东胜区第三中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东胜区第三中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 函数y=
+
的定义域是(
)
A .{x|x ≥﹣1}
B .{x|x >﹣1且x ≠3}
C .{x|x ≠﹣1且x ≠3}
D .{x|x ≥﹣1且x ≠3}
2. O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为(
)A .1
B .
C .
D .2
3. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3
B .
C .2
D .6
4. 独立性检验中,假设H 0:变量X 与变量Y 没有关系.则在H 0成立的情况下,估算概率P (K 2≥6.635)≈0.01表示的意义是(
)
A .变量X 与变量Y 有关系的概率为1%
B .变量X 与变量Y 没有关系的概率为99%
C .变量X 与变量Y 有关系的概率为99%
D .变量X 与变量Y 没有关系的概率为99.9%
5. 已知双曲线,分别在其左、右焦点,点为双曲线的右支上
22
22:1(0,0)x y C a b a b
-=>>12,F F P 的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐
M 12PF F PM (1,0)
,则双曲线的离心率是( )C A
B .2 C
D
6. 下列判断正确的是(
)
A .①不是棱柱
B .②是圆台
C .③是棱锥
D .④是棱台
7. 某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )
A .36种
B .18种
C .27种
D .24种
8. 已知菱形ABCD 的边长为3,∠B=60°,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )
A .15π
B .
C .
π
D .6π
9. 已知
,
,那么
夹角的余弦值(
)
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .
B .
C .﹣2
D .﹣
10.双曲线﹣=1(a >0,b >0)的一条渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,则双曲线的离
心率为( )
A .2
B .
C .4
D .
11.已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为(
)
A .
B .
C .
D .
12.已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( )A .①④
B .①⑤
C .②⑤
D .③⑤
二、填空题
13.已知函数()()31
,ln 4
f x x mx
g x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数
()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .
14.在直角梯形分别为的中点,,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===,AB AC 点在以为圆心,为半径的圆弧上变动(如图所示).若,其中,
P A AD DE AP ED AF λμ=+u u u v u u u v u u u v
,R λμ∈则的取值范围是___________.
2λμ-
15.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .16.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .
17.设p :实数x 满足不等式x 2﹣4ax+3a 2<0(a <0),q :实数x 满足不等式x 2﹣x ﹣6≤0,已知¬p 是¬q 的必要非充分条件,则实数a 的取值范围是 .
18.要使关于的不等式恰好只有一个解,则_________.x 2
064x ax ≤++≤a =【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.
三、解答题
19.已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量=并有特征值λ2=﹣1及属于特征值﹣1
的一个特征向量=,=
(Ⅰ)求矩阵M;
(Ⅱ)求M5.
20.已知函数f(x)=,求不等式f(x)<4的解集.
21.已知﹣2≤x≤2,﹣2≤y≤2,点P的坐标为(x,y)
(1)求当x,y∈Z时,点P满足(x﹣2)2+(y﹣2)2≤4的概率;
(2)求当x,y∈R时,点P满足(x﹣2)2+(y﹣2)2≤4的概率.
22.已知数列{a n}的前n项和S n=2n2﹣19n+1,记T n=|a1|+|a2|+…+|a n|.
(1)求S n的最小值及相应n的值;
(2)求T n.
23.已知椭圆C:=1(a>2)上一点P到它的两个焦点F1(左),F2(右)的距离的和是6.
(1)求椭圆C的离心率的值;
(2)若PF2⊥x轴,且p在y轴上的射影为点Q,求点Q的坐标.
24.已知函数f(x)=
(Ⅰ)求函数f(x)单调递增区间;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求f(A)的取值范围.
东胜区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】D
【解析】解:由题意得:
,
解得:x≥﹣1或x≠3,
故选:D.
【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.
2.【答案】C
【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1),
又P为C上一点,|PF|=4,
可得y P=3,
代入抛物线方程得:|x P|=2,
∴S△POF=|0F|•|x P|=.
故选:C.
3.【答案】C
【解析】解:∵椭圆的半焦距为2,离心率e=,
∴c=2,a=3,
∴b=
∴2b=2.
故选:C.
【点评】本题主要考查了椭圆的简单性质.属基础题.
4.【答案】C
【解析】解:∵概率P(K2≥6.635)≈0.01,
∴两个变量有关系的可信度是1﹣0.01=99%,
即两个变量有关系的概率是99%,
故选C.
【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.
5.【答案】C
【解析】
试题分析:由题意知到直线,得,则为等轴双曲()1,00bx ay -=
=
a b =
.故本题答案选C. 1考点:双曲线的标准方程与几何性质.
【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲,,a b c ,,a b c ,,a b c 线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,,a c ,,a b c 将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.
,a c 2
a 6. 【答案】C
【解析】解:①是底面为梯形的棱柱;②的两个底面不平行,不是圆台;③是四棱锥;④不是由棱锥截来的,故选:C .
7. 【答案】 C
【解析】
排列、组合及简单计数问题.【专题】计算题;分类讨论.
【分析】根据题意,分4种情况讨论,①,P 船乘1个大人和2个小孩共3人,Q 船乘1个大人,R 船乘1个大1人,②,P 船乘1个大人和1个小孩共2人,Q 船乘1个大人和1个小孩,R 船乘1个大1人,③,P 船乘2个大人和1个小孩共3人,Q 船乘1个大人和1个小孩,④,P 船乘1个大人和2个小孩共3人,Q 船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案.【解答】解:分4种情况讨论,
①,P 船乘1个大人和2个小孩共3人,Q 船乘1个大人,R 船乘1个大1人,有A 33=6种情况,
②,P 船乘1个大人和1个小孩共2人,Q 船乘1个大人和1个小孩,R 船乘1个大1人,有A 33×A 22=12种情况,
③,P 船乘2个大人和1个小孩共3人,Q 船乘1个大人和1个小孩,有C 32×2=6种情况,④,P 船乘1个大人和2个小孩共3人,Q 船乘2个大人,有C 31=3种情况,则共有6+12+6+3=27种乘船方法,故选C .
【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式.8. 【答案】A
【解析】解:如图所示,设球心为O ,在平面ABC 中的射影为F ,E 是AB 的中点,OF=x ,则CF=
,EF=
R2=x2+()2=(﹣x)2+()2,
∴x=
∴R2=
∴球的表面积为15π.
故选:A.
【点评】本题考查球的表面积,考查学生的计算能力,确定球的半径是关键.
9.【答案】A
【解析】解:∵,,
∴=,||=,=﹣1×1+3×(﹣1)=﹣4,
∴cos<>===﹣,
故选:A.
【点评】本题考查了向量的夹角公式,属于基础题.
10.【答案】D
【解析】解:双曲线﹣=1(a>0,b>0)的一条渐近线方程为bx+ay=0,
∵渐近线被圆M:(x﹣8)2+y2=25截得的弦长为6,
∴=4,
∴a2=3b2,
∴c2=4b2,
∴e==.
故选:D.
【点评】本题考查双曲线的性质和应用,解题时要注意公式的合理运用.
11.【答案】D
【解析】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,即x±y=0.根据圆(x﹣2)2+y2=1的圆心(2,0)到切线的距离等于半径1,
可得,1=,∴ =,
,可得e=
.故此双曲线的离心率为:.
故选D .
【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.
12.【答案】D
【解析】解:当m ⊂α,α∥β时,根据线面平行的定义,m 与β没有公共点,有m ∥β,其他条件无法推出m ∥β,故选D
【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用.
二、填空题
13.【答案】()
53
,44
--
【解析】
试题分析:()2
3f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足
()10,0,0f f m ><<,解得51534244
m m >->⇒-<<-考点:函数零点
【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.14.【答案】[]1,1-【解析】
考点:向量运算.
【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.
15.【答案】 (﹣4,) .
【解析】解:∵抛物线方程为y2=﹣8x,可得2p=8,=2.
∴抛物线的焦点为F(﹣2,0),准线为x=2.
设抛物线上点P(m,n)到焦点F的距离等于6,
根据抛物线的定义,得点P到F的距离等于P到准线的距离,
即|PF|=﹣m+2=6,解得m=﹣4,
∴n2=8m=32,可得n=±4,
因此,点P的坐标为(﹣4,).
故答案为:(﹣4,).
【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.
16.【答案】1
【解析】
【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值.
【解答】解:直线ax﹣2y+2=0与直线x+(a﹣3)y+1=0平行,
∴,解得a=1.
故答案为1.
17.【答案】 .
【解析】解:∵x 2﹣4ax+3a 2<0(a <0),∴(x ﹣a )(x ﹣3a )<0,则3a <x <a ,(a <0),由x 2﹣x ﹣6≤0得﹣2≤x ≤3,∵¬p 是¬q 的必要非充分条件,∴q 是p 的必要非充分条件,即,即≤a <0,
故答案为:
18.【答案】.
±【解析】分析题意得,问题等价于只有一解,即只有一解,2
64x ax ++≤2
20x ax ++≤
∴,故填:.
2
80a a ∆=-=⇒=±±三、解答题
19.【答案】
【解析】解:(Ⅰ)设M=则=4
=,∴
①
又
=(﹣1)
=
,∴
②
由①②可得a=1,b=2,c=3,d=2,∴M=;
(Ⅱ)易知=0•
+(﹣1)
,
∴M 5
=(﹣1)6
=.
【点评】本题考查矩阵的运算法则,考查学生的计算能力,比较基础.
20.【答案】
【解析】解:函数f (x )=
,不等式f (x )<4,
当x ≥﹣1时,2x+4<4,解得﹣1≤x <0;当x <﹣1时,﹣x+1<4解得﹣3<x <﹣1.综上x ∈(﹣3,0).
不等式的解集为:(﹣3,0).
21.【答案】
【解析】解:如图,点P所在的区域为长方形ABCD的内部(含边界),
满足(x﹣2)2+(y﹣2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).
(1)当x,y∈Z时,满足﹣2≤x≤2,﹣2≤y≤2的点有25个,
满足x,y∈Z,且(x﹣2)2+(y﹣2)2≤4的点有6个,
依次为(2,0)、(2,1)、(2,2)、(1,1)、(1,2)、(0,2);
∴所求的概率P=.
(2)当x,y∈R时,
满足﹣2≤x≤2,﹣2≤y≤2的面积为:4×4=16,
满足(x﹣2)2+(y﹣2)2≤4,且﹣2≤x≤2,﹣2≤y≤2的面积为:=π,
∴所求的概率P==.
【点评】本题考查的知识点是几何概型概率计算公式,计算出满足条件和所有基本事件对应的几何量,是解答的关键,难度中档.
22.【答案】
【解析】解:(1)S n=2n2﹣19n+1=2﹣,
∴n=5时,S n取得最小值=﹣44.
(2)由S n=2n2﹣19n+1,
∴n=1时,a1=2﹣19+1=﹣16.
n≥2时,a n=S n﹣S n﹣1=2n2﹣19n+1﹣[2(n﹣1)2﹣19(n﹣1)+1]=4n﹣21.
由a n≤0,解得n≤5.n≥6时,a n>0.
∴n≤5时,T n=|a1|+|a2|+…+|a n|=﹣(a1+a2+…+a n)=﹣S n=﹣2n2+19n﹣1.
n≥6时,T n=﹣(a1+a2+…+a5)+a6+…+a n
=﹣2S5+S n
=2n2﹣19n+89.
∴T n=.
【点评】本题考查了等差数列的通项公式及其前n项和公式、不等式的解法、绝对值数列求和问题,考查了分类讨论方法推理能力与计算能力,属于中档题.
23.【答案】
【解析】解:(1)根据椭圆的定义得2a=6,a=3;
∴c=;
∴;
即椭圆的离心率是;
(2);
∴x=带入椭圆方程得,y=;
所以Q(0,).
24.【答案】
【解析】解:(Ⅰ)∵f(x)=sin cos+cos2=sin(+),
∴由2k≤+≤2kπ,k∈Z可解得:4kπ﹣≤x≤4kπ,k∈Z,
∴函数f(x)单调递增区间是:[4kπ﹣,4kπ],k∈Z.
(Ⅱ)∵f(A)=sin(+),
∵由条件及正弦定理得sinBcosC=(2sinA﹣sinC)cosB=2sinAcosB﹣sinCcosB,
∴则sinBcosC+sinCcosB=2sinAcosB,
∴sin(B+C)=2sinAcosB,又sin(B+C)=sinA≠0,
∴cosB=,又0<B<π,
∴B=.
∴可得0<A<,
∴<+<,
∴sin(+)<1,
故函数f(A)的取值范围是(1,).
【点评】本题考查三角函数性质及简单的三角变换,要求学生能正确运用三角函数的概念和公式对已知的三角函数进行化简求值,属于中档题.。