一元线性回归模型练习题无计算

合集下载

第9章 一元线性回归练习题

第9章 一元线性回归练习题

第9章一元线性回归练习题一.选择题1.具有相关关系的两个变量的特点是()A.一个变量的取值不能由另一个变量唯一确定B.一个变量的取值由另一个变量唯一确定C.一个变量的取值增大时另一个变量的取值也一定增大D.一个变量的取值增大时另一个变量的取值肯定变小2.下面的各问题中,哪个不是相关分析要解决的问题A.判断变量之间是否存在关系B.判断一个变量数值的变化对另一个变量的影响C.描述变量之间的关系强度 D.判断样本所反映的变量之间的关系能否代表总体变量之间的关系3.根据下面的散点图,可以判断两个变量之间存在()A.正线性相关关系B. 负线性相关关系C. 非线性关系D. 函数关系4.下面的陈述哪一个是错误的()A. 相关系数是度量两个变量之间线性关系强度的统计量B.相关系数是一个随机变量C.相关系数的绝对值不会大于1D.相关系数不会取负值5.根据你的判断,下面的相关系数取值哪一个是错误的()A. -0.86B. 0.78C. 1.25D. 06.如果相关系数r=0,则表明两个变量之间()A.相关程度很低B. 不存在任何关系C.不存在线性相关关系D.存在非线性关系7.下列不属于相关关系的现象是()A.银行的年利息率与贷款总额B.居民收入与储蓄存款C.电视机的产量与鸡蛋产量D.某种商品的销售额与销售价格8.设产品产量与产品单位成本之间的线性相关系数为-0.87,这说明二者之间存在着()A. 高度相关B.中度相关C.低度相关D.极弱相关9.在回归分析中,被预测或被解释的变量称为()A.自变量B.因变量C.随机变量D.非随机变量10.对两变量的散点图拟合最好的回归线,必须满足一个基本的条件是()A.2ˆ()yy∑-最小B.2)(ˆyy∑-最大C.2ˆ()yy∑-最大D.2)(ˆyy∑-最小11. 下列哪个不属于一元回归中的基本假定()A.误差项i ε服从正态分布B. 对于所有的X ,方差都相同C. 误差项i ε相互独立D. 0)ˆ=-i i yy E ( 12.如果两个变量之间存在着负相关,指出下列回归方程中哪个肯定有误( )A.x y75.025ˆ-= B. x y 86.0120ˆ+-= C. x y 5.2200ˆ-= D. x y 74.034ˆ--= 13.对不同年份的产品成本拟合的直线方程为,75.1280ˆx y-=y 表示产品成本,x 表示不同年份,则可知( )A.时间每增加一个单位,产品成本平均增加1.75个单位B. 时间每增加一个单位,产品成本平均下降1.75个单位C.产品成本每变动一个单位,平均需要1.75年时间D. 产品成本每减少一个单位,平均需要1.75年时间 14.在回归分析中,F 检验主要是用来检验( )A .相关关系的显著性 B.回归系数的显著性 C. 线性关系的显著性D.估计标准误差的显著性15.说明回归方程拟合优度的统计量是( )A. 相关系数B.回归系数C. 判定系数D. 估计标准误差16.已知回归平方和SSR=4854,残差平方和SSE=146,则判定系数R 2=( ) A.97.08% B.2.92% C.3.01% D. 33.25% 17. 判定系数R2值越大,则回归方程( )A 拟合程度越低B 拟合程度越高C 拟合程度有可能高,也有可能低D 用回归方程进行预测越不准确 18. 居民收入与储蓄额之间的相关系数可能是( ) A -0.9247 B 0.9247 C -1.5362 D 1.536219.在对一元回归方程进行显著性检验时,得到判定系数R 2=0.80,关于该系数的说法正确的是( )A. 该系数越大,则方程的预测效果越好B. 该系数越大,则由回归方程所解释的因变量的变差越多C. 该系数越大,则自变量的回归对因变量的相关关系越显著D. 该回归方程中自变量与因变量之间的相关系数可能小于0.8 20.下列方程中肯定错误的是( )A. x y48.015ˆ-=,r=0.65 B. x y 35.115ˆ--=, r= - 0.81 C. x y85.025ˆ+-=, r=0.42 D. x y 56.3120ˆ-=, r= - 0.96 21. 若两个变量存在负相关关系,则建立的一元线性回归方程的判定系数R 2的取值范围是( )A.【0,1】B. 【-1,0】C. 【-1,1】D.小于0的任意数二. 填空题1.当从某一总体中抽取了一样本容量为30的样本,并计算出某两个变量的相关系数为0.8时,我们是否可认为这两个变量存在着强相关性(不能 ) ,理由是(因为该相关系数为样本计算出的相关系数,它的大小受样本数据波动的影响,它是否显著尚需检验 )。

南财计量经济学答案第二章 一元线性回归模型

南财计量经济学答案第二章 一元线性回归模型

五、计算分析题 1.解:(1)收入、年龄、家庭状况、政府的相关政 策等也是影响生育率的重要的因素,在上述简单 回归模型中,它们被包含在了随机扰动项之中。 有些因素可能与受教育水平相关,如收入水平与 教育水平往往呈正相关、年龄大小与教育水平呈 负相关等。 (2)当归结在随机扰动项中的重要影响因素与模 型中的教育水平educ相关时,上述回归模型不能 够揭示教育对生育率在其他条件不变下的影响, 因为这时出现解释变量与随机扰动项相关的情形, 基本假设3不满足。
ˆ ei2 回归估计的标准误差:
(n 2) 58.3539 (12 2) 2.4157
(3) 对进行显著水平为5%的显著性检验
t
*
^
ˆ 2 2
^
ˆ) SE ( 2
ˆ

ˆ 2
ˆ) SE ( 2

^
~ t (n 2)
ˆ ) SE ( 2
4、解: (1)这是一个横截面序列回归。 (2)截距2.6911表示咖啡零售价为每磅0美元时, 每天每人平均消费量为2.6911杯,这个数字没有 经济意义;斜率-0.4795表示咖啡零售价与消费量 负相关,价格上升1美元/杯,则平均每天每人消 费量减少0.4795杯; (3)不能; (4)不能;在同一条需求曲线上不同点的价格弹性 不同,若要求出,须给出具体的值及与之对应的 值。
2 i

334229.09 0.7863 425053.73
ˆ Y ˆ X 549.8 0.7863 647.88 66.2872 1 2
ˆ 66.2872 0.7863 X 估计结果为: Y i i 说明该百货公司销售收入每增加1元,平均说来销售成本将增 加0.7863元。 (2)计算可决系数和回归估计的标准误差 2 ˆ x )2 ˆ 2 x2 ˆ y ( i 可决系数为:R 2 i 2 i 2

第十章 一元线性回归

第十章 一元线性回归

第十一章 一元线性回归一、填空题1、对回归系数的显著性检验,通常采用的是 检验。

2、若回归方程的判定系数R 2=0.81,则两个变量x 与y 之间的相关系数r 为_________________。

3、若变量x 与y 之间的相关系数r=0.8,则回归方程的判定系数R 2为____________。

4、对于直线趋势方程bx a y c +=,已知∑=,0x ∑=130xy ,n=9,1692=∑x, a=b ,则趋势方程中的b=______。

5、回归直线方程bx a y c +=中的参数b 是_____________。

估计待定参数a 和 b 常用的方法是-_________________。

6、相关系数的取值范围_______________。

7、在回归分析中,描述因变量y 如何依赖于自变量x 和误差项的方程称为 。

8、在回归分析中,根据样本数据求出的方程称为 。

9、在回归模型εββ++=x y 10中的ε反映的是 。

10、在回归分析中,F 检验主要用来检验 。

11、说明回归方程拟合优度检验的统计量称为 。

二、单选题1、年劳动生产率(x :千元)和工人工资(y :元)之间的回归方程为1070y x =+,这意味着年劳动生产率没提高1千元,工人工资平均( )A 、 增加70元B 、 减少70元C 、增加80元D 、 减少80元 2、两变量具有线形相关,其相关系数r=-0.9,则两变量之间( )。

A 、强相关B 、弱相关C 、不相关D 、负的弱相关关系 3、变量的线性相关关系为0,表明两变量之间( )。

A 、完全相关B 、无关系C 、不完全相关D 、不存在线性关系 4、相关关系与函数关系之间的联系体现在( )。

A 、相关关系普遍存在,函数关系是相关关系的特例 B 、函数关系普遍存在,相关关系是函数关系的特例C 、相关关系与函数关系是两种完全独立的现象D 、相关关系与函数关系没有区别 5、已知x 和y 两变量之间存在线形关系,且δx =10, δy =8, δxy2=-7,n=100,则x 和y 存在着( )。

一元线性回归模型练习题

一元线性回归模型练习题

一元线性回归模型练习题P55 3.1实验问题:实验步骤与内容:1、导入数据资料2、定义样本区间3、建立一元线性回归模型4、根据一元线性回归模型解释斜率系数的经济意义以及相关系数r5、对参数进行检验6、通过计算预测2010年财政收入问题解释与结论:(1):建立深圳地方预算内财政收入对GDP的一元线性回归模型。

通过对数据的运用,可以得出一元线性回归方程为Y=26.020961+0.08882X 其中,可以得到散点图为:一元线性回归拟合图为:(2)估计所建立模型的参数,解释斜率系数的经济意义;斜率系数和简单相关系数r的正负号相同吗?=26.02096是样本回归方程的截距,它表示不受国内生产总值影响的地方预算β=0.08882表示国内生产总值每增加一个单位的地方预财政收入为26.0296,β1算财政收入平均增加0.8882个单位,从回归模型不难看出,随着变量X的增大,Y变量的值也在增大。

根据简单相关系数的概念,且从第一题所求出来的回归结果可知,r>0,两个变量之间是正相关,即斜率系数和简单相关系数r的正负号相同。

(3)对回归参数进行t检验。

由此得到t=4.081 p=0.0006808,给定显著性水平 =0.05,查表得t(19)=2.0930,由于t=4.081>2.0930,拒绝原假设,说明斜率在5%的显著性0.05/2水平下显著不为0,这表明,国内生产总值对深圳市地方预算内财政收入有显著影响。

(4)拟合优度R2是多少?由第一题求出的线性回归可得:由上图中数据分析结果可以看出R2=0.9607,说明GDP解释了地方预算内财政收入的96%,模型拟合程度较好。

(6)若2010年的国内生产总值为11000亿元,试预测2010年的财政收入。

由一元线性回归模型可知,当2010年国内生产总值为11000亿元时,地方财政收入为:Y=26.020961+0.08882X=26.020961+0.08882*11000=1003.040961(亿元)3.6实验问题题表3.6是64个国家的儿童死亡率与人均GNP 数据,请用合适的模型作儿童死亡率对人均GNP 的一元线性回归,解释回归结果的含义,画出儿童死亡率对人均GNP 倒数的散点图,并与回归结果对应解释。

概论一元和多元线性回归习题答案

概论一元和多元线性回归习题答案

概论、一元线性回归、多元线性回归习题一、单项选择题1.总体回归线是指( D )A)样本观测值拟合的最好的曲线B)使残差平方和最小的曲线C)解释变量X取给定值时,被解释变量Y的样本均值的轨迹D)解释变量X取给定值时,被解释变量Y的条件均值或期望值的轨迹2.指出下列哪一变量关系是确定函数关系而不是相关关系? ( B )A. 商品销售额与销售价格B. 学习成绩总分与各门课程成绩分数C. 物价水平与商品需求量D. 小麦亩产量与施肥量3.经济计量分析工作的基本工作步骤是-( B )A.设定理论模型→收集样本资料→估计模型参数→检验模型B.设定模型→估计参数→检验模型→应用模型C.理论分析→数据收集→计算模拟→修正模型D.确定模型导向→确定变量及方程式→应用模型4.若一元线性回归模型Y=β1+β2X+u满足经典假定,那么参数β1、β2的普通最小二乘估计量β^1、β^2是所有线性估计量中( B )A)无偏且方差最大的B)无偏且方差最小的C)有偏且方差最大的D)有偏且方差最小的5. 在一元线性回归模型Y=β1+β2X +u 中,若回归系数β2通过了t 检验,则表示( B )A )β^2≠0B )β2≠0C )β2=0D )β^=06. 在多元线性回归模型Y=β1+β2X 2+β3X 3+β4X 4+u 中,对回归系数βj (j=2,3,4)进行显著性检验时,t 统计量为( A ) A )()jjSe ββˆˆB )()jj Se ββC )()jjVar ββD )()jjVar ββˆˆ7. 在二元线性回归模型中,回归系数的显著性t 检验的自由度为( D )。

A. n B. n-1 C. n-2 D. n-38. 普通最小二乘法要求模型误差项u i 满足某些基本假定,下列结论中错误的是( B )。

A. E(u i )=0B. E(2i u )=2i σC. E(u i u j )=0D. u i ~N(0.σ2)9. 对模型Yi=β0+β1X1i+β2X2i+μi 进行总体显著性F 检验,检验的零假设是( A )A. β1=β2=0B. β1=0C. β2=0D. β0=0或β1=010. 在多元线性回归中,判定系数R 2随着解释变量数目的增加而(B )A.减少 B .增加 C .不变 D .变化不定11. 已知三元线性回归模型估计的残差平方和为8002=∑te,估计用样本容量为24=n ,则随机误差项t u 的方差估计量2S 为( B )。

计量经济学一元线性回归作业

计量经济学一元线性回归作业

计量经济学实验报告姓名孙晓晗学号0842226 班级经济管理学院上机时间:2010-10-19 上机地点:实验楼A105上机目的:熟悉EVIEWS的基本操作,以及学习一元线形回归模型的简单建立标题一、研究的问题研究随着GDP的变化国家财政收入会如何变化,从而研究GDP 与国家财政收入的关系。

二、对问题的经济理论分析、所涉及的经济变量财政收入是政府部门的公共收入,是国民收入分配中用于保证政府行使其公共职能、实施公共政策及提供公共服务的资金需求。

其主要有资源配置、收入再分配和宏观经济调控三大职能。

财政收入的增长情况关系着一个国家经济的发展和社会的进步。

因此,研究财政收入的增长就显得尤为必要。

财政收入的增长受到多方面因素的影响,但最根本的原因是经济的总体发展态势,即GDP的增长。

因此,此次分析涉及到GDP和国家财政收入两个经济变量。

三、理论模型的建立以财政收入(CZSR)为被解释释变量,GDP为解释变量,构造回归模型:Y i=b0+b1X i+u i四、相关变量的数据收集及数据来源说明数据来源于中华人民共和国国家统计局,网址为:/五、数据的计算机输入及运行过程、模型的结果1.数据输入,给变量赋值2.获得X与Y的散点图3.建立一元线性回归方程六、模型检验、对结果的解释及说明1.检验(1)经济模型意义检验由建立一元线性回归方程结果可得:Y i=389.5147+0.116157Xa.正负号由建立回归方程结果可得b1=0.116157,为正值,说明国家财政收入按照小于1的正比例随GDP增长,因此此值在经济学上有意义。

b.斜率大小由建立回归方程结果可得b0=389.5147,有较好的经济学含义。

(2)统计学检验a.拟合优度检验R2=1.94,说明回归方程与样本观察值拟合优度很好。

b.T检验Prob(t-Statistic)=0.45〉5%,不通过检验c.F检验Prob(F-Statistic)=0.00001〈5%,通过检验七、用模型就现实问题进行分析(一)财政收入占GDP的比重低且比重总体呈下降的趋势从世界各国的情况分析,财政收入占GDP的比重随经济发展而渐渐提高。

一元线性回归模型

一元线性回归模型

第三章一、练习题 (一)简答题1、对随机项i ε作了哪些假定?这些假定为什么是必要的?2、简要说明显著性检验的意义和过程?3、已知回归模型μβα++=x y ,式中一为某类公司一名员工的年收入(元),x 为工作时间(年)。

随机扰动项μ的分布未知,其他所有假设都满足。

(1)从直观及经济角度解释α和β。

(2)OLS 估计量αˆ和βˆ满足线性性、无偏性及有效性吗?简单陈述理由。

(3)对参数的假设检验还能进行吗?简单陈述理由。

4、为什么用决定系数R 2评价拟合优度,而不用残差平方和作为评价标准?5、可决系数2R 说明了什么?在简单线性回归中它与斜率系数的t 检验的关系是什么?6、有n 组观测值(X i ,Y i )i=1,2,…,n ,用最小二乘法将Y 对X 回归得X Y 21ˆˆˆαα+=,将X 对Y 回归得Y X 21ˆˆˆββ+=,这两条直线是否一致?在什么条件下一致?(二)计算题1、下表1989-2003年我国的财政收入y (亿元)与国民生产总值x (亿元)的统计资料:2003 116603.2资料来源:《中国统计年鉴2004》,中国统计出版社(1)做出散点图,建立财政收入随GDP 变化的一元线性回归模型,并解释斜率系数的经济意义;(2)对所建立的回归模型进行检验;(3)若2004年的GDP 为25000亿元,计算2004年财政收入的预测值。

2、下表是1989-2003年我国的城镇居民家庭人均可支配收入(元)x 与城市人均住宅建筑面积(平方米)y 的统计资料:资料来源:《中国统计年鉴2004》,中国统计出版社(1)做出散点图,建立城市人均住宅建筑面积随城镇居民家庭人均可支配收入的一元线性回归模型,并解释斜率系数的经济意义; (2)对所建立的回归模型进行检验;(3)若2004年的城镇居民家庭人均可支配收入为9000元,计算2004年的城市人均住宅建筑面积预测值。

3、对于模型:n i x y i i i ,,1 =++=εβα从10个观测值中计算出;20,200,26,40,822=====∑∑∑∑∑i i i i i iy x x y x y,请回答以下问题:(1)求出模型中α和β的OLS 估计量;(2)当10=x 时,计算y 的预测值。

贾俊平第四版统计学-第十一章一元线性回归练习答案

贾俊平第四版统计学-第十一章一元线性回归练习答案

第十一章一元线性回归练习题答案二.填空题 1. 不能;因为该相关系数为样本计算出的相关系数,它的大小受样本数据波动的影响,它是否显著尚需检验;t 检验;2.图1;不能;因为图1反映的是线性相关关系,图2反映的是非线性性相关关系,相关系数只能反映线性相关变量间的相关性的强弱,不能反映非线性相关性的强弱。

三.计算题1.(1) SSR 的自由度是1,SSE 的自由度是18。

(2)2418/6080220/1/==-=SSE SSR F(3)判定系数%14.57140802===SST SSR R 在y 的总变差中,由57.14%的变差是由于x 的变动说引起的。

(4)7559.05714.02-=-=-=R r相关系数为-0.7559。

(5)线性关系显著和:线性关系不显著和y x y x H 10H :因为414.424=>=αF F,所以拒绝原假设,x 与y 之间的线性关系显著。

2.(1)方差分析表df SS MS F Significance F回归分析 1 425 425 85 0.017 残差 15 75 5 - - 总计16500---(2)判定系数%8585.05004252====SST SSR R表明在维护费用的变差中,有85%的变差可由使用年限来解释。

(3)9220.085.02===R r二者相关系数为0.9220,属于高度相关(4)x y248.1388.6ˆ+= 分布;显著。

的自由度为t n r n r t 2);12||2---=回归系数为1.248,表示每增加一个单位的产量,该行业的生产费用将平均增长1.248个单位。

(5)线性关系显著性检验:线性关系显著:生产费用和产量之间性关系不显著生产费用和产量之间线10:H H因为Significance F=0.017<05.0=α,所以线性关系显著。

(6)348.3120248.1388.6248.1388.6ˆ==⨯++=x y当产量为10时,生产费用为31.348万元。

统计学一元线性回归课后习题答案

统计学一元线性回归课后习题答案

表示实际值与估计值之间的差异程度是0.5
11.5一家物流公司的管理人员想研究货物的运输距离和运输时 间的关系,为此,他抽出了公司最近10个卡车的运货记录的随 机样本,得到运送距离(单位:km)和运送时间(单位:天) 的数据如下表:
运送距离x 825 215 1070 550 480 920 1350 325 670 1215
要求: (1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并
说明二者之间的关系形态。
人均消费水平
14000 12000 10000
8000 6000 4000 2000
0 0
系列1
10000
20000 人均GDP
30000
40000
产量和生产费用之间存在着正的线性相关关系
(2)计算两个变量之间的线性相关系数,说明两个变量之 间的关系强度。
某地区的人均GDP为5 000元,预测其人均消费 水平为2278.1078元。
(7)求人均GDP为5 000元时,人均消费水平95%的置信区 间和预测区间。
解:已知n=7,t(7-2)=2.5706
n
yi yˆi 2
se
i 1
n2

置信区间为
SSE n2
305795.0343 61159.007 5
ˆ1

7*651007421 2710124051
7*1904918867 857392
=0.308683
ˆ0 4515.571429 0.308683*12248.428
=734.6928
y = 734.6928 + 0.308683x
回归系数的含义:人均GDP每增加1元, 人均消费增加0.309元。

8.2.1一元线性回归模型

8.2.1一元线性回归模型
E(e) 0, D(e) 2. (1)
确定儿子身高Y 吗?
e 不能,因为随机误差 不可事先设定.
四、模型理解
• 当父亲身高为 xi ,对应的儿子身高 yi 不是唯一
确定的,而是有很多可能的取值,记作
yi bxi a e
它们的均值为:
E( yi ) E(bxi a e) bE(xi ) E(a) E(e) bxi a 0 bxi a.
(2)销售量与广告费用之间的关系能否用一元线性回归模
型 Y bx a e,
来刻画?
E(e) 0, D(e) 2.
(3)请说明模型中 bx a与e分别表示什么?本题中 e 的具
体含义是什么?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 174 170 173 169 182 172 180 172 168 166 182 173 164 180 176 176 170 170 185 176 178 174 170 168 178 172 165 182
儿子身高 父亲身高
176 176 170 170 185 176 178 174 170 168 178 172 165 182
问题1 由这组样本数据能否推断儿子的身高
与父亲的身高有关系?关系的相关程度如 何?是函数关系还是线性相关关系?为什 么?
(1)散点图
(2)相关系数 r 0.886
选择性必修三8.2.1 ggb文件.ggb (命令行)
问题8 • 一元线性回归模型有何作用?
当父亲身高为 xi 时可以通过
E( yi ) bxi a
了解儿子身高的总体情况,从而预测儿子的 身高.
问题9
• 产生随机误差的原因有哪些? • (1)除父亲身高外其他可能影响儿子身高

一元线性回归模型(习题与解答)

一元线性回归模型(习题与解答)

要求: ,即条件期望值; (1)对每一收入水平,计算平均的消费支出,E(Y︱Xi)
5
(2)以收入为横轴、消费支出为纵轴作散点图; (3)在散点图中,做出(1)中的条件均值点; (4)你认为 X 与 Y 之间、X 与 Y 的均值之间的关系如何? (5)写出其总体回归函数及样本回归函数;总体回归函数是线性的还是非线性的? 2-24.根据上题中给出的数据,对每一个 X 值,随机抽取一个 Y 值,结果如下:


∑ ( n − xW ) y
i =1 i
n
Байду номын сангаас
1
i

里 Wi =
xi
∑ xi

2
,i=1,2,…,n。 2-15.已知两个量 X 和 Y 的一组观察值(xi,yi) 证明:Y 的真实值和拟合值有共同的均值。 因为散点图上的点 ( Ci , Yi ) 2-16. 一个消费分析者论证了消费函数 C i = a + bYi 是无用的, 不在直线 C i = a + bYi 上。他还注意到,有时 Yi 上升但 Ci 下降。因此他下结论:Ci 不是 Yi 的函数。请你评价他的论据(这里 Ci 是消费,Yi 是收入) 。 2-17.证明:仅当 R2=1 时,y 对 x 的线性回归的斜率估计量等于 x 对 y 的线性回归的斜率 估计量的倒数。 2-18.证明:相关系数的另一个表达式是: r = 系数的估计值,Sx、Sy 分别为样本标准差。 2-19.对于经济计量模型: Yi = b0 + b1 X i + u i ,其 OLS 估计参数 b1 的特性在下列情况下 会受到什么影响: (1)观测值数目 n 增加; (2)Xi 各观测值差额增加; (3)Xi 各观测值近 似相等; (4)E(u2)=0 。 2-20.假定有如下的回归结果: Yt = 2.6911 − 0.4795 X t ,其中,Y 表示美国的咖啡的消费 量(每天每人消费的杯数) ,X 表示咖啡的零售价格(美元/杯) ,t 表示时间。

8.2 一元线性回归模型及其应用 (专项训练)-【新教材】2020-2021学年人教A版(2019)

8.2 一元线性回归模型及其应用 (专项训练)-【新教材】2020-2021学年人教A版(2019)

高二数学下学期 一元线性回归模型及其应用专项训练一、单选题(共12题;共60分)1.已知两个变量x 和y 之间具有线性相关关系,5次试验的观测数据如下:那么变量y 关于x 的线性回归方程只可能是( ) A .y =0.575x -14.9 B .y =0.572x -13.9 C .y =0.575x -12.9D .y =0.572x -14.92.在生物学上,有隔代遗传的现象.已知某数学老师的体重为62kg ,他的曾祖父、祖父、父亲、儿子的体重分别为58kg 、64kg 、58kg 、60kg .如果体重是隔代遗传,且呈线性相关,根据以上数据可得解释变量x 与预报变量y 的回归方程为y bx a =+,其中0.5b =,据此模型预测他的孙子的体重约为( ) A .58kgB .61kgC .65kgD .68kg3.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据:()()()()()1122334455,,,,,,,,,x y x y x y x y x y ,据收集到的数据可知12345100x x x x x ++++=,由最小二乘法求得回归直线方程为ˆ0.6754.8yx =+,则12345y y y y y ++++的值为( ) A .68.2B .341C .355D .366.24.为了研究某班学生的数学成绩x (分)和物理成绩y (分)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101750ii x==∑,101800i i y ==∑,ˆ 1.2b=,该班某学生的物理成绩为86,据此估计其数学成绩约为( ) A .81 B .80 C .93 D .945.由一组样本数据()()()1122,,,,,,n n x y x y x y 得到的回归直线方程为ˆybx a =+,那么下面说法不正确是( )A .直线ˆybx a =+必经过点(,)x yB .直线ˆybx a =+至少经过点()()()1122,,,,,,n n x y x y x y 中的一个C .直线ˆybx a =+的斜率为2121ni i i i n i y nxy xx x n ==--∑∑D .直线ˆybx a =+和各点()()()1122,,,,,,n n x y x y x y 的总偏差()21ni i i y bx a =-+⎡⎤⎣⎦∑是该坐标平面上所有直线与这些点的偏差中最小的直线6.已知某产品的销售额y 与广告费用x 之间的关系如下表:若求得其线性回归方程为 6.5ˆˆyx a =+,其中ˆˆa y bx =-,则预计当广告费用为6万元时的销售额是() A .42万元B .45万元C .48万元D .51万元7.某研究员为研究某两个变量的相关性,随机抽取这两个变量样本数据如下表:若依据表中数据画出散点图,则样本点(,)(1,2,3,4,5)i i x y i =都在曲线1y =附近波动.但由于某种原因表中一个x 值被污损,将方程1y =作为回归方程,则根据回归方程1y =和表中数据可求得被污损数据为( ) A . 4.32-B .1.69C .1.96D .4.328.某公司在2014~2018年的收入与支出情况如下表所示:根据表中数据可得回归直线方程为0.7y x a =+,依此估计如果2019年该公司收入为8亿元时的支出为( ) A .4.502亿元 B .4.404亿元 C .4.358亿元D .4.856亿元9.下列说法:①对于独立性检验,2χ的值越大,说明两事件相关程度越大;①以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e和0.3;①根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;①通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1B .2C .3D .410.在某次试验中,实数x ,y 的取值如下表:若x 与y 之间具有较好的线性相关关系,且求得线性回归方程为1y x =+,则实数m 的值为 A .1.6B .1.7C .1.8D .1.911.某工厂为了对新研发的一种产品进行合理定价,将该产品事先拟订的价格进行试销,得到如下数据.由表中数据求得线性回归方程ˆˆ4=-+y x a ,则15=x 元时预测销量为A .45件B .46件C .49件D .50件12.为预测某种产品的回收率y ,需要研究它和原料有效成分的含量x 之间的相关关系,现取了8组观察值.计算得8152ii x==∑,81228i i y ==∑,821478ii x ==∑,811849i i i x y ==∑,则y 对x 的回归方程是( )A .y =11.47+2.62xB .y =-11.47+2.62xC .y =2.62+11.47xD .y =11.47-2.62x二、填空题(共4题;共20分)13.蟋蟀鸣叫声可以说是大自然的音乐,殊不知蟋蟀鸣叫的频率P (每分钟鸣叫的次数)与气温T (单位:①)有着很大的关系.某观测人员根据下表中的观测数据计算出P 关于T 的线性回归方程 5.2168P T =-,则下表中k 的值为______.14.对具有线性相关关系的变量x ,y ,测得一组数据如表:根据上表,利用最小二乘法得它们的回归直线方程为ˆˆ10.5yx a =+,据此模型预测,当10x =时,y 的估计值是__________.15.一商场对每天进店人数和商品销售件数进行了统计,得到如下表:据上表预测:当进店人数为90时,商品销售件数为(结果保留整数)______.参考数据:ˆ25,15.43,0.78,x y b y bxa ====+. 16.商场为了了解毛衣的月销售量y (件)与月平均气温()x C ︒之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表,由表中数据算出线性回归方程ˆˆ2yx a =-+,气象部门预测下个月的平均气温约为24C ︒,据此估计商场下个月毛衣销售量约为________件.三、解答题(共4题;共20分)17.爱心蔬菜超市为确定某种蔬菜的日进货量,需了解日销量y (单位:kg )随上市天数x 的变化规律.工作人员记录了该蔬菜上市10天来的日销量i y 与上市天数(1,2,,10)i x i =⋅⋅⋅的对应数据,并对数据做了初步处理,得到如图的散点图及一些统计量的值:表中ln (1,2,,10)i i t x i ==⋅⋅⋅.(1)根据散点图判断y a bx =+与ln y c d x =+哪一个更适合作为日销量y 关于上市天数x 的回归方程(给出判断即可,不必说明理由)?(2)根据(1)中的判断结果及表中数据,求日销量y 关于上市天数的回归方程,并预报上市第12天的日销量.附:①ln 20.7≈,ln3 1.1≈.①对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y bx a =+中的斜率和截距的最小二乘估计分别为:()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-.18.为了实现绿色发展,避免浪费能源,某市政府计划对居民用电实行阶梯收费的方法.为此,相关部门随机调查了20户居民六月分的月用电量(单位:kwh )和家庭月收入(单位:方元)月用电量数据如下18,63,72,82,93,98,106,10,18,130,134,139,147,163,180,194,212,237,260,324家庭月收入数据如下0.21,0.24,0.35,0.40,0.52,0.60,0.58,0.65,0.65,0.63,0.68,0.80,0.83,0.93,0.97,0.96,1.1,1.2,1.5,1.8(1)根据国家发改委的指示精神,该市实行3阶阶梯电价,使7%的用户在第一档,电价为0.56元/kwh ,20%的用户在第二档,电价为0.61元/kwh ,5%的用户在第三档,电价为0.86元/kwh ,试求出居民用电费用Q 与用电量x 间的函数关系式;(2)以家庭月收入t 为横坐标,电量x 为纵坐标作出散点图(如图)求出x 关于t 的回归直线方程(系数四舍五入保留整数);(3)小明家庭月收入7000元,按上述关系,估计小明家月支出电费多少元?19.为利于分层教学,某学校根据学生的情况分成了A ,B,C 三类,经过一段时间的学习后在三类学生中分别随机抽取了1个学生的5次考试成缎,其统计表如下: A 类()52110i i x x=-=∑180≈;B 类()52110i i x x=-=∑60≈;C 类()52110ii xx=-=∑63≈;(1)经计算已知A ,B 的相关系数分别为1045r .=-,2025r .=.,请计算出C 学生的()()112345i i x ,y ,,,,=的相关系数,并通过数据的分析回答抽到的哪类学生学习成绩最稳定;(结果保留两位有效数字,r 越大认为成绩越稳定)(2)利用(1)中成绩最稳定的学生的样本数据,已知线性回归直线方程为62ˆˆy .x a =+,利用线性回归直线方程预测该生第十次的成绩.附相关系数()()niix x y y r --=∑ˆˆˆybx a =+,()()niix x y y ˆb--=∑,ˆˆay bx =-. 20.近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付,某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),绘制了如图所示的散点图:(I )根据散点图判断在推广期内, y a b x =+与xy c d =⋅(c ,d 为为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由) (①)根据(I )的判断结果求y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次. 参考数据:其中lg i i v y =,7117i i v v ==∑附:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线ˆˆˆva u β=+的斜率和截距的最小二乘估计分别为:1221ˆni i i nii u v nuvunu β==-=-∑∑,ˆˆav u β=-.参考答案1.A 【详解】由表格易知140x =,65.6y =,根据线性回归方程y bx a =+必过样本中心点,代入检验只有0.57514.9y x =-适合,故选A.2.B 【详解】由已知,体重是隔代遗传,且呈线性相关,得出数据,()58,58,()64,62,()58,60, 所以()(),=60,60x y ,代入y bx a =+,其中0.5b =,求得=30a , 即0.530y x =+.62x =时, 0.56230y =⨯+=61.故选:B 3.B 【详解】12345100x x x x x ++++=,故20x =,则0.6754.868.2y x =+=,故123455341y y y y y y =+=+++. 故选:B. 4.B 【详解】1017510ii x x===∑,1018010ii yy ===∑,故ˆ10a y bx =-=-,即ˆ 1.210yx =-, 当86y =时,86 1.210x =-,解得80x =. 故选:B . 5.B 【详解】对于A ,回归直线必过样本中心点,即ˆybx a =+必过(),x y ,A 正确;对于B ,回归直线描述样本点的变化趋势和相关关系,未必经过样本点,B 错误;对于C ,由最小二乘法知:1221ˆni i i i n i y nx x n by xx ===--∑∑,C 正确;对于D ,回归直线是所有直线中与样本点离散度最低的,由此可知回归直线的总偏差()21n i i i y bx a =-+⎡⎤⎣⎦∑是该坐标平面上所有直线与这些点的偏差中最小的,D 正确. 故选:B . 6.C 【详解】()10123425x =++++=,()11015203035225y =++++=, 样本点的中心的坐标为()2,22,代入ˆˆa yb x =-,得22 6.529a =-⨯=.y ∴关于x 得线性回归方程为 6.59y x =+.取6x =,可得 6.56948(y =⨯+=万元). 故选:C . 7.C 【详解】设缺失的数据为),1,2,3,4,5i x m i ==,则样本(),i i m y 数据如下表所示:其回归直线方程为ˆ1ym =+,由表中数据可得, 11.1 2.1 2.3 3.3 4.2 2.65y =++++=(),由线性回归方程ˆ1ym =+得, 1.6m =, 即10.21 2.2 3.2 1.65++=(),解得 1.96x =.故选:C .8.D【详解】2.2 2.43.8 5.2 6.0 3.925x ++++==,0.2 1.5 2.0 2.5 3.825y ++++== 0.720.7 3.920.744a y x =-=-⨯=-即0.70.744y x =-令8x =,则0.780.744 4.856y =⨯-=故选:D9.C【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题①,由kx y ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题①正确; 对于命题①,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题①正确;对于命题①,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题①错误.故选C.10.D【详解】 因为14.333,5m x y +==所以14.333145m +=+=,解得 1.9m = 故选D.11.B【详解】 依题意 6.5,80x y ==,代入ˆˆ4=-+yx a 得80 6.54106a =+⨯=,即ˆ4106y x =-+,当15x =时,6010646y =-+=,故选B.12.A【解析】分析:根据公式计算ˆb≈2.62,ˆa ≈11.47,即得结果. 详解:由1221,()ˆˆˆni i i n i i x y nxy b a y bx xn x ==-==--∑∑,直接计算得ˆb ≈2.62,ˆa ≈11.47,所以ˆy=2.62x +11.47.选A. 13.51【详解】 计算()138414239404T =⨯+++=,()110929443644k P k +=⨯+++=, 代入P 与T 的线性回归方程 5.2168P T =-中,得109 5.2401684k +=⨯-,解得51k =. 故答案为:51.14.106.5【详解】 由上表数据可得2+4+5+6+8=55x =,20+40+60+70+==545y 80, 所以ˆ10.55410.55 1.5ay x =-=-⨯=, 所以回归直线方程为ˆ10.5 1.5yx =+, 当10x =时,ˆ10.510 1.5106.5y=⨯+=, 即y 的估计值是106.5,故答案为:106.515.66【详解】数据中心点为()25,15.43,代入回归方程0.78y x a =+,解得 4.07a =-.当90x =时, 66.1366y =≈.故答案为:66.16.10【详解】因为x =14×(17+13+8+2)=10, y =14×(24+33+40+55)=38, 代入ˆˆ2yx a =-+中,得ˆa =58, 所以ˆ258yx =-+,令24x = 所以ˆy=-2×24+58=10. 故答案为:1017.(1)ln y c d x =+更适合;(2)5ln 8y x =+,预报值为20.5kg .【详解】(1)由散点图可以判断ln y c d x =+更适合作为日销量y 关于上市天数x 的回归方程.(2)令ln t x =,先建立y 关于t 的线性回归方程y dt c =+. 则()()()101102124.254.84i ii i i t t y y d t t ===-=--=∑∑, 10115.1 1.511010i i t t ====∑, 101155.515.551010ii y y ====∑, 所以15.555 1.518c y dt =-=-⨯=.故y 关于t 的回归方程为58y t =+,即日销量y 关于上市天数x 的回归方程为5ln 8y x =+.当12x =时,5(2ln 2ln3)85(20.7 1.5l 1)n 820.5(k 8g)y x =++≈+==++⨯,所以,上市第12天的日销量的预报值为20.5kg .18.1)()0.56,01800.619,1802600.8674,260x x Q x x x x x ≤≤⎧⎪=-<≤⎨⎪->⎩;(2)ˆ1813x t =+;(3)72.8.【详解】(1)因为2075%15,2095%19⨯=⨯=,所以从用电量数据中得到第一档的临界值为第15个样本,即180,第二档的临界值为第19个样本,即260.因此,所以,()0.56,01800.619,1802600.8674,260.x x Q x x x x x ≤≤⎧⎪=-<≤⎨⎪->⎩,,(2)由于20112880144202i i x x ====∑, 201115,450.782020i i t t ====∑, 122212803.ˆ2201440.78180.6615.2520.78ni i i n i i x t nxt b t nt ==--⨯⨯===-⨯-∑∑, 所以144180.66ˆˆ0.78 3.085a x bt=-=-⨯=, 从而回归直线方程为ˆ1813xt =+. (3)当0.7t =时,1810.73129.7130x =⨯+=≈,()1300.5672.8Q x =⨯=,所以,小明家月支出电费72.8元.19.(1)见解析;(2) 62794ˆy .x .=+;预测第10次的成绩为1414.分 【详解】(1)根据A 、B 、C 抽到的三个学生的数据,求得相应的相关系数分别A 类:3x =,81y =-,则()()5181i ii x x y y =--=-∑,所以81045180r .-≈=- B 类:3x =,89y =,则()()5115i i i x x y y =--=∑,所以1502560r .≈= C 类:3x =,98y =,则()()5162i ii x x y y =--=∑,所以6209863r .≈≈从上述所求相关系数可知,从C 类学生抽到的学生的成绩最稳定(2)由(1)知3x =,98y =,所以98623794ˆa..=-⨯=,所以62794ˆy .x .=+ 当10x =时,1414ˆy .=,所以预测第10次的成绩为1414.分. 20.(I )x y cd =适合(①)0.540.25ˆ10x y+=, 预测第8天人次347. 【详解】(I )根据散点图判断,x y c d =⋅适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型. (①)因为x y c d =⋅,两边取常用对数得:()1111x gy g c dgc gd x =⋅=+⋅, 设lg ,lg lg y v v c d x =∴=+⋅7214, 1.55,140i i x v x ====∑,∴ 717221750.1274 1.547lg 0.25140742287i ii i i x v x d xx -==--⨯⨯====-⨯-∑∑, 把样本数据中心点(4,1.54)代入lg lg v c d x =+⋅得:lg 0.54c =,ˆ0.540.25v x ∴=+,则10.540.25gy x =+所以y 关于x 的回归方程为0.540.25ˆ10x y+=, 把8x =代入上式得:0.540.258ˆ10347y +⨯==,故活动推出第8天使用扫码支付的人次为347.。

线性回归习题

线性回归习题

第9章一元线性回归练习题一.选择题1.具有相关关系的两个变量的特点是()A.一个变量的取值不能由另一个变量唯一确定B.一个变量的取值由另一个变量唯一确定C.一个变量的取值增大时另一个变量的取值也一定增大D.一个变量的取值增大时另一个变量的取值肯定变小2.下面的各问题中,哪个不是相关分析要解决的问题A.判断变量之间是否存在关系B.判断一个变量数值的变化对另一个变量的影响C.描述变量之间的关系强度 D.判断样本所反映的变量之间的关系能否代表总体变量之间的关系3.根据下面的散点图,可以判断两个变量之间存在()A.正线性相关关系B. 负线性相关关系C. 非线性关系D. 函数关系4.下面的陈述哪一个是错误的()A. 相关系数是度量两个变量之间线性关系强度的统计量B.相关系数是一个随机变量C.相关系数的绝对值不会大于1D.相关系数不会取负值5.根据你的判断,下面的相关系数取值哪一个是错误的()A. -0.86B. 0.78C. 1.25D. 06.如果相关系数r=0,则表明两个变量之间()A.相关程度很低B. 不存在任何关系C.不存在线性相关关系D.存在非线性关系7.下列不属于相关关系的现象是()A.银行的年利息率与贷款总额B.居民收入与储蓄存款C.电视机的产量与鸡蛋产量D.某种商品的销售额与销售价格8.设产品产量与产品单位成本之间的线性相关系数为-0.87,这说明二者之间存在着()A. 高度相关B.中度相关C.低度相关D.极弱相关9.在回归分析中,被预测或被解释的变量称为()A.自变量B.因变量C.随机变量D.非随机变量10.对两变量的散点图拟合最好的回归线,必须满足一个基本的条件是()A.2ˆ()yy∑-最小B.2)(ˆyy∑-最大C.2ˆ()yy∑-最大D.2)(ˆyy∑-最小11. 下列哪个不属于一元回归中的基本假定()A.误差项i ε服从正态分布B. 对于所有的X ,方差都相同C. 误差项i ε相互独立D. 0)ˆ=-i i yy E ( 12.如果两个变量之间存在着负相关,指出下列回归方程中哪个肯定有误( )A.x y75.025ˆ-= B. x y 86.0120ˆ+-= C. x y 5.2200ˆ-= D. x y 74.034ˆ--= 13.对不同年份的产品成本拟合的直线方程为,75.1280ˆx y-=y 表示产品成本,x 表示不同年份,则可知( )A.时间每增加一个单位,产品成本平均增加1.75个单位B. 时间每增加一个单位,产品成本平均下降1.75个单位C.产品成本每变动一个单位,平均需要1.75年时间D. 产品成本每减少一个单位,平均需要1.75年时间 14.在回归分析中,F 检验主要是用来检验( )A .相关关系的显著性 B.回归系数的显著性 C. 线性关系的显著性D.估计标准误差的显著性15.说明回归方程拟合优度的统计量是( )A. 相关系数B.回归系数C. 判定系数D. 估计标准误差16.已知回归平方和SSR=4854,残差平方和SSE=146,则判定系数R 2=( ) A.97.08% B.2.92% C.3.01% D. 33.25% 17. 判定系数R2值越大,则回归方程( )A 拟合程度越低B 拟合程度越高C 拟合程度有可能高,也有可能低D 用回归方程进行预测越不准确 18. 居民收入与储蓄额之间的相关系数可能是( ) A -0.9247 B 0.9247 C -1.5362 D 1.536219.在对一元回归方程进行显著性检验时,得到判定系数R 2=0.80,关于该系数的说法正确的是( )A. 该系数越大,则方程的预测效果越好B. 该系数越大,则由回归方程所解释的因变量的变差越多C. 该系数越大,则自变量的回归对因变量的相关关系越显著D. 该回归方程中自变量与因变量之间的相关系数可能小于0.8 20.下列方程中肯定错误的是( )A. x y48.015ˆ-=,r=0.65 B. x y 35.115ˆ--=, r= - 0.81 C. x y85.025ˆ+-=, r=0.42 D. x y 56.3120ˆ-=, r= - 0.96 21. 若两个变量存在负相关关系,则建立的一元线性回归方程的判定系数R 2的取值范围是( )A.【0,1】B. 【-1,0】C. 【-1,1】D.小于0的任意数二. 填空题1.当从某一总体中抽取了一样本容量为30的样本,并计算出某两个变量的相关系数为0.8时,我们是否可认为这两个变量存在着强相关性(不能 ) ,理由是(因为该相关系数为样本计算出的相关系数,它的大小受样本数据波动的影响,它是否显著尚需检验 )。

一元线性回归模型案例

一元线性回归模型案例

一元线性回归模型案例一元线性回归模型是统计学中最基本、应用最广泛的一种回归分析方法,可以用来探究自变量与因变量之间的线性关系。

一元线性回归模型的数学公式为:y = β0 + β1x,其中y表示因变量,x表示自变量,β0和β1分别为截距和斜率。

下面以一个实际案例来说明一元线性回归模型的应用。

假设我们有一组数据,其中x表示一个房屋的面积,y表示该房屋的售价,我们想利用一元线性回归模型来预测房屋的售价。

首先,我们需要收集一组已知数据,包括房屋的面积和售价。

假设我们收集了10个不同房屋的面积和售价数据,如下所示:房屋面积(x)(平方米)售价(y)(万元)80 12090 130100 140110 150120 160130 170140 180150 190160 200170 210我们可以根据这组数据绘制散点图,横坐标表示房屋面积x,纵坐标表示售价y,如下所示:(插入散点图)接下来,我们可以利用最小二乘法来拟合一条直线,使其能够最好地拟合这些散点。

最小二乘法是一种最小化误差平方和的方法,可以得到最优的拟合直线。

根据一元线性回归模型的公式,可以通过计算拟合直线的斜率β1和截距β0来实现最小二乘法。

其中,斜率β1可以通过下式计算得到:β1 = n∑(xiyi) - (∑xi)(∑yi)n∑(xi^2) - (∑xi)^2截距β0可以通过下式计算得到:β0 = (1/n)∑yi - β1(1/n)∑xi通过带入已知数据,我们可以计算得到斜率β1和截距β0的具体值。

在本例中,计算结果如下:β1 ≈ 1.0667β0 ≈ 108.6667最后,利用得到的斜率β1和截距β0,我们可以得到一元线性回归模型的具体公式为:y ≈ 108.6667 + 1.0667x我们可以利用这个回归模型进行预测。

例如,如果有一个房屋的面积为130平方米,那么根据回归模型,可以预测该房屋的售价为170 + 108.6667 ≈ 278.6667万元。

一元线性回归模型习题及答案

一元线性回归模型习题及答案

一元线性回归模型习题及答案一元线性回归模型一、单项选择题1、变量之间的关系可以分成两大类__________。

aa函数关系与相关关系b线性相关关系和非线性相关关系c正相关关系和负相关关系d简单相关关系和复杂相关关系2、相关关系是指__________。

da变量间的非单一制关系b变量间的因果关系c变量间的函数关系d变量间不确定性的依存关系3、进行相关分析时的两个变量__________。

aa都就是随机变量b都不是随机变量c一个就是随机变量,一个不是随机变量d随机的或非随机都可以4、则表示x和y之间真实线性关系的就是__________。

cxbe(y)x???ayt01tt01tcyt??0??1xt?utdyt??0??1xt具有有效性就是指__________。

b5、参数?的估计量??)=0bvar(??)为最轻avar(??-?)=0d(??-?)为最轻c(??则表示重回值,则__________。

x?e,以??则表示估算标准误差,y6、对于yi??01iib)?=0时,(yi-ya?0i=2ii??)?=0时,(b?=0?y-y?)?=0时,(c?为最小?y-y?)?=0时,(d?为最小?y-yii2iix+e,则普通最小二乘法确定的??的公式中,错误7、设样本回归模型为yi=?i01ii的是__________。

dx?xy-y?x?x?n?xy-?x?y?b?=n?x-??x?xy-nxy??c?=x-nx?n?xy-?x?y?d?=?=a?1ii2iiii122iiii1i22iiiii??则表示估算标准误差,x+e,8、对于yi=?以?r则表示相关系数,则存有__________。

01iid12x=0时,r=1a??=0时,r=-1b??=0时,r=0c??=0时,r=1或r=-1d??=356?1.5x,9、产量(x,台)与单位产品成本(y,元/台)之间的回归方程为y这表明__________。

一元线性回归模型习题与答案

一元线性回归模型习题与答案

一元线性回归模型习题与答案1、为什么模型中要引入随机扰动项?2、令kid表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。

生育率对教育年数的简单回归模型为:kid01educ(1)随机扰动项包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。

3、已知回归模型EN,式中E为某类公司一名新员工的起始薪金(元),N为所受教育水平(年)。

随机扰动项的分布未知,其他所有假设都满足。

(1)从直观及经济角度解释和满足线性、无偏性及有效性吗?简单陈述理由。

和(2)OLS估计量(3)对参数的假设检验还能进行吗?简单陈述理由。

2.690.48某,其中,Y表示墨西哥的咖啡消费量4、假定有如下的回归结果:Ytt(每天每人消费的杯数),某表示咖啡的零售价格(单位:美元/杯),t表示时间。

问:(1)这是一个时间序列回归还是横截面序列回归做出回归线。

(2)如何解释截距的意义它有经济含义吗如何解释斜率(3)能否求出真实的总体回归函数(4)根据需求的价格弹性定义:弹性=斜率某某/Y,依据上述回归结果,你能求出对咖啡需求的价格弹性吗如果不能,计算此弹性还需要其他什么信息5、选择一个经济问题,建立一元线性回归模型,利用EView软件进行回归分析,写出详细的分析步骤。

6、令Y表示一名妇女生育孩子的生育率,某表示该妇女接受教育的年数。

生育率对教育年数的简单回归模型为:Y01某(1)随机干扰项包含什么样的因素?他们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其它条件不变下的影响吗?请解释?Y,使用美国36年的年度7、对于人均存款与人均收入之间的关系式Sttt数据,得到如下估计模型(括号内为标准差)384.1050.067YStt(151.105)(0.011)R0.538(1)的经济解释是什么?(2)和的符号是什么?为什么?(3)你对于拟合优度的看法?2答:1、随机扰动项是模型中表示其它多种因素的综合影响。

《计量经济学》习题(简答题、分析与计算题)

《计量经济学》习题(简答题、分析与计算题)


yt
=
1
+
b0
(1

x b1 t
)
+
ut
⑦ yt = b0 + b1x1t + b2 x2t /10 + ut
(6)常见的非线性回归模型有几种情况? (7)√指出下列模型中所要求的待估参数的经济意义:
①食品类需求函数:lnY = α0 + α1 ln I + α2 ln P1 + α3 ln P2 + u 中的α1,α2,α3 (其中 Y
(8)假设 A 先生估计的消费函数(用模型 Ct = b0 + b1 yt + ut 表示,其中,C 表示消费
支出,y 表示收入)获得下列结果:
2
《计量经济学》习题(简答题、分析与计算题)
请回答下列问题:
Cˆt = 15 + 0.81yt
t = (3.1) (18.7)
R 2 =0.98 n=19
验、参数的显著性检验);
④若 2012 年国内生产总值为 529238.4 亿元,求 2012 年财政收入预测值及预测区间
(α = 0.05 )。
(16)表 5 是 1960-1981 年间新加坡每千人电话数 y 与按要素成本 x 计算的新加坡元人
均国内生产总值。这两个变量之间有何关系?你怎样得出这样的结论?
5
《计量经济学》习题(简答题、分析与计算题)
第 3 章 多元线性回归模型
习题
五、简答题、分析与计算题
(1)√给定二元回归模型: yt = b0 + b1x1t + b2 x2t + ut (t=1,2,…n)
① 叙述模型的古典假定;②写出总体回归方程、样本回归方程与样本回归模型;③写 出回归模型的矩阵表示;④写出回归系数及随机误差项方差的最小二乘估计量,并叙述参数 估计量的性质;⑤试述总离差平方和、回归平方和、残差平方和之间的关系及其自由度之间 的关系。

第2章 一元线性回归模型-练习参考

第2章 一元线性回归模型-练习参考

2.10以下回归方程中存在明显错误的有哪些?(1)其中Y为贷款额,X为贷款利率(2)其中Y为消费支出,X为可支配收入(3)其中ER为差错率,T为训练时间(4)其中CPR为资本利润率,CC为资本周转次数(5)其中SR为小时工资,WLR为失业率(6)其中Q为食品消费支出,IN为消费者收入,P为食品消费价格指数【解析】(1)错误。

贷款额与贷款利率之间是负向关系,所以解释变量X贷款利率前的参数估计值应该为负。

(2)错误。

X为可支配收入,则其对应的参数估计值应该在[0,1]范围内,该回归结果参数估计值为1.2345,超出理论范围。

(3)错误。

差错率与训练时间之间是负向关系,所以T训练时间前的参数估计值应该为负。

(4)正确。

(5)错误。

一般宏观经济学理论描述的是SR小时工资变动对WLR失业率的影响关系,即应该将SR小时工资变动作为解释变量更符合经济学原理。

并且二者之间是负相关关系。

(6)正确。

2.12收集2013年中国31省、区、市农村居民人均纯收入X与人均现金消费支出Y的数据,如下表(单位:元):地区名称纯收入X消费支出Y 地区名称纯收入X消费支出Y北京18337.513470.2湖北8867.05531.1天津15841.010088.6湖南8372.15854.2河北9101.95969.6广东11669.37881.5山西7153.55463.2广西6790.94547.0作内蒙古8595.76763.3海南8342.65090.7辽宁10522.76864.9重庆8332.05057.8吉林9621.26827.6四川7895.35406.1黑龙江9634.16542.1贵州5434.03888.3上海19595.013872.9云南6141.33953.0江苏13597.89486.9西藏6578.22661.5浙江16106.011541.1陕西6502.65420.7安徽8097.95344.9甘肃5107.84393.7福建11184.27552.5青海6196.45506.6江西8781.54910.1宁夏6931.05942.1山东10619.97184.2新疆7296.55519.9河南8475.35353.0资料来源:2014年版《中国统计年鉴》。

一元线性回归模型练习题(无计算)

一元线性回归模型练习题(无计算)

一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类()。

A 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系2、进行相关分析时的两个变量()。

A 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以3、参数?的估计量βˆ具备有效性是指()AVar(βˆ)=0BVar(βˆ)为最小C(βˆ-?)=0D(βˆ-?4、产量(X ,台)与单位产品成本(Y ,元/A 产量每增加一台,单位产品成本增加356元B 产量每增加一台,单位产品成本减少1.5元C 产量每增加一台,单位产品成本平均增加356D 产量每增加一台,单位产品成本平均减少1.55、对于YAˆ0σ=C ˆ0σ= 6、对于r 表示相关系数,则有()。

A ˆ0σ=r=1r=-1时,或 7、设Y 。

8、用。

9t ε服从()AN (0,i σ)Bt(n-2)CN (0,)Dt(n)10、以y 表示实际观测值,yˆ表示回归估计值,则普通最小二乘法估计参数的准则是使()A )ˆ(i i y y -∑=0B 2)ˆ(i i y y -∑=0C )ˆ(i i y y -∑为最小D 2)ˆ(i i y y -∑为最小11、下列各回归方程中,哪一个必定是错误的?()A.Y i =50+0.6X i r XY =0.8B.Y i =-14+0.8X i r XY =0.87C.Y i =15-1.2X i r XY =0.89D.Y i =-18-5.3X i r XY =-0.9612、已知某一直线回归方程的可决系数为0.81,则解释变量与被解释变量间的线性相关系数的绝对值为()A.0.81B.0.90C.0.66D.0.3213、对于线性回归模型Y i =β0+β1X i +μi ,要使普通最小二乘估计量具备无偏性,则模型必须满足()A.E(μi )=0B.Var(μi )=σ2C.Cov(μi ,μj )=0D.μi 服从正态分布 14、用一组有30个观测值的样本估计模型tt t u x y ++=10ββ,在0.05的显着性水平下对1β的显着性作t 检验,则1β显着地不等于零的条件是其统计量t 大于()A 05.0t (30)B 025.0t (30)C 05.0t (28)D 025.0t (28)15、某一特定的x 水平上,总体y 分布的离散度越大,即2σ越大,则()A 预测区间越宽,精度越低BC 预测区间越窄,精度越高D 16、回归模型i i i u X Y ++=10ββ中,关于检验0H 的是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


元线性回归模型
一、单项选择题
1、变量之间的关系可以分为两大类( )。

A 函数关系与相关关系
B 线性相关关系和非线性相关关系
C 正相关关系和负相关关系
D 简单相关关系和复杂相关关系 2、进行相关分析时的两个变量( )。

A 都是随机变量
B 都不是随机变量
C 一个是随机变量,一个不是随机变量
D 随机的或非随机都可以
3、参数β的估计量βˆ
具备有效性是指( )
A Var(βˆ)=0
B Var(βˆ)为最小
C (βˆ-β)=0
D (βˆ
-β)为最小
4、产量(X ,台)与单位产品成本(Y , 元/台)之间的回归方程为Ŷi =356-1.5X i ,这说明( )
A 产量每增加一台,单位产品成本增加356元
B 产量每增加一台,单位产品成本减少1.5元
C 产量每增加一台,单位产品成本平均增加356元
D 产量每增加一台,单位产品成本平均减少1.5元
5、对于01ˆˆi i i Y X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示估计值,则( )。

A i i ˆˆ0Y Y 0σ∑=时,(-)=
B
2i i ˆˆ0Y Y σ∑=时,(-)=0
C
i i ˆˆ0Y Y σ∑=时,(-)为最小
D
2i i ˆˆ0Y Y σ∑=时,(-)为最小
6、对于i 01i i ˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有( )。

A ˆ0r=1σ
=时, B ˆ0r=-1σ=时, C ˆ0r=0σ=时, D ˆ0r=1r=-1σ=时,或 7、设Y 表示实际观测值,ˆY 表示OLS 估计回归值,则下列哪项成立( )。

ˆˆA Y Y B Y Y ˆˆC Y Y D Y Y = = = = ˆˆA Y
Y B Y Y ˆˆ
C Y Y
D Y Y = = = =
8、用OLS 估计经典线性模型i
01i i Y X u ββ+=+,则样本回归直线通过点( )。

ˆA X Y B X Y ˆC X Y D X Y (,) (,) (,) (,) ˆA X Y B X Y
ˆ
C X Y
D X Y (,) (,) (,) (,)
9、对回归模型t t t
x y εββ++=10进行统计检验时,通常假定t ε服从( ) A N (0,2i σ) B t(n-2) C N (0,2σ) D t(n)
10、以y 表示实际观测值,y ˆ表示回归估计值,则普通最小二乘法估计参数的准则是使( )
A )ˆ(i i y
y -∑=0 B
2
)ˆ(i
i y y -∑=0 C
)ˆ(i i y
y -∑为最小 D
2
)ˆ(i
i y y -∑为最小
11、下列各回归方程中,哪一个必定是错误的?( ) A. Y i =50+0.6X i r XY =0.8
B.Y i =-14+0.8X i r XY =0.87
C. Y i =15-1.2X i r XY =0.89
D. Y i =-18-5.3X i r XY =-0.96
12、已知某一直线回归方程的可决系数为0.81,则解释变量与被解释变量间的线性相关系数的绝对值为( ) A. 0.81
B. 0.90
C. 0.66
D. 0.32
13、对于线性回归模型Y i =β0+β1X i +μi ,要使普通最小二乘估计量具备无偏性,则模型必须满足( )
A. E(μi )=0
B. Var(μi )=σ2
C. Cov(μi ,μj )=0 D . μi 服从正态分布 14、用一组有30个观测值的样本估计模型
t
t t u x y ++=10ββ,在0.05的显著性水平下对1
β的显著性作t 检验,则1β显著地不等于零的条件是其统计量t 大于( ) A
05
.0t (30) B
025
.0t (30) C
05
.0t (28) D
025
.0t (28)
15、某一特定的x 水平上,总体y 分布的离散度越大,即2
σ越大,则( ) A 预测区间越宽,精度越低 B 预测区间越宽,预测误差越小 C 预测区间越窄,精度越高 D 预测区间越窄,预测误差越大
16、回归模型
i
i i u X Y ++=10ββ中,关于检验
10=β:H 所用的统计量
)ˆ(ˆ1
1
1βββVar -,下列说
法正确的是( )。

A 服从)(22
-n χ B 服从)(1-n t C 服从)(12-n χ D 服从)(2-n t
17、对于总体平方和TSS 、回归平方和RSS 和残差平方和ESS 的相互关系,正确的是( )A TSS>RSS+ESS B TSS=RSS+ESS C TSS<RSS+ESS D TSS 2=RSS 2+ESS 2
18、对于随机误差项εi ,Var(εi )=E(ε2
i
)=σ2内涵指( )
A .随机误差项的均值为零
B .所有随机误差都有相同的方差
C .两个随机误差互不相关
D .误差项服从正态分布
19、在古典假设成立的条件下用OLS 方法估计线性回归模型参数,则参数估计量具有( )的统计性质。

A .有偏特性 B. 非线性特性 C .最小方差特性 D. 非一致性特性 20、关于可决系数2
R ,以下说法中错误的是( )
A.可决系数2
R 的定义为被回归方程已经解释的变差与总变差之比
B. []20,1R ∈
C.可决系数2
R 反映了样本回归线对样本观测值拟合优劣程度的一种描述 D.可决系数2R 的大小不受到回归模型中所包含的解释变量个数的影响 二、多项选择题
1、指出下列哪些现象是相关关系( )。

A 家庭消费支出与收入
B 商品销售额与销售量、销售价格
C 物价水平与商品需求量
D 小麦高产与施肥量
E 学习成绩总分与各门课程分数 2、一元线性回归模型
i 01i i
Y X u ββ+=+的经典假设包括( )。

A ()0
t E u = B 2var()t u σ= C cov(,)0t s u u = D (,)0t t Cov x u = E
2
~(0,)t u N σ 3、以Y 表示实际观测值,ˆY 表示OLS 估计回归值,e 表示残差,则回归直线满足( )。

i
i
2i i 2i i i i A X Y ˆB Y Y
ˆC Y Y 0
ˆD Y Y 0E cov(X ,e )=0∑∑∑∑ 通过样本均值点(,)
= (-)= (-)= i
i
2
i i 2i i i i A X Y ˆB Y Y
ˆC Y Y 0ˆD Y Y 0
E cov(X
,e )=0∑∑∑∑ 通过样本均值点(,)
= (-)= (-)= 
4、ˆY 表示OLS 估计回归值,u 表示随机误差项,e 表示残差。

如果Y 与X 为线性相关关系,则下列哪些是正确的( )。

i 01i i 01i
i
1
i
i
i 01i i i 01i
A E Y X ˆˆ
B Y X ˆˆ
C Y X e ˆˆˆ
D Y X e ˆˆ
E E(Y )X βββββ
βββββ+++++++ ()= = ===
i 01i
i
1
i
i
i 01i i
i
1
i
A E Y X
ˆˆB Y X ˆˆC Y X e ˆˆˆD Y X e ˆˆE E(Y )X βββββ
ββββ
β+++++++ ()= = ===
5、ˆY 表示OLS 估计回归值,u 表示随机误差项。

如果Y 与X 为线性相关关系,则下列哪些是正确的( )。

i 01i
i 01i i i 01i i i 01i i i 01i
A Y X
B Y X u ˆˆ
C Y X u ˆˆˆ
D Y X u ˆˆˆ
E Y X ββββββββββ+++++++ = =+ === i 01i i i 01i i i 01i i i 01i A Y X B Y X u ˆˆC Y X u ˆˆˆD Y X u ˆˆˆE Y X ββββββββββ+++++++ = =+ ===
6、由回归直线i 01i ˆˆˆY X ββ+=估计出来的i ˆY 值( )。

A 是一组估计值 B 是一组平均值
C 与实际值Y 的离差之和等于零
D 可能等于实际值Y 7、判定系数R 2可表示为( )。

A
2RSS R =
TSS B 2ESS R =TSS C 2RSS R =1-TSS D 2ESS
R =1-TSS E
2ESS R =
ESS+RSS 8、线性回归模型的变通最小二乘估计的残差i e
满足( )。

A i
e 0∑= B i i
e Y 0∑= C i i
ˆe Y 0∑= D i i e X 0∑= E i i
cov(X ,e )=0
三、判断题
⒈随机误差项μi 与残差项e i 是一回事。

( )
⒉对一元线性回归模型,假定误差项μi 服从正态分布。

( ) ⒊线性回归模型意味着因变量和自变量线性相关。

( )
⒋在线性回归模型中,解释变量是原因,被解释变量是结果。

( )。

相关文档
最新文档