隐函数的求导公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

隐函数的求导公式
隐函数是一种无法显式表达的函数,其表示为F(x,y)=0,其中x和y 是变量,F是一个用x和y表示的函数。

为了求解隐函数的导数,我们可以利用隐函数定理和导数的定义来推导隐函数的求导公式。

假设我们有一个由隐函数表示的方程F(x, y) = 0,并且y是x的函数,即y = f(x)。

我们要计算y关于x的导数dy/dx。

首先,根据隐函数定理,假设F(x, y)在一些区域内连续且可导,并且在该区域内F_y(x, y) ≠ 0,那么我们就能通过求F(x, y) = 0对x 求导来获得dy/dx的表达式。

1.对F(x,y)=0两边同时对x求导,利用链式法则,得到:
dF/dx = ∂F/∂x + ∂F/∂y * dy/dx = 0
2. 我们知道y = f(x),所以dy/dx = df(x)/dx。

我们将这个表达式代入到上面的方程中,得到:
∂F/∂x + ∂F/∂y * df(x)/dx = 0
∂F/∂x + ∂F/∂y * df(x)/dx = 0
3. 然后我们可以将df(x)/dx移项,得到:
∂F/∂y * df(x)/dx = -∂F/∂x
4.最后,我们可以得到隐函数的求导公式:
df(x)/dx = -∂F/∂x / ∂F/∂y
这就是隐函数的求导公式,在满足隐函数定理的条件下,我们可以使用这个公式计算隐函数的导数。

需要注意的是,这个公式的前提是隐函数定理的条件成立,并且存在F_y(x,y)≠0。

如果不满足这些条件,就无法使用这个公式来求解隐函数的导数。

此外,公式中的∂表示对变量求偏导数。

相关文档
最新文档