 ) 成 摘 要 地层破 裂压 力的预 测对于油气井的安全快速钻进 、完井、以及油气井的压裂增产措施都是很 重要 的 准确的掌握 破裂压 力 ( 梯度 1可以预 防漏、塌 、喷 、卡事故的发生.同时也是 制定泥浆方案,设计套管程序 ,确定套管下深的重要依据 目前 ,国内外 预测地层破裂压力的方法很 多,作者对其进行 了整理.方便根据情况对破 裂压力的求取
一
P 酉 z P / +
或
() 1
() 2
J %
图 1 泊 松 比与 泥 质 指 教 的 关 系
图中 ,地 层的泥质含量可 由下式确定 :
( 一 ) +
:
f 6)
式中 , p 为地层破 裂压力; 为孔 隙压力.MP ; 为垂 向主应力 l a 上覆岩 层 压力 J ,MP ; 为有效垂 向主应 力 ( a 有救上覆 岩层 压力,垂直的岩石骨架
现场地层压力计算
在此处键入公式。
六、地层压力计算1、地层孔隙压力和压力梯度(1)地层孔隙压力H g p f p ⨯⨯⨯=-ρ310式中,P p ——地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa ; ρf ——地层流体密度,g/cm 3; g ——重力加速度,9.81m/s 2;H ——该点到水平面的重直高度(或等于静液柱高度),m 。
在陆上井中,H 为目的层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm ,则,H g p m h ⨯⨯⨯=-ρ310式中,p h ——静液柱压力,MPa ; ρm ——钻井液密度,g/cm 3; H ——目的层深度,m ; g ——重力加速度,9.81m/s 2。
在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0.6~3.3m ,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。
(2)地层孔隙压力梯度HP G Pp =式中 G p ——地层孔隙压力梯度,MPa/m 。
其它单位同上式。
2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力])1[(1081.93o ρρΦ+Φ-⨯=-m H P式中 P o ——上覆岩层压力,MPa ; H ——目的层深度,m ; Φ——岩石孔隙度,%;ρ——岩层孔隙流体密度,g/cm 3; ρm ——岩石骨架密度,g/cm 3。
(2)上覆岩层压力梯度HP G oo =式中,G o ——上覆岩层压力梯度,MPa/m ;P o ——上覆岩层压力,MPa ; H ——深度(高度),m 。
(3)压力间关系z p P p O σ+=式中,P o ——上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa ;σz ——有效上覆岩层压力(骨架颗粒间压力或垂直的骨架应力),MPa 。
3、地层破裂压力和压力梯度 (1)地层破裂压力(伊顿法)p p z f P P P +--=)(1σμμ式中, P f ——地层破裂压力(为岩石裂缝开裂时的井内流体压力),MPa ; μ——地层的泊松比;σz ——有效上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa 。
现场地层压力计算
在此处键入公式。
六、地层压力计算1、地层孔隙压力和压力梯度(1)地层孔隙压力H g p f p ⨯⨯⨯=-ρ310式中,P p ——地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa ; ρf ——地层流体密度,g/cm 3; g ——重力加速度,9.81m/s 2;H ——该点到水平面的重直高度(或等于静液柱高度),m 。
在陆上井中,H 为目的层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm ,则,H g p m h ⨯⨯⨯=-ρ310式中,p h ——静液柱压力,MPa ; ρm ——钻井液密度,g/cm 3; H ——目的层深度,m ; g ——重力加速度,9.81m/s 2。
在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0.6~3.3m ,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。
(2)地层孔隙压力梯度HP G Pp =式中 G p ——地层孔隙压力梯度,MPa/m 。
其它单位同上式。
2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力])1[(1081.93o ρρΦ+Φ-⨯=-m H P式中 P o ——上覆岩层压力,MPa ; H ——目的层深度,m ; Φ——岩石孔隙度,%;ρ——岩层孔隙流体密度,g/cm 3; ρm ——岩石骨架密度,g/cm 3。
(2)上覆岩层压力梯度HP G oo =式中,G o ——上覆岩层压力梯度,MPa/m ;P o ——上覆岩层压力,MPa ; H ——深度(高度),m 。
(3)压力间关系z p P p O σ+=式中,P o ——上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa ;σz ——有效上覆岩层压力(骨架颗粒间压力或垂直的骨架应力),MPa 。
3、地层破裂压力和压力梯度 (1)地层破裂压力(伊顿法)p p z f P P P +--=)(1σμμ式中, P f ——地层破裂压力(为岩石裂缝开裂时的井内流体压力),MPa ; μ——地层的泊松比;σz ——有效上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa 。
国内外破裂压力计算方法
破裂压力计算概述1引言1.1破裂压力概念地层破裂压力(PB)定义为使地层产生水力裂缝或张开原有裂缝时的井底压力,要实现水力加砂压裂的前提条件是应该有足够的地面泵压使井底目的层地层开裂。
实际生产中通常用破裂压力梯度GB (地层破裂压力PB与地层深度H的比值)表示破裂压力的大小,破裂压力梯度值GB一般由压裂实践统计得出。
地层破裂压力与岩石弹性性质、孔隙压力、天然裂缝发育情况以及该地区的地应力等因素有关。
在压裂施工中的地层破裂压力还可以这样来理解就是裂缝即将开启而未开启时的井底压力;在压裂施工作业中,如果起泵初期压力有比较明显的降落时,那么我们就可以确定出破裂压力来这一数值可用下面这一关系式来描述:地层破裂压力=裂施工作业初期的最高套管压力+层中部的液柱压力1.2破裂压力的获取途径水力压裂是油气井最常用的一种增产措施,而地层破裂压力是压裂设计和施工工艺的一项重要参数,确定该参数正确与否,将关系到能否保证压开地层等问题。
该参数的获取有两种途径:一是进行室内岩石力学实验或井场水力压裂施工;二是从测井资料中提取。
目前,用测井资料估算砂泥岩剖面地层破裂压力的方法与技术较为成熟。
由于碳酸盐岩地层原生孔隙很小,次生孔隙的发育使岩石的刚性大大减弱,并呈现出明显的非均质性与各向异性,同时不同的构造部位受构造应力作用的强度难以确定,最小水平主应力和岩体抗张强度的度量较难,造成用测井资料计算的地层破裂压力精度较低。
碳酸盐岩地层破裂压力与测井响应具有密切的关系。
利用能够反映碳酸盐岩地层基本特性和岩石力学性质的测井信息,预测碳酸盐岩地层的破裂压力是一种经济、简便的可靠途径。
1957年,Hubbert和Willis根据三轴压缩试验,首先提出了地层破裂压力预测模式即H-W模式。
到目前为止,国内外提出了许多预测地层破裂压力的方法。
比较常用的有Eaton法,Stephen法,黄荣樽法等。
1997年Holbrook发表了适于预测张性盆地裂缝扩展压力的一种方法。
钻井工程常用计算公式
钻井常用计算公式•、地层压力计算1、静液柱压力(MPa)=P(粘井液密度)*0.00981*H(垂深m)2、压力梯度值(MPa)=p(钻井液密度)*0.009813、单位内容积(r∩3Λn>=7.854*10-5*内径2(Cm)4、单位环空容积(m3∕m)=7.854*10^5*(井径2cm-管柱外径2cm)5、容积(m?)=单位内容积(m3∕m)*长度(m)管柱单位排音量(mVm)=7.854*10^5*(外径2cm内径2cm)6、地层压力(MPa)=钻具静液柱压力+关井立压7、压井钻井液密度(g∕c11p>=(关井立压Mpa/O.00981/11(m))+当前井液P(gcm3)8、初始循环压力=关井立压+底泵速泵压9、终止循环压力=(压力井液p/当前井液p)*低泵速泵压10、溢流长度m;钻井液增量m3/环空单位容积m3∕m11、溢流密度p(g∕cm3)=当前井液P-[(套压MPa-立压Mpa)/(溢流长度m*0.00981)]12、当量循环密度p(g/cm3)-(环空循环压力损失Mpa/O.00981/垂深m)+当前井液P13、当量钻井液P(g4zm3)-总压力Mpa/O.00981/垂深m14、孔隙压力MPa=9.81*Wf(地瓜水平均密度g∕cmυ*H(垂高m)15、上覆岩层压力(Mpa)=(岩石基质重量+流体重量)/面积[9.81*[(卜-。
岩石孔隙度%)*pm岩石基颓密度Hem3+4>*p岩石孔隙中流体密度g/cnP]16、地层破裂压力梯度(Mpa)=Pf(破裂地层压力Mpa)/H(破裂地层垂直深度m>Pf(破裂地层压力Mpa)=Ph(液柱压力Mpa)+P(破裂实验时的立管压力MPa)二、喷射钻井计算公式1、射流喷射速度计算相同直径喷嘴VOU1.2.73*Q(通过喷嘴液体排量1.∕S)∕n(喷嘴个数)*dc>2(喷嘴直径Cm)不相同直径喷喷Vo=12.73*Q(通过喷嘴液体排量1.∕S)/de?(喷嘴当量直径Cm)试中:de喷喷当量直径(cm)计算等喷嘴直径de-(根号n喷嘴个数)*d。
地层破裂压力和地层坍塌压力预测新算法
地层破裂压力和地层坍塌压力预测新算法地层岩石作为一种多孔两相固体物质,其应力分析与普通单相固体物质是有区别的,但是,在我们目前所使用的地层岩石应力分析模型、理论中,都有意或无意地使用了单相固体应力分析的方法。
为了分析两者的区别,在这里我们首先引入有效应力的概念。
有效应力的概念是由李传亮老师首先提出来的,该理论认为岩石由两个有效应力:本体有效应力和结构有效应力。
本体有效应力决定岩石的本体变形,结构有效应力决定岩石的结构变形。
p s P .1Φ+-=σφσ)( (1)p s P P .)1(eff φσσφσ-=-= (2)p c c c P .1φσφσ+-=)( (3) p c c c s P .)1( eff φσσφσ-=-= (4)式中:σ——上覆地层压力;s σ——岩石骨架应力; c σ——岩石接触应力;eff P σ——岩石本体有效应力;eff s σ——岩石结构有效应力;φ——岩石孔隙度;c φ——岩石触点孔隙度;(φ=c φ)P p ——岩石空隙流体压力。
有效应力通过孔隙度把普通材料和多孔介质统一起来了,有效应力计算公式中的孔隙度反映了孔隙压力对有效应力的贡献权值。
在地应力分析中,我们所指的应力是结构有效应力。
(1)借助结构有效应力公式,我们首先分析在非均匀地应力作用下井眼周围周向结构有效应力和径向结构有效应力分布规律。
θφσφσφσφσσθ2cos )31(2).().()1(2).().(4422rr p p r r p p wp c h p c H w p c h p c H eff s +---++-+--=(5)式中:θσeff s ——距井轴r 距离并与H σ按逆时针方向成θ角处的周向结构有效应力。
p C p C b H P P P A .).)(1(0φφμμσ+-+-= (6)p C p C b h P P P B .).)(1(0φφμμσ+-+-= (7)μ——岩石泊松系数;A ,B ——构造应力系数(构造应力系数对于不同的地质构造是不同的,但在统一构造断块内部,它是一个常数,且不随地层深度变化);P P ——地层孔隙流体压力; bP 0——上覆地层压力。
现场地层压力计算
. . 在此处键入公式。
六、地层压力计算1、地层孔隙压力和压力梯度(1)地层孔隙压力H g p f p ⨯⨯⨯=-ρ310式中,P p ——地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa ; ρf ——地层流体密度,g/cm 3; g ——重力加速度,9.81m/s 2;H ——该点到水平面的重直高度(或等于静液柱高度),m 。
在陆上井中,H 为目的层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm ,则,H g p m h ⨯⨯⨯=-ρ310式中,p h ——静液柱压力,MPa ; ρm ——钻井液密度,g/cm 3; H ——目的层深度,m ; g ——重力加速度,9.81m/s 2。
在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0.6~3.3m ,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。
(2)地层孔隙压力梯度HP G P p =式中 G p ——地层孔隙压力梯度,MPa/m 。
其它单位同上式。
2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力])1[(1081.93o ρρΦ+Φ-⨯=-m H P式中 P o ——上覆岩层压力,MPa ; H ——目的层深度,m ; Φ——岩石孔隙度,%;ρ——岩层孔隙流体密度,g/cm 3; ρm ——岩石骨架密度,g/cm 3。
(2)上覆岩层压力梯度HP G oo =式中,G o ——上覆岩层压力梯度,MPa/m ;P o ——上覆岩层压力,MPa ; H ——深度(高度),m 。
(3)压力间关系. . z p P p O σ+=式中,P o ——上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa ;σz ——有效上覆岩层压力(骨架颗粒间压力或垂直的骨架应力),MPa 。
3、地层破裂压力和压力梯度 (1)地层破裂压力(伊顿法)p p z f P P P +--=)(1σμμ式中, P f ——地层破裂压力(为岩石裂缝开裂时的井流体压力),MPa ; μ——地层的泊松比;σz ——有效上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa 。
地层孔隙压力
骨架应力σ
异常低压 异常高压
异常高骨架应力
Po
异常低骨架应力
H
Pw
一、地层孔隙压力的概念
例:如图所示,井内钻井液密度 为1.20g/cm3 ,地层盐水密度为1.07 g/cm3 ,求 3000m处井筒静液柱压力和地层孔隙内流体压力分别为多少?
解:井筒静液柱压力为: p=0.00981ρh =0.00981×1.20×3000 =35.288MPa
一、地层孔隙压力的概念
2、静液柱压力 Ph
定义:由液柱自身重量产生的压力。
Ph = 0.00981ρH
式中:Ph——静液柱压力,MPa; ρ——液体密度,g/cm3;
H——液柱垂直高度,m。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
Ph
一、地层孔隙压力的概念
3、地层孔隙压力(地层压力)PP
若随着井深增加,岩石孔隙度增 大,则说明该段地层压力异常。
P0 = Pp + σ
Po
海面/地面
H
Pp Pp σ
PO
Pp σ σ
一、地层孔隙压力的概念
7、异常地层压力
正常地层压力一般为盐水液柱压力PW。
不在正常地层压力范围内的压力称为异 常地层压力。
异常低压
PP<Pw
异常高压
PP>Pw
P
目前应用某一种方法是很难准确评价地层压力,往往需要采用多种方法 进行综合分析和解释。
二、地层孔隙压力的预测方法
1、地震波法 (1)原理:在不同岩性、不同压实程度情况下,地 震波速存在差异。在正常压实地层,随着深度增加, 地震波速增加;在异常压力地层,随着深度的增加, 地震波速减小。 (2)适用范围:钻前对区域地层压力进行评价。
国内外破裂压力计算方法
破裂压力计算概述1引言1.1破裂压力概念地层破裂压力(PB)定义为使地层产生水力裂缝或张开原有裂缝时的井底压力,要实现水力加砂压裂的前提条件是应该有足够的地面泵压使井底目的层地层开裂。
实际生产中通常用破裂压力梯度GB(地层破裂压力PB与地层深度H的比值)表示破裂压力的大小,破裂压力梯度值GB一般由压裂实践统计得出。
地层破裂压力与岩石弹性性质、孔隙压力、天然裂缝发育情况以及该地区的地应力等因素有关。
在压裂施工中的地层破裂压力还可以这样来理解就是裂缝即将开启而未开启时的井底压力;在压裂施工作业中,如果起泵初期压力有比较明显的降落时,那么我们就可以确定出破裂压力来这一数值可用下面这一关系式来描述:地层破裂压力=裂施工作业初期的最高套管压力+层中部的液柱压力1.2破裂压力的获取途径水力压裂是油气井最常用的一种增产措施,而地层破裂压力是压裂设计和施工工艺的一项重要参数,确定该参数正确与否,将关系到能否保证压开地层等问题。
该参数的获取有两种途径:一是进行室内岩石力学实验或井场水力压裂施工;二是从测井资料中提取。
目前,用测井资料估算砂泥岩剖面地层破裂压力的方法与技术较为成熟。
由于碳酸盐岩地层原生孔隙很小,次生孔隙的发育使岩石的刚性大大减弱,并呈现出明显的非均质性与各向异性,同时不同的构造部位受构造应力作用的强度难以确定,最小水平主应力和岩体抗张强度的度量较难,造成用测井资料计算的地层破裂压力精度较低。
碳酸盐岩地层破裂压力与测井响应具有密切的关系。
利用能够反映碳酸盐岩地层基本特性和岩石力学性质的测井信息,预测碳酸盐岩地层的破裂压力是一种经济、简便的可靠途径。
1957年,Hubbert和Willis根据三轴压缩试验,首先提出了地层破裂压力预测模式即H-W模式。
到目前为止,国内外提出了许多预测地层破裂压力的方法。
比较常用的有Eaton法,Stephen法,黄荣樽法等。
1997年Holbrook发表了适于预测张性盆地裂缝扩展压力的一种方法。
现场地层压力计算
在此处键入公式。
六、地层压力计算1、地层孔隙压力和压力梯度(1)地层孔隙压力H g p f p ⨯⨯⨯=-ρ310式中,P p ——地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa ; ρf ——地层流体密度,g/cm 3; g ——重力加速度,9.81m/s 2;H ——该点到水平面的重直高度(或等于静液柱高度),m 。
在陆上井中,H 为目的层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm ,则,H g p m h ⨯⨯⨯=-ρ310式中,p h ——静液柱压力,MPa ; ρm ——钻井液密度,g/cm 3; H ——目的层深度,m ; g ——重力加速度,9.81m/s 2。
在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0.6~3.3m ,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。
(2)地层孔隙压力梯度HP G Pp =式中 G p ——地层孔隙压力梯度,MPa/m 。
其它单位同上式。
2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力])1[(1081.93o ρρΦ+Φ-⨯=-m H P式中 P o ——上覆岩层压力,MPa ; H ——目的层深度,m ; Φ——岩石孔隙度,%;ρ——岩层孔隙流体密度,g/cm 3; ρm ——岩石骨架密度,g/cm 3。
(2)上覆岩层压力梯度HP G oo =式中,G o ——上覆岩层压力梯度,MPa/m ;P o ——上覆岩层压力,MPa ; H ——深度(高度),m 。
(3)压力间关系z p P p O σ+=式中,P o ——上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa ;σz ——有效上覆岩层压力(骨架颗粒间压力或垂直的骨架应力),MPa 。
3、地层破裂压力和压力梯度 (1)地层破裂压力(伊顿法)p p z f P P P +--=)(1σμμ式中, P f ——地层破裂压力(为岩石裂缝开裂时的井内流体压力),MPa ; μ——地层的泊松比;σz ——有效上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa 。
国内外破裂压力计算方法
破裂压力计算概述1引言1.1破裂压力概念地层破裂压力(P B)定义为使地层产生水力裂缝或张开原有裂缝时的井底压力,要实现水力加砂压裂的前提条件是应该有足够的地面泵压使井底目的层地层开裂。
实际生产中通常用破裂压力梯度G B(地层破裂压力P B与地层深度H的比值)表示破裂压力的大小,破裂压力梯度值G B一般由压裂实践统计得出。
地层破裂压力与岩石弹性性质、孔隙压力、天然裂缝发育情况以及该地区的地应力等因素有关。
在压裂施工中的地层破裂压力还可以这样来理解就是裂缝即将开启而未开启时的井底压力;在压裂施工作业中,如果起泵初期压力有比较明显的降落时,那么我们就可以确定出破裂压力来这一数值可用下面这一关系式来描述:地层破裂压力=裂施工作业初期的最高套管压力+层中部的液柱压力1.2破裂压力的获取途径水力压裂是油气井最常用的一种增产措施,而地层破裂压力是压裂设计和施工工艺的一项重要参数,确定该参数正确与否,将关系到能否保证压开地层等问题。
该参数的获取有两种途径:一是进行室内岩石力学实验或井场水力压裂施工;二是从测井资料中提取。
目前,用测井资料估算砂泥岩剖面地层破裂压力的方法与技术较为成熟。
由于碳酸盐岩地层原生孔隙很小,次生孔隙的发育使岩石的刚性大大减弱,并呈现出明显的非均质性与各向异性,同时不同的构造部位受构造应力作用的强度难以确定,最小水平主应力和岩体抗张强度的度量较难,造成用测井资料计算的地层破裂压力精度较低。
碳酸盐岩地层破裂压力与测井响应具有密切的关系。
利用能够反映碳酸盐岩地层基本特性和岩石力学性质的测井信息,预测碳酸盐岩地层的破裂压力是一种经济、简便的可靠途径。
1957年,Hubbert和Willis根据三轴压缩试验,首先提出了地层破裂压力预测模式即H-W模式。
到目前为止,国内外提出了许多预测地层破裂压力的方法。
比较常用的有Eaton法,Stephen法,黄荣樽法等。
1997年Holbrook发表了适于预测张性盆地裂缝扩展压力的一种方法。
地层破裂(漏失)压力试验
四、地层破裂压力试验 注意事项
1、实验压力不应超过地面设备、套管的承压能力。
2、在钻进几天后进行液压实验时,可能由于岩屑堵
塞了岩石孔隙,导致实验压力很高,这是假象, 应注意。 3、液压试验只适用于砂、页岩为主的地区,对于石 灰岩、白云岩等地层的液压实验尚待解决。
五、现场地层漏失压力试验
试漏前的准备
=11.512+0.00981×1.2×1206 =25.709MPa 最大允许关井套压:Pamax=PL-0.00981ρ用H试 =25.709-0.00981×1.2×1206 =11.512MPa Pamax=PCL-0.00981(ρ用-ρ试) H试 =11.512-0.00981(1.2-1.2)×1206 =11.512MPa
1、预测法——应用经验公式预测地层破裂
压力,作为钻井设计的依据。
2、验证法——在下套管固井后,必须进行 试漏试验,以验证预测的破裂压力。
二、确定地层破裂(漏失)压力的方法 DPSIP
CSIP
在做地层破裂压 力试验时,在套管鞋 以上钻井液的静液压 力和地面回压的共同 作用下,使地层发生 破裂而漏失
疏松地表层
1.00 1.02 1.04 1.06
1.08 1.10 1.12 1.14
1.16 1.18 1.20 1.22
图 3—11 漏失压
五、现场地层漏失压力试验
五、现场地层漏失压力试验
五、现场地层漏失压力试验
某井试漏时井深1206米,泵排量16.35升∕冲,钻井液密度 1.20克∕厘米3
累计泵冲 5 10 立压(kPa) 836 2991 累计泵冲 45 50 立压(kPa) 14986 15015
15
20 25 30 35
地层孔隙压力
在等效深度处,d指数相等
PP—所求深度的地层压力,MPa; H—所求地层压力点的深度,m; G0—上覆地层压力梯度,MPa/m; HE—等效深度,m; Gn—等效深度处的正常地层压力梯度,MPa/m。
地层压力计算步骤
钻井参数录入
钻速、钻压、转速、地层水密度、钻井液密度
H
计算dc指数
回归正常趋势线
计算地层压力
而地层孔隙内流体(水)的压力为: p=0.00981ρh =0.00981×1.07×3000 =31.547MPa
主要内容
地层孔隙压力的概念 地层孔隙压力的预测方法
孔隙压力计算实例
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
二、地层孔隙压力的预测方法
基于压实理论、均衡理论及有效应力理论,地层压力预测方法主要有: (1)地球物理方法(地震波法)——钻前 (2)钻速法(dc指数法)——钻井中 (3)测井法(声波时差法)——钻后
二、地层孔隙压力的预测方法
2、dc指数法
(1)原理:机械钻速是井底压差、钻压、转速、钻头类型及尺 寸、水力参数、钻井液性能、地层岩性等因素的函数。当其它因 素一定时,只考虑压差对钻速的影响,则机械钻速随压差减小而 增加。
(2)适用范围:岩性为泥岩、页岩;钻进过程中的地层压力监
测和完钻后区块地层压力统计分析。
标准钻速方程:
d
P e V = KN D 有缘学习更多+谓ygd3076考b 证资料或关注桃报:奉献教育(店铺)
二、地层孔隙压力的预测方法
3、声波时差法
(1)原理:声波在地层中的传播速度与岩性密
切相关,当岩性一定时,声波的速度随岩石孔
隙度的增大而减小。在正常地层压力井段,随