2010-2011(1)《固体物理》试卷A附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宝鸡文理学院试题
课程名称 固体物理 适 用 时 间 2011年1月 试卷类别 A 适用专业、年级、班 2008级物理教育专业
一、简答题(每题6分,共6×5=30分)
1、试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。

2、试述晶态、非晶态、准晶、多晶和单晶的特征性质。

3、什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子?
4、周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎样?
5、倒格子的实际意义是什么?一种晶体的正格矢和相应的倒格矢是否有一一对应的关系?
二、试证明体心立方格子和面心立方格子互为正倒格子。

(20分)
三、一维晶格,晶格由两种离子组成,间距为R 0,计算晶格的Madelung 常数α。

(15分)
四、用钯靶αK X 射线投射到NaCl 晶体上,测得其一级反射的掠射角为5.9°,已知NaCl 晶胞中Na +与Cl
-的距离为2.82×10-10m ,晶体密度为2.16g/cm 3。

求:
(1)X 射线的波长;(2)阿伏加德罗常数。

(20分)
五、写出量子谐振子系统自由能,证明在经典极限,自由能为:(15分)
⎪⎪⎭⎫ ⎝
⎛+≈∑KT hw KT U F q q o ln
宝鸡文理学院试题参考答案与评分标准
课程名称 固体物理 适 用 时 间 2011年1月 试卷类别 A 适用专业、年级、班07物理教育
一、简答题(每小题6分,5×6=30分)
1、试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。

解:(1)离子键:无方向性,键能相当强;(2)共价键:饱和性和方向性,其键能也非常强;(3)金属键:有一定的方向性和饱和性,其价电子不定域于2个原子实之间,而是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”;(4)范德瓦尔斯键:依靠瞬时偶极距或固有偶极距而形成,其结合力一般与7
r 成反比函数关系,该键结合能较弱;(5)氢键:依靠氢原子与2个电负性较大而原子半径较小的原子(如O ,F ,N 等)相结合形成的。

该键也既有方向性,也有饱和性,并且是一种较弱的键,其结合能约为50kJ/mol 。

2、试述晶态、非晶态、准晶、多晶和单晶的特征性质。

解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。

非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。

准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。

另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。

3、什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子?
解:声子就是晶格振动中的简谐振子的能量量子,它是一种玻色子,服从玻色-爱因斯坦统计,即具有能量为)(q w j 的声子平均数为 11
)()/()(-=T k q w j B j e q n
对于一给定的晶体,它所对应的声子种类和数目不是固定不变的,而是在一定的条件下发生变化。

4、 周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎样?
解:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。

考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件。

其具体含义是设想在一长为Na 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j 个原子和第j tN +个原子的运动情况一样,其中t =1,2,3…。

引入这个条件后,导致描写晶格振动状态的波矢q 只能取一些分立的不同值。

如果晶体是无限大,波矢q 的取值将趋于连续。

5、倒格子的实际意义是什么?一种晶体的正格矢和相应的倒格矢是否有一一对应的关系?
解:倒格子的实际意义是由倒格子组成的空间实际上是状态空间(波矢K 空间),在晶体的X 射线衍射照片上的斑点实际上就是倒格子所对应的点子。

设一种晶体的正格基矢为1a 、2a 、3a ,根据倒格子基矢的定义:
⎪⎪⎪⎭⎪⎪⎪⎬⎫Ω⨯=Ω⨯=Ω⨯=
][2][2][2213132321a a b a a b a a b πππ 式中Ω是晶格原胞的体积,即][321a a a ⨯⋅=Ω,由此可以唯一地确定相应的倒格子空间。

同样,反过来由倒格矢也可唯一地确定正格矢。

所以一种晶体的正格矢和相应的倒格矢有一一对应的关系。

二、试证明体心立方格子和面心立方格子互为正倒格子。

(20分)
解:我们知体心立方格子的基矢为:
⎪⎪⎪⎩
⎪⎪⎪⎨⎧-+=+-=++-=)(2)(2)
(2321k j i a k j i a k j i a a a a (3分) 根据倒格子基矢的定义,我们很容易可求出体心立方格子的倒格子基矢为:
⎪⎪⎪⎩
⎪⎪⎪⎨⎧+=Ω⨯=+=Ω⨯=+=Ω⨯=)(2][2)(2][2)(2][2213132321j i a a b k i a a b k j a a b a a a ππππππ (5分) 由此可知,体心立方格子的倒格子为一面心立方格子。

同理可得出面心立方格子的倒格子为一体心立方格子,所以体心立方格子和面心立方格子互为正倒格子。

(2分)
三、一维晶格,晶格由两种离子组成,间距为R 0,计算晶格的Madelung 常数α。

(15分) 解:任取某一离子为原点,根据∑≠±
=N j j a 11α(+代表与参考离子异号,-代表与参考离子同号) 则:⎪⎭⎫ ⎝⎛+-+-
= 41312112α
∵() +-+-=+4321ln 432x x x x x ,
当x=1时,
+-+-
=41312112ln , 故
2ln 2=α
四、用钯靶αK X 射线投射到NaCl 晶体上,测得其一级反射的掠射角为5.9°,已知NaCl 晶胞中Na +与
Cl -
的距离为2.82×10-10m ,晶体密度为2.16g/cm 3。

求: (1) X 射线的波长;(2)阿伏加德罗常数。

(20分)
解:(1)由题意可知NaCl 晶胞的晶胞参数10101064.51082.22--⨯=⨯⨯=a m ,又应为NaCl 晶胞为面心立方结构,根据面心立方结构的消光规律可知,其一级反射所对应的晶面族的面指数为(111),而又易求得此晶面族的面间距为
10102221111026.331064.5111--⨯=⨯=++=a
d m (5分)
又根据布拉格定律可知:
91011110702.69.5sin 1026.32sin 2--⨯=⨯⨯== θλd m (5分)
(2)由题意有以下式子成立
NaCl A M a N =⋅ρ4
3
(5分) ∴ 23310364458.5 6.03810(5.6410) 2.1610
NaCl A M N a ρ-⨯===⨯⨯⨯⨯ (5分) 五、写出量子谐振子系统自由能,证明在经典极限,自由能为:
⎪⎪⎭⎫ ⎝⎛+≈∑KT hw KT U F q q o ln (15分)
证:经典极限 ,0时→ 由教本P143
ω
γγδγh h e KT V U F KT h q q =⎥⎦⎤⎢⎣⎡-++=∑-)/1ln(2
1)( KT w e q KT w q -=∴-1/ ∑⎪⎪⎭⎫ ⎝⎛+=∴00ln KT w u F q。

相关文档
最新文档