物理磁场练习题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理高二磁场练习题
一、 单选题
1.关于电场强度和磁感应强度,下列说法正确的是 A .电场强度的定义式q
F E =适用于任何电场
B .由真空中点电荷的电场强度公式2
Q E k r
=可知,当r →0时,E →无穷大
C .由公式IL
F B =可知,一小段通电导线在某处若不受磁场力,则说明此处一定无磁场
D .磁感应强度的方向就是置于该处的通电导线所受的安培力方向
2.如图所示,条形磁铁放在水平粗糙桌面上,它的正中间上方固定一根长直导线,导线中通过方向垂直纸面向里(即与条形磁铁垂直)的电流,和原来没有电流通过时相比较,磁铁受到的支持力N 和摩擦力f 将
A 、N 减小,f=0
B 、N 减小,f ≠0
C 、N 增大,f=0
D 、N 增大,f ≠0
3、有电子、质子、氘核、氚核,以同样速度垂直射入同一匀强磁场中,它们都作匀速圆周运动,则轨道半径最大的粒子是
A .氘核
B .氚核
C .电子
D .质子
4.一带正电荷的小球沿光滑、水平、绝缘的桌面向右运动,如图所示,速度方向垂直于一匀强磁场,飞离桌面后,最终落在地面上. 设飞行时间为t 1、水平射程为s 1、着地速率为v 1;现撤去磁场其它条件不变,小球飞行时间为t 2、水平射程为s 2、着地速率为v 2.则有:
A 、 v 1=v 2
B 、 v 1>v 2
C 、 s 1=s 2
D 、 t 1<t 2
5.有一个带正电荷的离子,沿垂直于电场方向射入带电平行板的匀强电场.离子飞出电场后的动能为E k ,当在平行金属板间再加入一个垂直纸面向
内的如图所示的匀强磁场后,离子飞出电场后的动能为E k /
,磁场力做功为W ,则下面各判断正确的是 A 、E K <E K ',W =0 B 、E K >E K ',W =0 C 、E K =E K ',W =0 D 、E K >E K ',W >0
6.图是质谱仪的工作原理示意图。
带电粒子被加速电场加速后,进入速度选择器。
速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E 。
平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2。
平板S 下方有强度为B 0的匀强磁场。
下列表述错误的是 A .质谱仪是分析同位素的重要工具
B .速度选择器中的磁场方向垂直纸面向外
C .能通过的狭缝P 的带电粒子的速率等于E/B
D .粒子打在胶片上的位置越靠近狭缝P ,粒子的荷质比越小
二、双选题
7.下列关于磁场中的通电导线和运动电荷的说法中,正确的是 A 、磁场对通电导线的作用力方向一定与磁场方向垂直 B 、有固定转动轴的通电线框在磁场中一定会转动
C 、带电粒子只受洛伦兹力作用时,其动能不变,速度一直在变
D 、电荷在磁场中不可能做匀速直线运动
v
8.如图,MN 是匀强磁场中的一块薄金属板,带电粒子(不计重力)在匀强磁场中运动并穿过金属板,虚线表示其运动轨迹,由图知:
A 、粒子带负电
B 、粒子运动方向是abcde
C 、粒子运动方向是edcba
D 、粒子在上半周所用时间比下半周所用时间长
9.如图,磁感强度为B 的匀强磁场,垂直穿过平面直角坐标系的第I 象限。
一质量为m ,带电量为q 的粒子以速度V 从O 点沿着与y 轴夹角为30°方向进入磁场,运动到A 点时的速度方向平行于x 轴,那么:
A 、粒子带正电
B 、粒子带负电
C 、粒子由O 到A 经历时间qB
m t 3π= D 、粒子的速度没有变化
10.一电子在匀强磁场中,以一固定的正电荷为圆心,在圆形轨道上运动,磁场方向垂直于它的运动平面,电场力恰是磁场力的三倍.设电子电量为e ,质量为m ,磁感强度为B ,那么电子运动的可能角速度应当是
11.长为L 的水平极板间,有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为L ,板不带电,现有质量为m,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直于磁场方向以速度v 水平射入磁场,欲使粒子不打到极板上,v 应满足
A 、L 4Bq v m <
B 、54BqL
v m > C 、BqL v m > D 、544BqL BqL
v m m
<<
12、回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是
A .增大磁场的磁感应强度
B .增大匀强电场间的加速电压
C .增大
D 形金属盒的半径 D .减小狭缝间的距离
三、计算题
13.如图所示,铜棒ab 长0.1m ,质量为6×10-2
kg ,两端与长为1m 的轻铜线相连静止于竖直平面内。
整个装置处在竖直向下的匀强磁场中,磁感应强度B=0.5T ,现接通电源,使铜棒中保持有恒定电流通过,铜棒发生摆动,已知最大偏转角为37°,
(1)在此过程中铜棒的重力势能增加了多少; (2)通电电流的大小为多大。
(不计空气阻力,sin37°=0.6,cos37°=0.8,g=10m/s 2
)
v
M N a b c d e x y O
A
V
0 B
14、如图所示,在x 轴的上方(y >0的空间内)存在着垂直于纸面向里、磁感应强度为B 的匀强磁场,一个不计重力的带正电粒子从坐标原点O 处以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x 轴正方向成45°角,若粒子的质量为m ,电量为q ,求: (1)该粒子在磁场中作圆周运动的轨道半径; (2)粒子在磁场中运动的时间。
15.如图所示,以MN 为界的两匀强磁场,磁感应强度B 1=2B 2,方向垂直纸面向里。
现有一质量为m 、带电量为q 的正粒子,从O 点沿图示方向进入B 1中。
(1)试画出粒子的运动轨迹; (2)求经过多长时间粒子重新回到O 点?
16、如图所示,匀强磁场沿水平方向,垂直纸面向里,磁感强度B =1T ,匀强电场方向水平向
右,场强E =103N/C 。
一带正电的微粒质量m=2×10-6kg ,电量q =2×10-6
C ,在此空间恰好作直线运动,问:
(1)带电微粒运动速度的大小和方向怎样?
(2)若微粒运动到P 点的时刻,突然将磁场撤去,那么经多少时间微粒到达Q 点?(设PQ 连线与电场方向平行)
2B
1B O
N
M
v
17.在相互垂直的匀强电场和匀强磁场中,有一倾角为θ,足够长的光滑绝缘斜面,磁感应强度为B,方向垂直纸面向外,电场方向竖直向上.有一质量为m,带电量为十q的小球静止在斜面顶端,这时小球对斜面的正压力恰好为零,如图所示,若迅速把电场方向反转竖直向下,小球能在斜面上连续滑行多远?所用时间是多少?
18、如图所示,相互垂直的匀强电场和匀强磁场,其电场强度和磁感应强度分别为E和B,一个质量为m,带正电量为q的油滴,以水平速度v0从a点射入,经一段时间后运动到b,试求: (1)油滴刚进入场中a点时的加速度。
(2)若到达b点时,偏离入射方向的距离为d,此时速度大小为多大?
19.如图所示,在一个同时存在匀强磁场和匀强电场的空间,有一个质量为m的带电微粒,系于长为L的细丝线的一端,细丝线另一端固定于O点。
带电微粒以角速度ω在水平面内作匀速圆周运动,此时细线与竖直方向成30°角,且细线中张力为零,电场强度为E,方向竖直向上。
(1)求微粒所带电荷的种类和电量;
(2)问空间的磁场方向和磁感强度B的大小多大?
(3)如突然撤去磁场,则带电粒子将作怎样的运动?线中的张力是多大?
20.在平面直角坐标系xOy中,第1象限存在沿y轴负方向的匀强电场,
第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B。
一质
量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于Y
轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从
y轴负半轴上的P点垂直于Y轴射出磁场,如图所示。
不计粒子重力,求:
(1)M、N两点间的电势差U MN。
(2)粒子在磁场中运动的轨道半径r;
(3)粒子从M点运动到P点的总时间t。
21、电子自静止开始经M 、N 板间(两板间的电压为U )的电场加速后从A 点垂直于磁场边界射入宽度为d 的匀强磁场中,电子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.求: 匀强磁场的磁感应强度.(已知电子的质量为m ,电荷量为e )
22.在xoy 平面内,x 轴的上方有匀强磁场,磁感应强度为B ,方向如图所示,x 轴的下方有匀强电场,电场强度为E ,方向与y 轴的正方向相反。
今有电量为-q 、质量为m 的粒子(不计重力),从坐标原点沿y 轴的正方向射出,射出以后,第三次到达x 轴时,它与O 点的距离为L ,问:
(1)粒子射出时的速度多大?
(2)粒子运动的总路程为多少?
Y X
O
答案
A 、C 、
B 、A 、B 、D 、A
C 、AC 、BC 、B
D 、AB 、AC
13、解(1)重力势能增加:J L mg Ep 12.0)37cos 1(1=-⋅=
(2)摆动至最大偏角时v=0 有:037sin )37cos 1(11=⋅⋅+--
L F mgL 安
2L BI F ⋅=安 得I=4A
14、(1)粒子垂直进入磁场,由洛伦兹力提供向心力,根据牛顿第二定律得 qvB =mv 2/R ∴R =mv/qB (2)∵T = 2πm /qB 根据圆的对称性可知,粒子进入磁场时速度与x 轴的夹角为45°角,穿出磁场时,与x 轴的夹角仍为45°角,根据左手定则可知,粒子沿逆时针方向旋转,
则速度的偏向角为270°角,轨道的圆心角也为270°: ∴t =43
T = qB m 23π
15、
17、由题意知qE=mg 场强转为竖直向下时,由动能定理,
有21()sin 2qE mg L mv θ+=
即21
2sin 2
mgL mv θ= ① 当滑块刚离开斜面时有(Eq+mg)cos θ=Bqv 即2s mgco v qB
θ
= ②
由①②解得2222s sin m gco L q B θ
θ
=
(2)(Eq+mg)sin θ=ma 得a=2gsin θ x=(1/2)at 2
得t=
18:带电油滴受重力、电场力、洛仑兹力作用,根据牛顿第二定律求合力,进而求出加速度;
带电油滴由a 点运动到b 点的过程利用动能定理建立方程求解。
由牛顿第二定律可得:0()
qv B mg qE a m
-+=
因洛仑兹力不做功,根据动能定理有:22011
()22
mg qE d mv mv -+=
-, 解得202()mv mg qE d
v m
-+=
20、分析带电粒子的运动情况,画出其运动轨迹如图所示
(1)设粒子过N 点时的速度为v ,有
cos v v
θ= 得02v v = 粒子从M 点运动到N 点的过程,有2201122MN qU mv mv =- 得2
32MN mv U q
=
(2)粒子在磁场中以o '为圆心做匀速圆周运动,半径为O N ',
有2
mv qvB
r = 得02mv r qB
=
(3)由几何关系得sin ON R θ=
设粒子在电场中运动的时间为t 1,有01ON v t = 13m t qB
= 粒子在磁场在做匀速圆周运动的周期 2m
T qB
π= 设粒子在磁场中运动的时间为t 2,有22t T πθπ-=
223m
t qB
π= 12t t t =+ 所以(332)3m t qB
π+=
21、(1)作电子经电场和磁场中的轨迹图,如右图所示
(2)设电子在M 、N 两板间经电场加速后获得的速度为v ,由动能定理得:2
1
2eU mv = ①
电子进入磁场后做匀速圆周运动,设其半径为r ,则:
2v
evB m
r = ② 由几何关系得:222
()r r L d =-+
③
联立求解①②③式得:
e mU
d L L B 2)
(222+=。