排列组合典型例题(带详细答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个
来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个
非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A
2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样
同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三
个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.
(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相
邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中
选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.
(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,
有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法.
(4)3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法66
23A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.
3、解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入
舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.
(2)先排舞蹈节目有4
4A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱
节目放入。
所以歌唱节目与舞蹈节目间隔排列的排法有:44A 55A =2880种方法。
4、5042445566=+-A A A (种).5、363
333=⋅A A 种.
6、解:填表过程可分两步.第一步,确定填报学校及其顺序,则在4所学校中选出3所并加排列,共有34A 种不同的排法;第二步,从每所院校的3个专业中选出2个专业并确定其顺序,其中又包含三小步,因此总的排列数有232323A A A ⋅⋅种.综合以上两步,由分步计数原理得不同的填表方法有:518423232334=⋅⋅⋅A A A A 种.
7、解:(1) 5040774437==⋅A A A 种.(2)1440551413=⋅⋅A A A 种.(3)7203355=⋅A A .
(4)14403544=⋅A A 种.
8、解:(1) 2101415215=⨯=A ;(2) 720123456!666=⨯⨯⨯⨯⨯==A ;
(3)原式!)1(1!)(]!)1(1[!)1(-⋅-⋅----=n m n m n n 1!
)1(1!)(!)(!)1(=-⋅-⋅--=n m n m n n ; 9、46A
10、解法1:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”两类情况.应当使用加法原理,在每类情况下,划分“乙丙坐下”、“甲坐下”;“其他五人坐下”三个步骤,又要用到分步计数原理,这样可有如下算法:
6408551424551224=⋅⋅+⋅⋅A A A A A A (种).
11、将同一品种的画“捆”在一起,注意到水彩画不放在两端,共有22A 种排列.但4幅油
画、5幅国画本身还有排列顺序要求.所以共有55
4422A A A ⋅⋅种陈列方式. 12、300 13、将符合条件的偶数分为两类.一类是2作个位数,共有24A 个,另一类是4
作个位数,也有24A 个.因此符合条件的偶数共有242424=+A A 个.
14、解:(1)就个位用0还是用42、
分成两类,个位用0,其它两位从4321、、、中任取两数排列,共有1224=A (个),个位用2或4,再确定首位,最后确定十位,共有
32442=⨯⨯(个),所有3位偶数的总数为:443212=+(个).
(2)从543210、、、、、
中取出和为3的倍数的三个数,分别有下列取法:)210(、)510(、)420(、)540(、)321(、)531(、)432(、)543(,前四组中有0,后四组中没有0,用它们排成三位数,如果用前4组,共有16242
2=⨯⨯A (个),如果用后四组,共有24433=⨯A (个),所有被3整除的三位数的总数为402416=+(个).。