海勃湾区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海勃湾区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知数列{}n a 的首项为11a =,且满足111
22
n n n a a +=
+,则此数列的第4项是( ) A .1 B .12 C. 34 D .5
8
2. 已知直线l
的参数方程为1cos sin x t y t α
α
=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴
正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3
π
ρθ=+
,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )
A .4
π
α=
B .3
π
α=
C .34
πα=
D .23
π
α=
3. 若如图程序执行的结果是10,则输入的x 的值是( )
A .0
B .10
C .﹣10
D .10或﹣10
4. 如果过点M (﹣2,0)的直线l
与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )
A
.
B
.
C
.
D
.
5. 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4
B .5
C .6
D .7
6. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取
20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分
层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7
D.10
【命题意图】本题主要考查分层抽样的方法的运用,属容易题. 7. 在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( ) A .3
B .6
C .7
D .8
8. 已知数列{n a }满足n
n n a 2
728-+=(*
∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( ) A .
211 B .227 C . 32259 D .32
435
9. 函数y=sin (2x+)图象的一条对称轴方程为( )
A .x=﹣
B .x=﹣
C .x=
D .x=
10.直角梯形OABC 中,,1,2AB OC AB OC BC ===,直线:l x t =截该梯形所得位于左边图 形面积为,则函数()S f t =的图像大致为( )
11.已知AC⊥BC,AC=BC,D满足=t+(1﹣t),若∠ACD=60°,则t的值为()
A.B.﹣C.﹣1 D.
12.函数y=sin2x+cos2x的图象,可由函数y=sin2x﹣cos2x的图象()
A.向左平移个单位得到B.向右平移个单位得到
C.向左平移个单位得到D.向左右平移个单位得到
二、填空题
13.已知平面向量a,b的夹角为
3
π
,6
=
-b
a
,向量c a-,c b-的夹角为2
3
π
,23
c a-=,则a 与c 的夹角为__________,a c⋅的最大值为.
【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力. 14.在等差数列{}n a中,17
a=,公差为d,前项和为
n
S,当且仅当8
n=时
n
S取得最大值,则d的取值范围为__________.
15.已知x,y为实数,代数式2
2
2
2)
3(
9
)2
(
1y
x
x
y+
+
-
+
+
-
+的最小值是.
【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 16.已知定义在R上的奇函数()
f x满足(4)()
f x f x
+=,且(0,2)
x∈时2
()1
f x x
=+,则(7)
f的值为▲.17.某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种.
18.i是虚数单位,化简:=.
三、解答题
19.(本小题满分12分)已知
12
,F F分别是椭圆C:
22
22
1(0)
x y
a b
a b
+=>>的两个焦点,且
12
||2
F F=,点
在该椭圆上.
(1)求椭圆C的方程;
(2)设直线l与以原点为圆心,b为半径的圆上相切于第一象限,切点为M,且直线l与椭圆交于P Q
、两
点,问
22
F P F Q PQ
++是否为定值?如果是,求出定值,如不是,说明理由.
20.如图,在四棱锥 P ABCD -中,底面ABCD 是平行四边形,45,1,ADC AD AC O ∠=== 为AC 的中点,PO ⊥平面ABCD ,2,PO M =为 BD 的中点. (1)证明: AD ⊥平面 PAC ;
(2)求直线 AM 与平面ABCD 所成角的正切值.
21.(本题满分12分)在ABC ∆中,已知角,,A B C 所对的边分别是,,a b c ,边7
2
c =
,且 tan tan 3tan 3A B A B +=-ABC ∆的面积为33
2
ABC S ∆=
,求a b +的值.
22.实数m取什么数值时,复数z=m+1+(m﹣1)i分别是:
(1)实数?
(2)虚数?
(3)纯虚数?
23.证明:f(x)是周期为4的周期函数;
(2)若f(x)=(0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.
18.已知函数f(x)=是奇函数.
24.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)在某一个周期内的图象时,
,x2,x3的值,并写出函数f(x)的解析式;
1
(Ⅱ)将f(x)的图象向右平移个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上
的图象的最高点和最低点分别为M,N,求向量与夹角θ的大小.
海勃湾区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】B 【解析】
2. 【答案】A
【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C
的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵
||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴
4
π
α=,选A .
3. 【答案】D
【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,
当x <0,时﹣x=10,解得:x=﹣10 当x ≥0,时x=10,解得:x=10 故选:D .
4. 【答案】D
【解析】解:设过点M (﹣2,0)的直线l 的方程为y=k (x+2),
联立
,得(2k 2+1)x 2+8k 2x+8k 2
﹣2=0,
∵过点M (﹣2,0)的直线l 与椭圆
有公共点,
∴△=64k 4﹣4(2k 2+1)(8k 2
﹣2)≥0,
整理,得k 2
,
解得﹣
≤k ≤
.
∴直线l 的斜率k 的取值范围是[﹣,
].
故选:D .
【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.
5. 【答案】A
解析:模拟执行程序框图,可得 S=0,n=0
满足条,0≤k ,S=3,n=1 满足条件1≤k ,S=7,n=2 满足条件2≤k ,S=13,n=3 满足条件3≤k ,S=23,n=4 满足条件4≤k ,S=41,n=5
满足条件5≤k ,S=75,n=6 …
若使输出的结果S 不大于50,则输入的整数k 不满足条件5≤k ,即k <5, 则输入的整数k 的最大值为4. 故选: 6. 【答案】C
7. 【答案】B
【解析】解:∵在等差数列{a n }中a 1=2,a 3+a 5=8, ∴2a 4=a 3+a 5=8,解得a 4=4,
∴公差d==,
∴a 7=a 1+6d=2+4=6 故选:B .
8. 【答案】D 【解析】
试题分析: 数列n n n a 2728-+
=,112528++-+=∴n n n a ,112527
22n n
n n
n n a a ++--∴-=-
()11
2522729
22
n n n n n ++----+=
=,当41≤≤n 时,n n a a >+1,即12345a a a a a >>>>;当5≥n 时,n n a a <+1,即...765>>>a a a .因此数列{}n a 先增后减,32259,55==∴a n 为最大项,8,→∞→n a n ,
2
11
1=a ,∴最小项为211,M m +∴的值为32435
32259211=+.故选D.
考点:数列的函数特性. 9. 【答案】A
【解析】解:对于函数y=sin (2x+
),令2x+
=k π+
,k ∈z ,
求得x=π,可得它的图象的对称轴方程为x=π,k ∈z , 故选:A .
【点评】本题主要考查正弦函数的图象的对称性,属于基础题.
10.【答案】C 【解析】
试题分析:由题意得,当01t <≤时,()21
22
f t t t t =
⋅⋅=,当12t <≤时, ()1
12(1)2212f t t t =⨯⨯+-⋅=-,所以()2,0121,12
t t f t t t ⎧<≤=⎨-<≤⎩,结合不同段上函数的性质,可知选项C 符
合,故选C.
考点:分段函数的解析式与图象. 11.【答案】A
【解析】解:如图,根据题意知,D 在线段AB 上,过D 作DE ⊥AC ,垂足为E ,作DF ⊥BC ,垂足为F ;
若设AC=BC=a ,则由
得,CE=ta ,CF=(1﹣t )a ;
根据题意,∠ACD=60°,∠DCF=30°;
∴
;
即;
解得.
故选:A.
【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.
12.【答案】C
【解析】解:y=sin2x+cos2x=sin(2x+),
y=sin2x﹣cos2x=sin(2x﹣)=sin[2(x﹣)+)],
∴由函数y=sin2x﹣cos2x的图象向左平移个单位得到y=sin(2x+),
故选:C.
【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键.
二、填空题
π,18+
13.【答案】
6
【解析】
14.【答案】8
71-<<-d 【解析】
试题分析:当且仅当8=n 时,等差数列}{n a 的前项和n S 取得最大值,则0,098<>a a ,即077>+d ,
087<+d ,解得:871-
<<-d .故本题正确答案为8
71-<<-d . 考点:数列与不等式综合.
15. 【
解析】
16.【答案】2- 【解析】1111]
试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=- 考点:利用函数性质求值 17.【答案】 75
【解析】计数原理的应用. 【专题】应用题;排列组合. 【分析】由题意分两类,可以从A 、B 、C 三门选一门,再从其它6门选3门,也可以从其他六门中选4门,
根据分类计数加法得到结果.
【解答】解:由题意知本题需要分类来解,
第一类,若从A 、B 、C 三门选一门,再从其它6门选3门,有C 31C 63
=60,
第二类,若从其他六门中选4门有C 64
=15,
∴根据分类计数加法得到共有60+15=75种不同的方法.
故答案为:75.
【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.
18.【答案】 ﹣1+2i .
【解析】解:=
故答案为:﹣1+2i.
三、解答题
19.【答案】
【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.
【解析】111]
考
点:直线与平面垂直的判定;直线与平面所成的角.
【方法点晴】本题主要考查了直线与平面垂直的判定、直线与平面所成角的求解,其中解答中涉及到直线与平面垂直的判定定理与性质定理、直线与平面所成角的求解等知识点综合考查,解答中熟记直线与平面垂直的判定定理和直线与平面所成角的定义,找出线面角是解答的关键,注重考查了学生的空间想象能力和推理与论证能力,属于中档试题. 21.【答案】11
2
. 【解析】
试
题解析:由tan tan tan 3A B A B +=-
可得
tan tan 1tan tan A B
A B
+=-tan()A B +=
∴tan()C π-=tan C -=tan C =∵(0,)C π∈,∴3
C π
=
.
又ABC ∆的面积为2ABC S ∆=1sin 22ab C =,即1222
ab ⨯=,∴6ab =. 又由余弦定理可得222
2cos c a b ab C =+-,∴2227()2cos 23
a b ab π=+-,
∴22227()()32a b ab a b ab =+-=+-,∴2121()4a b +=,∵0a b +>,∴112
a b +=.1 考点:解三角形问题.
【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到两角和与两角差的正切函数公式、三角形的面积、正弦定理和余弦定理,以及特殊角的三角函数值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,其中熟练掌握基本公式和灵活运用公式是解答本题的关键,属于中档试题. 22.【答案】
【解析】解:(1)当m ﹣1=0,即m=1时,复数z 是实数; (2)当m ﹣1≠0,即m ≠1时,复数z 是虚数;
(3)当m+1=0,且m ﹣1≠0时,即m=﹣1时,复数z 是纯虚数. 【点评】本题考查复数的概念,属于基础题.
23.【答案】
【解析】(1)证明:由函数f (x )的图象关于直线x=1对称, 有f (x+1)=f (1﹣x ),即有f (﹣x )=f (x+2).
又函数f (x )是定义在R 上的奇函数,有f (﹣x )=﹣f (x ).故f (x+2)=﹣f (x ).
从而f (x+4)=﹣f (x+2)=f (x ).即f (x )是周期为4的周期函数.
(2)解:由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈[﹣1,0)时,﹣x ∈(0,1],
.故x ∈[﹣1,0]时,.x ∈[﹣5,﹣4]时,x+4∈[﹣1,0],
.
从而,x ∈[﹣5,﹣4]时,函数f (x )的解析式为.
【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函
数对函数式进行整理,本题是一个中档题目.
24.【答案】
【解析】解:(Ⅰ)由条件知,,,
∴,,
∴,.
(Ⅱ)∵函数f(x)的图象向右平移个单位得到函数g(x)的图象,
∴,
∵函数g(x)在区间[0,m](m∈(3,4))上的图象的最高点和最低点分别为M,N,
∴最高点为,最低点为,∴,,
∴,又0≤θ≤π,∴.
【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.。