海港区高中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海港区高中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f(x)的图象关于直线x=
对称,则φ的值为()
A.﹣B.﹣C.D.
2.已知a∈R,复数z=(a﹣2i)(1+i)(i为虚数单位)在复平面内对应的点为M,则“a=0”是“点M在第四象限”的()
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
3.高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于()
A.112 B.114 C.116 D.120
4.如图,空间四边形OABC中,,,,点M在OA上,且,点N为BC中点,
则等于()
A.B. C.D.
5.抛物线y2=8x的焦点到双曲线的渐近线的距离为()
A.1 B.C.D.
6.已知α,β为锐角△ABC的两个内角,x∈R,f(x)=()|x﹣2|+()|x﹣2|,则关于x的不等式f(2x﹣1)﹣f(x+1)>0的解集为()
A.(﹣∞,)∪(2,+∞)B.(,2)C.(﹣∞,﹣)∪(2,+∞)D.(﹣,2)
7.已知数列{a n}是等比数列前n项和是S n,若a2=2,a3=﹣4,则S5等于()
A.8 B.﹣8 C.11 D.﹣11
8.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()
A.i≥7?B.i>15?C.i≥15?D.i>31?
9.已知2a=3b=m,ab≠0且a,ab,b成等差数列,则m=()
A.B.C.D.6
10.设m、n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①若m⊥α,n∥α,则m⊥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;
③若m⊥α,n⊥α,则m∥n;④若α⊥β,m⊥β,则m∥α;
其中正确命题的序号是()
A.①②③④B.①②③ C.②④D.①③
11.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有()
A.90种B.180种C.270种D.540种
12.设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B∪(∁U A)=()
A.{5} B.{1,2,5} C.{1,2,3,4,5} D.∅
二、填空题
13.设向量a=(1,-1),b=(0,t),若(2a+b)·a=2,则t=________.
14.设p:f(x)=e x+lnx+2x2+mx+1在(0,+∞)上单调递增,q:m≥﹣5,则p是q的条件.
15.若函数f (x )=x 2﹣(2a ﹣1)x+a+1是区间(1,2)上的单调函数,则实数a 的取值范围是 . 16.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,
则其
表面积为__________2cm .
17.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .
18.若

共线,则y= .
三、解答题
19.在平面直角坐标系xOy 中,点B 与点A (﹣1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率
之积等于﹣.
(Ⅰ)求动点P 的轨迹方程;
(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M ,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.
20.(本小题满分12分)111]
在如图所示的几何体中,D 是AC 的中点,DB EF //. (1)已知BC AB =,CF AF =,求证:⊥AC 平面BEF ; (2)已知H G 、分别是EC 和FB 的中点,求证: //GH 平面ABC .
21.已知曲线y=Asin (ωx+φ)(A >0,ω>0)上的一个最高点的坐标为(,),由此点到相邻最低点
间的曲线与x 轴交于点(π,0),φ∈(﹣,).
(1)求这条曲线的函数解析式; (2)写出函数的单调区间.
22.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位
(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述 发言,求事件“选出的2人中,至少有一名女士”的概率.
参考公式:2
2
()K ()()()()
n ad bc a b c d a c b d -=++++,()n a b c d =+++
【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力
23.24.(本小题满分10分)选修4-5:不等式选讲.
已知函数f(x)=|x+1|+2|x-a2|(a∈R).
(1)若函数f(x)的最小值为3,求a的值;
(2)在(1)的条件下,若直线y=m与函数y=f(x)的图象围成一个三角形,求m的范围,并求围成的三角形面积的最大值.
24.已知y=f(x)的定义域为[1,4],f(1)=2,f(2)=3.当x∈[1,2]时,f(x)的图象为线段;当x∈[2,4]时,f(x)的图象为二次函数图象的一部分,且顶点为(3,1).
(1)求f(x)的解析式;
(2)求f(x)的值域.
海港区高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】解:把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,
得到函数y=f(x)=cos[2(x+)+φ]=cos(2x+φ+)的图象关于直线x=对称,
则2×+φ+=kπ,求得φ=kπ﹣,k∈Z,故φ=﹣,
故选:B.
2.【答案】A
【解析】解:若a=0,则z=﹣2i(1+i)=2﹣2i,点M在第四象限,是充分条件,
若点M在第四象限,则z=(a+2)+(a﹣2)i,推出﹣2<a<2,推不出a=0,不是必要条件;
故选:A.
【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.
3.【答案】B
【解析】解:根据频率分布直方图,得;
该班级数学成绩的平均分是
=80×0.005×20+100×0.015×20
+120×0.02×20+140×0.01×20
=114.
故选:B.
【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目.
4.【答案】B
【解析】解:===;
又,,,
∴.
故选B.
【点评】本题考查了向量加法的几何意义,是基础题.
5.【答案】A
【解析】解:因为抛物线y2=8x,由焦点公式求得:抛物线焦点为(2,0)
又双曲线.渐近线为y=
有点到直线距离公式可得:d==1.
故选A.
【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法.其中应用到点到直线的距离公式,包含知识点多,属于综合性试题.
6.【答案】B
【解析】解:∵α,β为锐角△ABC的两个内角,可得α+β>90°,cosβ=sin(90°﹣β)<sinα,同理cosα<sinβ,
∴f(x)=()|x﹣2|+()|x﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,
由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),
∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);
故选:B.
7.【答案】D
【解析】解:设{a n}是等比数列的公比为q,
因为a2=2,a3=﹣4,
所以q===﹣2,
所以a1=﹣1,
根据S5==﹣11.
故选:D.
【点评】本题主要考查学生运用等比数列的前n项的求和公式的能力,本题较易,属于基础题.
8.【答案】C
【解析】解:模拟执行程序框图,可得
S=2,i=0
不满足条件,S=5,i=1
不满足条件,S=8,i=3
不满足条件,S=11,i=7
不满足条件,S=14,i=15
由题意,此时退出循环,输出S的值即为14,
结合选项可知判断框内应填的条件是:i≥15?
故选:C.
【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.
9.【答案】C.
【解析】解:∵2a=3b=m,
∴a=log2m,b=log3m,
∵a,ab,b成等差数列,
∴2ab=a+b,
∵ab≠0,
∴+=2,
∴=log m2,=log m3,
∴log m2+log m3=log m6=2,
解得m=.
故选C
【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.
10.【答案】B
【解析】解:由m、n是两条不同的直线,α,β,γ是三个不同的平面:
在①中:若m⊥α,n∥α,则由直线与平面垂直得m⊥n,故①正确;
在②中:若α∥β,β∥γ,则α∥γ,
∵m⊥α,∴由直线垂直于平面的性质定理得m⊥γ,故②正确;
在③中:若m⊥α,n⊥α,则由直线与平面垂直的性质定理得m∥n,故③正确;
在④中:若α⊥β,m⊥β,则m∥α或m⊂α,故④错误.
故选:B.
11.【答案】D
【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种.
故选D.
12.【答案】B
【解析】解:∵C U A={1,5}
∴B∪(∁U A)={2,5}∪{1,5}={1,2,5}.
故选B.
二、填空题
13.【答案】
【解析】(2a+b)·a=(2,-2+t)·(1,-1)
=2×1+(-2+t)·(-1)
=4-t=2,∴t=2.
答案:2
14.【答案】必要不充分
【解析】解:由题意得f′(x)=e x++4x+m,
∵f(x)=e x+lnx+2x2+mx+1在(0,+∞)内单调递增,
∴f′(x)≥0,即e x++4x+m≥0在定义域内恒成立,
由于+4x≥4,当且仅当=4x,即x=时等号成立,
故对任意的x∈(0,+∞),必有e x++4x>5
∴m≥﹣e x﹣﹣4x不能得出m≥﹣5
但当m≥﹣5时,必有e x++4x+m≥0成立,即f′(x)≥0在x∈(0,+∞)上成立
∴p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件
故答案为:必要不充分
15.【答案】{a|或}.
【解析】解:∵二次函数f(x)=x2﹣(2a﹣1)x+a+1 的对称轴为x=a﹣,
f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,∴区间(1,2)在对称轴的左侧或者右侧,
∴a﹣≥2,或a﹣≤1,∴a≥,或a≤,
故答案为:{a|a≥,或a≤}.
【点评】本题考查二次函数的性质,体现了分类讨论的数学思想.
16.【答案】20
【解析】
考点:棱台的表面积的求解.
17.【答案】3.
【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,
∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),
故三角形的面积S=×2×3=3,
故答案为:3.
【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.
18.【答案】﹣6.
【解析】解:若与共线,则2y﹣3×(﹣4)=0
解得y=﹣6
故答案为:﹣6
【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键.
三、解答题
19.【答案】
【解析】解:(Ⅰ)因为点B 与A (﹣1,1)关于原点O 对称,所以点B 得坐标为(1,﹣1). 设点P 的坐标为(x ,y )
化简得x 2+3y 2
=4(x ≠±1).
故动点P 轨迹方程为x 2+3y 2
=4(x ≠±1)
(Ⅱ)解:若存在点P 使得△PAB 与△PMN 的面积相等,设点P 的坐标为(x 0,y 0)


因为sin ∠APB=sin ∠MPN ,
所以
所以
=
即(3﹣x 0)2=|x 02
﹣1|,解得
因为x 02+3y 02
=4,所以
故存在点P 使得△PAB 与△PMN 的面积相等,此时点P 的坐标为

【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.
20.【答案】(1)详见解析;(2)详见解析. 【解析】
试题分析:(1)根据DB EF //,所以平面BEF 就是平面BDEF ,连接DF,AC 是等腰三角形ABC 和ACF 的公共底边,点D 是AC 的中点,所以BD AC ⊥,DF AC ⊥,即证得⊥AC 平面BEF 的条件;(2)要证明线面平行,可先证明面面平行,取FC 的中点为,连接GI ,HI ,根据中位线证明平面//HGI 平面ABC ,即可证明结论.
试题解析:证明:(1)∵DB EF //,∴EF 与DB 确定平面BDEF .
如图①,连结DF . ∵CF AF =,D 是AC 的中点,∴AC DF ⊥.同理可得AC BD ⊥. 又D DF BD = ,⊂DF BD 、平面BDEF ,∴⊥AC 平面BDEF ,即⊥AC 平面BEF .
考点:1.线线,线面垂直关系;2.线线,线面,面面平行关系.
【方法点睛】本题考查了立体几何中的平行和垂直关系,属于中档题型,重点说说证明平行的方法,当涉及证明线面平行时,一种方法是证明平面外的线与平面内的线平行,一般是构造平行四边形或是构造三角形的中位线,二种方法是证明面面平行,则线面平行,因为直线与直线外一点确定一个平面,所以所以一般是在某条直线上再找一点,一般是中点,连接构成三角形,证明另两条边与平面平行.
21.【答案】
【解析】解:(1)由题意可得A=,=﹣,求得ω=.
再根据最高点的坐标为(,),可得sin(×+φ)=,即sin(×+φ)=1 ①.
再根据由此最高点到相邻最低点间的曲线与x轴交于点(π,0),可得得sin(×+φ)=0,即sin(+φ)
=0 ②,
由①②求得φ=,故曲线的解析式为y=sin(x+).
(2)对于函数
y=sin

x+),令2k π


+≤2k π
+,求得4k π

≤x ≤4k π
+,
可得函数的增区间为[4k π
﹣,4k π
+
],k ∈Z .
令2k π
+

+
≤2k π
+
,求得4k π
+≤x ≤4k π
+,
可得函数的减区间为[4k π
+
,4k π
+
],k ∈Z .
【点评】本题主要考查由函数y=Asin (ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由特殊点求出φ的值,正弦函数的单调性,属于中档题.
22.【答案】
【解析】(Ⅰ)根据题中的数据计算:()
2
2
4005017030150 6.2580320200200
⨯⨯-⨯K
=
=⨯⨯⨯
因为6.25>5.024,所以有97.5%的把握认为对这一问题的看法与性别有关 (Ⅱ)由已知得抽样比为
81
=8010
,故抽出的8人中,男士有5人,女士有3人.分别设为,,,,,1,2,3a b c d e ,选取2人共有{},a b ,{},a c ,{},a d ,{},a e ,{},1a ,{},2a ,{},3a ,{},b c ,{},b d ,{},b e ,{},1b ,{},2b ,
{},3b ,{},c d ,{},c e ,{},1c ,{},2c ,{},3c ,{},d e ,{},1d ,{},2d ,{},3d ,{},1e ,{},2e ,{},3e ,{}1,2,{}1,3,{}2,328个基本事件,其中事件“选出的2人中,至少有一名女士”包含18个基本事件,故所
求概率为189=2814
P =
. 23.【答案】
【解析】解:(1)f (x )=|x +1|+2|x -a 2|
=⎩⎪⎨⎪
⎧-3x +2a 2-1,x ≤-1,
-x +2a 2
+1,-1<x <a 2
,3x -2a 2
+1,x ≥a 2

当x ≤-1时,f (x )≥f (-1)=2a 2+2, -1<x <a 2,f (a 2)<f (x )<f (-1), 即a 2+1<f (x )<2a 2+2, 当x ≥a 2,f (x )≥f (a 2)=a 2+1,
所以当x =a 2时,f (x )min =a 2+1,由题意得a 2+1=3,∴a =±2. (2)当a =±2时,由(1)知f (x )=
⎩⎪⎨⎪
⎧-3x +3,x ≤-1,-x +5,-1<x <2,3x -3,x ≥2,
由y =f (x )与y =m 的图象知,当它们围成三角形时,m 的范围为(3,6],当m =6时,围成的三角形面积
最大,此时面积为1
2
×|3-(-1)|×|6-3|=6.
24.【答案】
【解析】解:(1)当x ∈[1,2]时f (x )的图象为线段, 设f (x )=ax+b ,又有f (1)=2,f (2)=3 ∵a+b=2,2a+b=3,
解得a=1,b=1,f (x )=x+1,
当x ∈[2,4]时,f (x )的图象为二次函数的一部分, 且顶点为(3,1),
设f (x )=a (x ﹣3)2
+1,又f (2)=3, 所以代入得a+1=3,a=2,f (x )=2(x ﹣3)2
+1.
(2)当x ∈[1,2],2≤f (x )≤3, 当x ∈[2,4],1≤f (x )≤3, 所以1≤f (x )≤3. 故f (x )的值域为[1,3].。

相关文档
最新文档