高三数学精选导数及其应用多选题专项训练学能测试
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学精选导数及其应用多选题专项训练学能测试
一、导数及其应用多选题
1.已知(0,1)x ∈,则下列正确的是( )
A .cos 2
x x π
+<
B .22x
x <
C .22
sin 2
4
x x x >+ D .1
ln 1x x <- 【答案】ABC 【分析】
构造函数()sin f x x x =-证明其在0,2π⎛
⎫
⎪⎝
⎭
单调递减,即可得sin 22
x x ππ
⎛⎫-<-
⎪⎝⎭即可判断选项A ;作出2y
x 和2x y =的函数图象可判断选项B ;作出()sin
2
x
f x =,()2
24
x h x x =
+的图象可判断选项C ;构造函数()1ln 1x g x x =+-利用导数判断其在
()0,1x ∈上的单调性即可判断选项D ,进而可得正确选项.
【详解】
对于选项A :因为()0,1x ∈,所以02
2
x π
π
<
-<
,令()sin f x x x =-,
()cos 10f x x '=-≤,()sin f x x x =-在0,2π⎛⎫
⎪⎝⎭
单调递减,所以()()00f x f <=,
即sin x x <,所以sin 22
x x ππ
⎛⎫-<- ⎪⎝⎭即cos 2x x π<-,可得cos 2x x π+<,故A 正
确, 对于选项B :
由图象可得()0,1x ∈,22x x <恒成立,故选项B 正确;
对于选项C :要证2
2
sin 2
4
x
x x >
+, 令()sin 2x f x =,()2
2
4
x
h x x =+ ()()f x f x -=-,()sin
2
x
f x =是奇函数, ()()h x h x -=,()2
2
4
x h x x =
+是偶函数, 令222
4
144
x t x x ==-++ ,则y t =, 因为24y x =+在()0,∞+单调递增,所以2
4
14
t x =-+在()0,∞+单调递增,而y t =单调递增,由符合函数的单调性可知()2
2
4
x h x x =+在()0,∞+单调递增, 其函数图象如图所示:
由图知当()0,1x ∈时2
2
sin 2
4
x
x x >
+C 正确; 对于选项D :令()1ln 1x g x x =+-,()01x <<,()22111
0x g x x x x
-'=-=<, 所以()1
ln 1x g x x
=+-在()0,1单调递减,所以()()1ln1110g x g >=+-=, 即1ln 10x x
+
->,可得1
ln 1x x >-,故选项D 不正确.
故选:ABC 【点睛】
思路点睛:证明不等式恒成立(或能成立)
一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出
函数的最值,进而可求出结果;有时也可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果.
2.函数()()3
2
0ax bx d a f x cx =+++≠有两个极值点1x 、()212x x x <,则下列结论正
确的是( ) A .230b ac ->
B .()f x 在区间()12,x x 上单调递减
C .若()10af x <,则()f x 只有一个零点
D .存在0x ,使得()()()1202f x f x f x +=
【答案】ACD 【分析】
利用极值点与导数的关系可判断A 选项的正误;取0a <,利用函数的单调性与导数的关系可判断B 选项的正误;分0a >、0a <两种情况讨论,分析函数()f x 的单调性,结合图象可判断C 选项的正误;计算出函数()f x 的图象关于点,33b b f a a ⎛
⎫
⎛⎫-- ⎪ ⎪⎝⎭⎝⎭
对称,可判断D 选项的正误. 【详解】
()()320f x ax bx cx d a =+++≠,则()232f x ax bx c '=++.
对于A 选项,由题意可知,关于x 的二次方程()2
3200ax bx c a ++=≠有两个不等的实
根,
则24120b ac ∆=->,可得230b ac ->,A 选项正确;
对于B 选项,当0a <时,且当()12,x x x ∈时,()0f x '>,此时函数()f x 在区间
()12,x x 上单调递增,B 选项错误;
对于C 选项,当0a >时,由()0f x '>,可得1x x <或2x x >;由()0f x '<,可得12x x x <<.
所以,函数()f x 的单调递增区间为()1,x -∞、()2,x +∞,单调递减区间为()12,x x , 由()10af x <,可得()10<f x ,
此时,函数()f x 的极大值为()10<f x ,极小值为()2f x ,且()()210f x f x <<,如下图所示:
由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内; 当0a <时,由()0f x '<,可得1x x <或2x x >;由()0f x '>,可得12x x x <<. 所以,函数()f x 的单调递减区间为()1,x -∞、()2,x +∞,单调递增区间为()12,x x , 由()10af x <,可得()10f x >,
此时,函数()f x 的极小值为()10f x >,极大值为()2f x ,且()()210f x f x >>,如下图所示:
由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内,C 选项正确;
对于D 选项,由题意可知,1x 、2x 是方程2320ax bx c ++=的两根, 由韦达定理可得1223b
x x a +=-
,123c x x a
=, ()()()()()()()()3232
f t x f t x a t x b t x c t x d a t x b t x c t x d ⎡⎤⎡⎤
-++=-+-+-++++++++⎣⎦⎣⎦
()()()()()(322322
322322332332a t t x tx x b t tx x c t x d a t t x tx x b t tx x c ⎡⎤⎡=-+-+-++-+++++++++⎣⎦⎣
()()322223222a t tx b t x ct d =+++++,
取3b
t a
=-
,则322223222333333b b b b b b f x f x a x b x c d a a a a a a ⎡⎤⎡⎤⎛⎫
⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫
--+-+=-+⨯-+-++⋅-+⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭
⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦
3
2
222223333b b b b a b c d f
a a a a ⎛⎫⎛⎫⎛⎫
⎛⎫=-+⋅-+⋅-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
⎝⎭
,
所以,函数()f x 的图象关于点,33b b f a a ⎛
⎫
⎛⎫-
- ⎪ ⎪⎝⎭⎝⎭
对称, 1223b
x x a
+=-
,()()1223b f x f x f a ⎛⎫
∴+=- ⎪⎝⎭
,D 选项正确. 故选:ACD. 【点睛】
方法点睛:利用导数解决函数零点问题的方法:
(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;
(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.
3.设函数cos 2()2sin cos x
f x x x
=
+,则( )
A .()()f x f x π=+
B .()f x 的最大值为12
C .()f x 在,04π⎛⎫
- ⎪⎝⎭单调递增 D .()f x 在0,
4π⎛⎫
⎪⎝⎭
单调递减 【答案】AD
【分析】
先证明()f x 为周期函数,周期为π,从而A 正确,再利用辅助角公式可判断B 的正误,结合导数的符号可判断C D 的正误. 【详解】
()f x 的定义域为R ,且cos 2()2sin cos x
f x x x
=
+,
()()()()cos 22cos 2()2sin cos 2sin cos x x
f x f x x x x x
ππππ++=
==++++,故A 正确.
又2cos 22cos 2()42sin cos 4sin 2x x f x x x x =
=++,令2cos 24sin 2x
y x
=+,
则()42cos 2sin 22y x y x x ϕ=-=+,
其中cos ϕϕ=
=
1≤即2415y ≤
,故y ≤≤
当15y =
时,有1
cos 44
ϕϕ==,此时()cos 21x ϕ+=即2x k ϕπ=-,
故max y =
B 错误. ()()()
()
()
2
2
2
22sin 24sin 22cos 2414sin 2()4sin 24sin 2x x x x f x x x ⎡⎤-+--+⎣⎦
'=
=
++,
当0,4x π⎛⎫
∈ ⎪⎝
⎭
时,()0f x '<,故()f x 在0,
4π⎛⎫
⎪⎝⎭
为减函数,故D 正确. 当,04x π⎛⎫
∈-
⎪⎝⎭
时,1sin20x -<<,故314sin 21x -<+<, 因为2t x =为增函数且2,02x π⎛⎫∈- ⎪⎝⎭
,而14sin y t =+在,02π⎛⎫
- ⎪⎝⎭为增函数,
所以()14sin 2h x x =+在,04π⎛⎫
- ⎪⎝⎭
上为增函数, 故14sin 20x +=在,04π⎛⎫
-
⎪⎝⎭
有唯一解0x , 故当()0,0x x ∈时,()0h x >即()0f x '<,故()f x 在()0,0x 为减函数,故C 不正确. 故选:AD 【点睛】
方法点睛:与三角函数有关的复杂函数的研究,一般先研究其奇偶性和周期性,而单调性
的研究需看函数解析式的形式,比如正弦型函数或余弦型函数可利用整体法来研究,而分式形式则可利用导数来研究,注意辅助角公式在求最值中的应用.
4.已知函数()3
2
f x x ax x c =+-+(x ∈R ),则下列结论正确的是( ).
A .函数()f x 一定存在极大值和极小值
B .若函数()f x 在1()x -∞,、2()x ,
+∞上是增函数,则21x x -≥ C .函数()f x 的图像是中心对称图形
D .函数()f x 的图像在点00())(x f x ,(0x R ∈)处的切线与()f x 的图像必有两个不同的公共点 【答案】ABC 【分析】
首先求函数的导数2
()3210f x x ax =+-=',再根据极值点与导数的关系,判断AB 选项;证明()()2()333
a a a
f x f x f -
++--=-,判断选项C ;令0a c ==,求切线与()f x 的交点个数,判断D 选项.
【详解】
A 选项,2()3210f x x ax =+-='的24120a ∆=+>恒成立,故()0f x '=必有两个不等实根,不妨设为1x 、2x ,且12x x <,
令()0f x '>,得1x x <或2x x >,令()0f x '<,得12x x x <<,
∴函数()f x 在12()x x ,上单调递减,在1()x -∞,和2()x ,
+∞上单调递增, ∴当1x x =时,函数()f x 取得极大值,当2x x =时,函数()f x 取得极小值,A 对, B 选项,令2()3210f x x ax =+-=',则1223a
x x +=-
,1213
x x ⋅=-,易知12x x <,
∴21x x -==≥
,B 对, C 选项,易知两极值点的中点坐标为(())33
a a f --,,又
23()(1)()333
a a a f x x x f -+=-+++-,
∴()()2()333
a a a
f x f x f -
++--=-, ∴函数()f x 的图像关于点(())3
3
a
a f --,成中心对称,C 对,
D 选项,令0a c ==得3()f x x x =-,()f x 在(0)0,
处切线方程为y x =-,
且3
y x y x x =-⎧⎨=-⎩
有唯一实数解, 即()f x 在(0)0,
处切线与()f x 图像有唯一公共点,D 错, 故选:ABC . 【点睛】
方法点睛:解决函数极值、最值综合问题的策略:
1、求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小;
2、求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论;
3、函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.
5.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹布劳威尔(L.E.Brouwer )简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是( ) A .函数()sin f x x =有3个不动点
B .函数2()(0)f x ax bx c a =++≠至多有两个不动点
C .若定义在R 上的奇函数()f x ,其图像上存在有限个不动点,则不动点个数是奇数
D .若函数()f x =[0,1]上存在不动点,则实数a 满足l a e ≤≤(e 为自然对数的底数) 【答案】BCD 【分析】
根据题目中的定义,结合导数、一元二次方程的性质、奇函数的性质进行判断即可. 【详解】
令()sin g x x x =-,()1cos 0g x x '=-≥, 因此()g x 在R 上单调递增,而(0)0g =, 所以()g x 在R 有且仅有一个零点, 即()f x 有且仅有一个“不动点”,A 错误;
0a ≠,20ax bx c x ∴++-=至多有两个实数根,
所以()f x 至多有两个“不动点”,B 正确;
()f x 为定义在R 上的奇函数,所以(0)0f =,函数()-y f x x =为定义在R 上的奇函数,
显然0x =是()f x 的一个“不动点”,其它的“不动点”都关于原点对称,个数和为偶数, 因此()f x 一定有奇数个“不动点”,C 正确;
因为()f x 在[0,1]存在“不动点”,则()f x x =在[0,1]有解,
x =⇒2x a e x x =+-在[0,1]有解,令2
()x
m x e x x =+-,
()12x m x e x '=+-,令()12x n x e x '=+-,()20x n x e '=-=,ln 2x =,
()n x 在(0,ln 2)单调递减,在(ln 2,1)单调递增,
∴min ()(ln 2)212ln 232ln 20n x n ==+-=->, ∴()0m x '>在[0,1]恒成立,∴()m x 在[0,1]单调递增,
min ()(0)1m x m ==,max ()(1)m x m e ==,
∴1a e ≤≤,D 正确,. 故选:BCD 【点睛】
方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.
6.已知函数()sin x
f x x
=
,(]0,x π∈,则下列结论正确的有( ) A .()f x 在区间(]
0,π上单调递减
B .若120x x π<<≤,则1221sin sin x x x x ⋅>⋅
C .()f x 在区间(]0,π上的值域为[
)0,1 D .若函数()()cos g x xg x x '=+,且()1g π=-,()g x 在(]0,π上单调递减
【答案】ACD 【分析】
先求出函数的导数,然后对四个选项进行逐一分析解答即可, 对于选项A :当0,2x π⎛⎫
∈ ⎪⎝
⎭
时,可得()0f x '<,可得()f x 在区间0,
2π⎛⎫
⎪⎝
⎭
上单调递减;当,2x ππ⎡⎤
∈⎢
⎥⎣⎦,可得()0f x '<,可得()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦
上单调递减,最后作出判断; 对于选项B :由()f x 在区间(]
0,π上单调递减可得()()12f x f x >,可得
1212
sin sin x x x x >,进而作出判断; 对于选项C :由三角函数线可知sin x x <,所以sin 1x x x x <=,sin ()0f π
ππ
==,进而作出判断;
对于选项D :()()()sin g x g x xg x x ''''=+-,可得()()sin x
g x f x x
''=
=,然后利用导数研究函数()g x '在区间(]
0,π上的单调性,可得()()0g x g π''≤=,进而可得出函数
()g x 在(]0,π上的单调性,最后作出判断.
【详解】
()2
cos sin x x x
f x x
-'=
, (]0,x π∈, 当0,2x π⎛⎫
∈ ⎪⎝
⎭
时,cos 0x >,由三角函数线可知tan x x <, 所以sin cos x
x x
<
,即cos sin x x x <,所以cos sin 0x x x -<, 所以()0f x '<,所以()f x 在区间0,
2π⎛⎫
⎪⎝
⎭
上单调递减, 当,2x ππ⎡⎤
∈⎢⎥⎣⎦
,cos 0x ≤,sin 0x ≥,所以cos sin 0x x x -<,()0f x '<, 所以()f x 在区间,2ππ⎡⎤
⎢
⎥⎣⎦
上单调递减, 所以()f x 在区间(]
0,π上单调递减,故选项A 正确; 当120x x π<<≤时,()()12f x f x >, 所以
12
12
sin sin x x x x >,即1221sin sin x x x x ⋅<⋅,故选项B 错误; 由三角函数线可知sin x x <,所以
sin 1x x x x <=,sin ()0f π
ππ
==, 所以当(]0,x π∈时,()[
)0,1f x ∈,故选项C 正确;
对()()cos g x xg x x '=+进行求导可得: 所以有()()()sin g x g x xg x x ''''=+-,
所以()()sin x
g x f x x
''=
=,所以()g x ''在区间(]0,π上的值域为[)0,1, 所以()0g x ''≥,()g x '在区间(]
0,π上单调递增,因为()0g π'=, 从而()()0g x g π''≤=,所以函数()g x 在(]
0,π上单调递减,故选项D 正确. 故选:ACD. 【点睛】
方法点睛:本题考查导数的综合应用,对于函数()sin x
f x x
=
的性质,可先求出其导数,然后结合三角函数线的知识确定导数的符号,进而确定函数的单调性和极值,最后作出判断,考查逻辑思维能力和运算求解能力,属于中档题.
7.已知函数()e sin x
f x a x =+,则下列说法正确的是( )
A .当1a =-时,()f x 在0,
单调递增
B .当1a =-时,()f x 在()()
0,0f 处的切线为x 轴
C .当1a =时,()f x 在()π,0-存在唯一极小值点0x ,且()010f x -<<
D .对任意0a >,()f x 在()π,-+∞一定存在零点 【答案】AC 【分析】
结合函数的单调性、极值、最值及零点,分别对四个选项逐个分析,可选出答案. 【详解】
对于A ,当1a =-时,()e sin x
f x x =-,()e cos x
f x x '=-,
因为()0,x ∈+∞时,e 1,cos 1x
x >≤,即0f
x
,所以()f x 在0,
上单调递
增,故A 正确;
对于B ,当1a =-时,()e sin x f x x =-,()e cos x
f x x '=-,则
()00e sin01f =-=,()00e cos00f '=-=,即切点为0,1,切线斜率为0,故切线
方程为1y =,故B 错误;
对于C ,当1a =时,()e sin x
f x x =+,()e cos x
f x x '+=,()e sin x
f x x '=-',
当()π,0x ∈-时,sin 0x <,e 0x >,则()e sin 0x
x f x -'=>'恒成立,即
()e cos x f x x '+=在()π,0-上单调递增,
又ππ22ππe cos e 220f --⎛⎫⎛⎫
'-=-= ⎪ ⎪⎝⎭⎝⎭
+>,
3π3π443π3πe cos e 442f --⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝-
⎭+,因为1
2
3π3π
421e e 2e ---⎛⎫=<⎪⎭
< ⎝,所以
3π43πe 024f -⎛⎫'-= ⎪-⎭
<⎝,所以存在唯一03ππ,42x ⎛⎫∈-- ⎪⎝⎭,使得()00f x '
=成立,
所以()f x 在()0π,x -上单调递减,在()0,0x 上单调递增,即()f x 在()π,0-存在唯一极小值点0x ,
由()000e cos 0x
f x x +'==,可得
()
000000πe sin cos sin 4x f x x x x x ⎛
⎫=+=-+=- ⎪⎝
⎭,
因为03ππ,4
2x ⎛⎫
∈-
- ⎪⎝⎭,所以0π3ππ,44x ⎛⎫-∈-- ⎪⎝⎭,则()
00π4f x x ⎛
⎫=- ⎪⎝
⎭()1,0∈-,故C 正确;
对于选项D ,()e sin x
f x a x =+,()π,x ∈-+∞,
令()e sin 0x
f x a x =+=,得1sin e
x x a -
=, ()sin e
x x
g x =,()π,x ∈-+∞,则(
)πcos sin 4e e x x
x x x g x ⎛
⎫- ⎪-⎝⎭'==, 令0g x ,得πsin 04x ⎛
⎫-= ⎪⎝
⎭,则ππ4x k =+()1,k k ≥-∈Z ,
令0g x
,得πsin 04x ⎛
⎫-> ⎪⎝
⎭,则π5π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函
数()g x 单调递减, 令0g x
,得πsin 04x ⎛
⎫-< ⎪⎝
⎭,则5π9π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函
数()g x 单调递增, 所以5π
2π4
x k =+
()1,k k ≥-∈Z 时,()g x 取得极小值,极小值为5π5π
2π2π44
5π5π2π5π4s 42in si πe e 4n k k g k k ++⎛
⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭++()1,k k ≥-∈Z , 在()g x 的极小值中,3π
4
sin 3π45π
5π42π4e
g g -
⎛⎫⎛⎫=-= ⎪ ⎪
⎝
⎭
⎝
+⎭
-最小,
当3ππ,4x ⎛
⎫∈-- ⎪⎝
⎭时,()g x 单调递减,所以函数()g x
的最小值为
3π
3π4
4
5πsin 3π144e
g -
-⎛⎫
-==- ⎪⎝⎭
,
当3π4
11a
--
<-
时,即3π40a -
<<
时,函数()g x 与1
=-
y a
无交点,即()f x 在()π,-+∞不存在零点,故D 错误.
故选:AC. 【点睛】
本题考查利用导数研究函数的极值、零点、最值,及切线方程的求法,考查学生的推理能力与计算求解能力,属于难题.
8.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1
222
a b -<<
B .34a b ==a b
ab
+= C .323y x x x =--的极大值和极小值的和为6-
D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是
1
(,2)(2,)4
-+∞ 【答案】ACD
【分析】
由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求
a b ab
+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3
y x x =-有三个交点,即可知2
()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围.
【详解】
A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1
222
a b -<<;
B 选项,34a b ==log a =4log b =121211
2(log 3log 4)2a b ab a b
+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、
121
3
x x =-,即12,x x 为y 两个极值点,
所以22
12121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;
D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2
()h x x x k =--有两个零点即可 ∴140(1)20
k h k ∆=+>⎧⎨
-=-≠⎩,解得1
(,2)(2,)4k ∈-+∞
故选:ACD 【点睛】
本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.。