九年级上册圆 几何综合专题练习(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册圆几何综合专题练习(解析版)
一、初三数学圆易错题压轴题(难)
1.如图,抛物线的对称轴为轴,且经过(0,0),
()两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2),
(1)求的值;
(2)求证:点P在运动过程中,⊙P始终与轴相交;
(3)设⊙P与轴相交于M,N(<)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.
【答案】(1)a=,b=c=0;(2)证明见解析;(3)P的纵坐标为0或4+2或4﹣
2.
【解析】
试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a,b,c的值即可;
(2)设P(x,y),表示出⊙P的半径r,进而与x2比较得出答案即可;
(3)分别表示出AM,AN的长,进而分别利用当AM=AN时,当AM=MN时,当AN=MN 时,求出a的值,进而得出圆心P的纵坐标即可.
试题解析:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过
(0,0)和(,)两点,
∴抛物线的一般式为:y=ax2,
∴=a()2,
解得:a=±,
∵图象开口向上,∴a=,
∴抛物线解析式为:y=x2,
故a=,b=c=0;
(2)设P(x,y),⊙P的半径r=,
又∵y=x2,则r=,
化简得:r=>x2,
∴点P在运动过程中,⊙P始终与x轴相交;
(3)设P(a,a2),∵PA=,
作PH⊥MN于H,则PM=PN=,
又∵PH=a2,
则MH=NH==2,
故MN=4,
∴M(a﹣2,0),N(a+2,0),
又∵A(0,2),∴AM=,AN=,当AM=AN时,=,
解得:a=0,
当AM=MN时,=4,
解得:a=2±2(负数舍去),则a2=4+2;
当AN=MN时,=4,
解得:a=﹣2±2(负数舍去),则a2=4﹣2;
综上所述,P的纵坐标为0或4+2或4﹣2.
考点:二次函数综合题.
2.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD 的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .
(1)分别求点E 、C 的坐标;
(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.
【答案】(1)点C 的坐标为(-3,0)(2)234333
y x x =++3)⊙M 与⊙A 外切 【解析】
试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;
(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;
(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么
∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.
试题解析:(1)在Rt△EOB 中,3
cot602323
EO OB =⋅︒=⨯=, ∴点E 的坐标为(-2,0).
在Rt△COA 中,tan tan60333OC OA CAO OA =⋅∠=⋅︒=⨯=, ∴点C 的坐标为(-3,0).
(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上. 设()()13y a x x =++,用()
03A ,代入得
()()30103a =++,
∴3
a =. ∴()()3
13y x x =
++,即 234333
y x x =
++. (3)⊙M 与⊙A 外切,证明如下: ∵ME ∥y 轴,
∴MED B ∠=∠.
∵B BDA MDE ∠=∠=∠, ∴MED MDE ∠=∠. ∴ME MD =.
∵MA MD AD ME AD =+=+, ∴⊙M 与⊙A 外切.
3.如图①,已知Rt △ABC 中,∠ACB =90°,AC =8,AB =10,点D 是AC 边上一点(不与C 重合),以AD 为直径作⊙O ,过C 作CE 切⊙O 于E ,交AB 于F . (1)若⊙O 半径为2,求线段CE 的长; (2)若AF =BF ,求⊙O 的半径;
(3)如图②,若CE =CB ,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.
【答案】(1)CE =42;(2)⊙O 的半径为3;(3)G 、E 两点之间的距离为9.6 【解析】 【分析】
(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得; (2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE OC BC BA =,即8610
r r
-= 解得即可;
(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,
GB GE
AB AC
=,即12108GE =,解得即可. 【详解】
解:(1)如图①,连接OE ,
∵CE 切⊙O 于E , ∴∠OEC =90°,
∵AC =8,⊙O 的半径为2, ∴OC =6,OE =2,
∴CE =2242OC OE -= ; (2)设⊙O 的半径为r ,
在Rt △ABC 中,∠ACB =90°,AB =10,AC =8, ∴BC 22AB A C -=6, ∵AF =BF , ∴AF =CF =BF , ∴∠ACF =∠CAF , ∵CE 切⊙O 于E , ∴∠OEC =90°, ∴∠OEC =∠ACB , ∴△OEC ∽△BCA , ∴
OE OC BC BA =,即8610
r r
-=