永吉县一中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永吉县一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30°
2. 如图
,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至
少有两个数位于同行或同列的概率是( )
A .
B .
C .
D .
3. 如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为( )
A .
B .2
C .
D .3
4. 已知集合23111
{1,(
),,}122
i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( )
A .{1}-
B .{1}
C .{-
D .
5. 10y -+=的倾斜角为( )
A .150
B .120
C .60
D .30
6. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=x ﹣1
B .y=lnx
C .y=x 3
D .y=|x|
7. 某几何体的三视图如图所示,则它的表面积为( )
A .
B .
C .
D .
8. 若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若,//m m n α
γ=,则//αβ
C .若,//m m βα⊥,则αβ⊥
D .若,αγαβ⊥⊥,则βγ⊥
9. 若1sin()3
4
πα-=,则cos(2)3
π
α+=
A 、78-
B 、14
- C 、14 D 、78
10.集合{}5,4,3,2,1,0=S ,A 是S 的一个子集,当A x ∈时,若有A x A x ∉+∉-11且,则称x 为A 的一个“孤立
元素”.集合B 是S 的一个子集, B 中含4个元素且B 中无“孤立元素”,这样的集合B 共有个 A.4 B. 5 C.6 D.7
11.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )
A .11
B .11.5
C .12
D .12.5
12.椭圆22
:143
x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的
取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )
A .3
1,42⎡⎤--⎢⎥⎣
⎦ B .33,48
⎡⎤--⎢⎥⎣
⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤
⎢⎥⎣⎦
【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.
二、填空题
13.曲线
在点(3,3)处的切线与轴x 的交点的坐标为 .
14.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = .
15.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .
16.已知点F 是抛物线y 2
=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF 的重心到准线距离为 .
17.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点
B .存在定点P 不在M 中的任一条直线上
C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上
D .M 中的直线所能围成的正三角形面积都相等
其中真命题的代号是 (写出所有真命题的代号).
18.已知函数f (x )=
有3个零点,则实数a 的取值范围是 .
三、解答题
19.已知函数3()1
x
f x x =
+,[]2,5x ∈. (1)判断()f x 的单调性并且证明; (2)求()f x 在区间[]2,5上的最大值和最小值.
20.已知函数()()2
1+2||02
()1()102
x x x x f x x ⎧-≤⎪⎪=⎨⎪->⎪⎩.
(1)画出函数()f x 的图像,并根据图像写出函数()f x 的单调区间和值域;
(2)根据图像求不等式3
(x)2
f ≥的解集(写答案即可)
21.(本题满分13分)已知圆1C 的圆心在坐标原点O ,且与直线1l :062=+-y x 相切,设点A 为圆上 一动点,⊥AM x 轴于点M ,且动点N 满足OM OA ON )2
133(21-+=
,设动点N 的轨迹为曲线C .
(1)求曲线C 的方程;
(2)若动直线2l :m kx y +=与曲线C 有且仅有一个公共点,过)0,1(1-F ,)0,1(2F 两点分别作21l P F ⊥,
21l Q F ⊥,垂足分别为P ,Q ,且记1d 为点1F 到直线2l 的距离,2d 为点2F 到直线2l 的距离,3d 为点P
到点Q 的距离,试探索321)(d d d ⋅+是否存在最值?若存在,请求出最值.
22.已知顶点在坐标原点,焦点在x 轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.
23.
19.已知函数f (x )=ln .
24.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);
Ⅱ10n
(单位:元),求X的分布列及数学期望.
永吉县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】A
【解析】解:根据余弦定理可知cosA=
∵a2=b2+bc+c2,
∴bc=﹣(b2+c2﹣a2)
∴cosA=﹣
∴A=120°
故选A
2.【答案】
D
【解析】
古典概型及其概率计算公式.
【专题】计算题;概率与统计.
【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.
【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;
∴所求的概率为=
故选D.
【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.
3.【答案】B
【解析】解:因为AD•(BC•AC•sin60°)≥V D﹣ABC=,BC=1,
即AD•≥1,
因为2=AD+≥2=2,
当且仅当AD==1时,等号成立,
这时AC=,AD=1,且AD⊥面ABC,所以CD=2,AB=,
得BD=,故最长棱的长为2.
【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.
4. 【答案】D 【解析】
考点:1.复数的相关概念;2.集合的运算 5. 【答案】C 【解析】
10y -+=,可得直线的斜率为k =tan 60αα=⇒=,故选C.1 考点:直线的斜率与倾斜角. 6. 【答案】D
【解析】解:选项A :y=
在(0,+∞)上单调递减,不正确;
选项B :定义域为(0,+∞),不关于原点对称,故y=lnx 为非奇非偶函数,不正确;
选项C :记f (x )=x 3,∵f (﹣x )=(﹣x )3=﹣x 3,∴f (﹣x )=﹣f (x ),故f (x )是奇函数,又∵y=x 3
区间
(0,+∞)上单调递增,符合条件,正确;
选项D :记f (x )=|x|,∵f (﹣x )=|﹣x|=|x|,∴f (x )≠﹣f (x ),故y=|x|不是奇函数,不正确. 故选D
7. 【答案】 A
【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,
∴母线长为

圆锥的表面积S=S
底面+S 侧面=×π×12
+×2×2+×π×
=2+

故选A .
【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.
8. 【答案】C
试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A 不正确;两个平面平行,两个平面内的直线不一定平行,所以B 不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D 不正确;根据面面垂直的判定定理知C 正确.故选C . 考点:空间直线、平面间的位置关系. 9. 【答案】A
【解析】 选A ,解析:2
227
cos[(2)]cos(2)[12sin ()]33
38
π
ππαπαα--=--=---=-
10.【答案】C 【解析】
试题分析:根据题中“孤立元素”定义可知,若集合B 中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:{}0,1,3,4,{}0,1,3,5,{}0,1,4,5,{}0,2,3,5,{}0,2,4,5,{}1,2,4,5共6个。

故选C 。

考点:1.集合间关系;2.新定义问题。

11.【答案】C
【解析】解:由题意,0.06×5+x ×0.1=0.5,所以x 为2,所以由图可估计样本重量的中位数是12. 故选:C .
12.【答案】B
二、填空题
13.【答案】 (,0) .
【解析】解:y′=﹣,
∴斜率k=y′|x=3=﹣2,
∴切线方程是:y﹣3=﹣2(x﹣3),
整理得:y=﹣2x+9,
令y=0,解得:x=,
故答案为:.
【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.14.【答案】2n﹣1.
【解析】解:∵a1=1,a n+1=a n+2n,
∴a2﹣a1=2,
a3﹣a2=22,

a n﹣a n﹣1=2n﹣1,
相加得:a n﹣a1=2+22+23+2…+2n﹣1,
a n=2n﹣1,
故答案为:2n﹣1,
15.【答案】114.
【解析】解:根据题目要求得出:
当5×3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5×4+5×5+3×4)×2=114.
故答案为:114
【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题.
16.【答案】.
【解析】解:∵F是抛物线y2=4x的焦点,
∴F(1,0),准线方程x=﹣1,
设M(x1,y1),N(x2,y2),
∴|MF|+|NF|=x1+1+x2+1=6,
解得x1+x2=4,
∴△MNF的重心的横坐标为,
∴△MNF的重心到准线距离为.
故答案为:.
【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.
17.【答案】BC
【解析】
【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,
B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.
C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.
【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离
d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集
合,
A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;
B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;
C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,故C正确;
D.如下图,M中的直线所能围成的正三角形有两类,
其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,
故本命题不正确.
故答案为:BC.
18.【答案】(,1).
【解析】解:∵函数f(x)=有3个零点,
∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,
∴,
解得<a<1,
故答案为:(,1).
三、解答题
19.【答案】(1)增函数,证明见解析;(2)最小值为,最大值为2.5. 【解析】
试题分析:(1)在[]2,5上任取两个数12x x <,则有1212123()
()()0(1)(1)x x f x f x x x --=<++,所以()f x 在[]
2,5上是增函数;(2)由(1)知,最小值为(2)2f =,最大值为5
(5)2
f =.
试题解析:
在[]2,5上任取两个数12x x <,则有
12121233()()11x x f x f x x x -=
-++12123()
(1)(1)
x x x x -=
++0<, 所以()f x 在[]2,5上是增函数.
所以当2x =时,min ()(2)2f x f ==, 当5x =时,max 5
()(5)2
f x f ==. 考点:函数的单调性证明.
【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数12x x <,然后作差12()()f x f x -,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.1
20.【答案】(1)图象见答案,增区间:(],2-∞-,减区间:[)2,-+∞,值域:(],2-∞;(2)[]3,1--。

【解析】
试题分析:(1)画函数()f x 的图象,分区间画图,当0x ≤时,()2
122
f x x x =-
-,此时为二次函数,开
口向下,配方得()()()2
1142222
f x x x x =-
+=-++,可以画出该二次函数在0x ≤的图象,当0x >时,()1()12x f x =-,可以先画出函数1
()2
x y =的图象,然后再向下平移1个单位就得到0x >时相应的函数图
象;(2)作出函数()f x 的图象后,在作直线3
2
y =,求出与函数()f x 图象交点的横坐标,就可以求出x 的
取值范围。

本题主要考查分段函数图象的画图,考查学生数形结合思想的应用。

试题解析:(1)函数()f x 的图象如下图所示:
由图象可知:增区间:(],2-∞-,减区间:[)2,-+∞,值域为:(],2-∞。

(2)观察下图,()3
2
f x ≥
的解集为:[]3,1--。

考点:1.分段函数;2.函数图象。

21.【答案】
【解析】【命题意图】本题综合考查了圆的标准方程、向量的坐标运算,轨迹的求法,直线与椭圆位置关系;本题突出对运算能力、化归转化能力的考查,还要注意对特殊情况的考虑,本题难度大.
(2)由(1)中知曲线C 是椭圆,将直线2l :m kx y +=代入 椭圆C 的方程12432
2
=+y x 中,得
01248)34(222=-+++m kmx x k
由直线2l 与椭圆C 有且仅有一个公共点知, 0)124)(34(4642222=-+-=∆m k m k ,
整理得342
2+=k m …………7分
且211||k k m d +-=,2
21||k
k m d ++=
1当0≠k 时,设直线2l 的倾斜角为θ,则|||tan |213d d d -=⋅θ,即||
2
13k
d d d -= ∴2
2
22121213211|
|4||||)()(k
m k d d k d d d d d d d +=-=-+=+
||||16
14
3
||42m m m m +
=+-=
…………10分
∵342
2+=k m ∴当0≠k 时,3||>m ∴33
43
13||1||=
+>+
m m ,∴34)(321<+d d d ……11分 2当0=k 时,四边形PQ F F 21为矩形,此时321==d d ,23=d
∴34232)(321=⨯=+d d d …………12分
综上
1、
2可知,321)(d d d ⋅+存在最大值,最大值为34 ……13分
22.【答案】
【解析】解:由题意可设抛物线的方程y 2
=2px (p ≠0),直线与抛物线交与A (x 1,y 1),B (x 2,y 2)
联立方程可得,4x 2
+(4﹣2p )x+1=0

,,y 1﹣y 2=2(x 1﹣x 2)
=
=
=
=
解得p=6或p=﹣2
∴抛物线的方程为y 2=12x 或y 2
=﹣4x
【点评】本题主要考查了抛物线的标准方程.解题的关键是对抛物线基本性质和标准方程的熟练应用
23.【答案】 【解析】解:(1)∵f (x )是奇函数, ∴设x >0,则﹣x <0, ∴f (﹣x )=(﹣x )2﹣mx=﹣f (x )=﹣(﹣x 2
+2x )
从而m=2.
(2)由f (x )的图象知,若函数f (x )在区间[﹣1,a ﹣2]上单调递增,
则﹣1≤a ﹣2≤1 ∴1≤a ≤3
【点评】本题主要考查函数奇偶性的应用以及函数单调性的判断,利用数形结合是解决本题的关键.
24.【答案】
【解析】解:(I)当n≥20时,f(n)=500×20+200×(n﹣20)=200n+6000,
当n≤19时,f(n)=500×n﹣100×(20﹣n)=600n﹣2000,
∴.
(II)由(1)得f(18)=8800,f(19)=9400,f(20)=10000,f(21)=10200,f(22)=10400,
∴P(X=8800)=0.1,P(X=9400)=0.2,P(X=10000)=0.3,P(X=10200)=0.3,P(X=10400)=0.1,X。

相关文档
最新文档