2019年青浦初三数学二模含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19 青浦初三二模
一、选择题:(本大题共6题,每题4分,满分24分)
1.下列单项式中,与是同类项的是()
(A);(B);(C);(D).
2.如果一次函数(k、b是常数,)的图像经过第一、二、三象限,那么k、b应满足的条件是()(A)k>0,且b>0;(B)k>0,且b<0;(C)k<0,且b>0;(D)k<0,且b<0.
3.抛物线的顶点坐标是()
(A)(1,1);(B)(-1,-1);(C)(1,-1);(D)(-1,1).
4.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()
(A)平均数;(B)中位数;(C)众数;(D)方差.
5.下列图形中,是中心对称图形,但不是轴对称图形的是()
(A)平行四边形;(B)矩形;(C)菱形;(D)等腰梯形.
6.如图1,在梯形ABCD中,AD //BC,∠B=90°,AD=2,AB=4,BC=6.点O是边BC上一点,以O为圆心,OC为半径的⊙O,与边AD只有一个公共点时,则OC的取值范围是()
(A)
13
4
3
<≤
OC;(B)
13
4
3
≤≤
OC;
(C)
14
4
3
<≤
OC;(D)
14
4
3
≤≤
OC.
二、填空题:(本大题共12题,每题4分,满分48分)
7.计算:.
8.在实数范围内分解因式:.
9.如果二次根式有意义,那么x的取值范围是.
10.方程的解是.
11.如果关于x的方程有两个相等的实数根,那么实数m的值是.
12.已知反比例函数(),如果在这个函数图像所在的每一个象限内,y的值随着x的值增大而增大,那么k的取
值范围是.
13.将分别写有“创建”、“智慧”、“校园”的三张大小、质地相同的卡片随机排列,那么恰好排列成“创建智慧校园”的概率是.
14.A班学生参加“垃圾分类知识”竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图如图2所示,那么成绩高于60分的学生占A班参赛人数的百分率为.
100.5
80.5
60.5
40.5
图2
图1
D
A
B C
15.如图3,△ABC 的中线AD 、BE 相交于点G ,若,,用a 、b 表示 .
16.如图4,在⊙O 中,OA 、OB 为半径,联结AB ,已知AB =6,∠AOB =120°,那么圆心O 到AB 的距离为 . 17.如图5,在矩形ABCD 中,AB =3,E 为AD 的中点,F 为CD 上一点,且DF =2CF ,沿BE 将△ABE 翻折,
如果点A 恰好落在BF 上,则AD = .
18.我们把满足某种条件的所有点组成的图形,叫做符合这个条件的点的轨迹.如图6,在Rt △ABC 中,∠C =90°,
AC =8,BC =12,动点P 从点A 开始沿射线AC 方向以1个单位/秒的速度向点C 运动,动点Q 从点C 开始沿射线CB 方向以2个单位/秒的速度向点B 运动,P 、Q 两点分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,在整个运动过程中,线段PQ 的中点M 运动的轨迹长为 .
三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)
计算:.
20.(本题满分10分)
解方程组:
21.(本题满分10分,第(1)、(2)小题,每小题5分)
如图7,在△ABC 中,∠C =90°,AB 的垂直平分线分别交边BC 、AB 于点D 、E ,联结AD . (1)如果∠CAD ∶∠DAB =1∶2,求∠CAD 的度数;
① ② 22602 1.
x xy y x y ⎧+-=⎨
+=⎩;G
E D
A
图3
图4
图6
D
A
B
C
图5
D
C
(2)如果AC =1,,求∠CAD 的正弦值.
22.(本题满分10分)
如图8,一座古塔AH 的高为33米,AH ⊥直线l .某校九年级数学兴趣小组为了测得该古塔塔刹AB 的高,在直线l 上选取了点D ,在D 处测得点A 的仰角为26.6°,测得点B 的仰角为22.8°,求该古塔塔刹AB 的高.(精确到0.1米)
(参考数据:
sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.5, sin22.8°=0.39,cos22.8°=0.92,tan22.8°=0.42)
23.(本题满分12分,第(1)、(2)小题,每小题6分)
已知:如图9,在菱形ABCD 中,AB =AC ,点E 、F 分别在边AB 、BC 上,且AE =BF ,CE 与AF 相交于点G .
(1)求证:∠FGC =∠B ;
(2)延长CE 与DA 的延长线交于点H ,
求证:.
24.(本题满分12分,每小题满分各4分)
已知:如图10,在平面直角坐标系xOy 中,抛物线()经过点A (6,-3),对称轴是直线x =4,顶点为B ,OA 与其对称轴交于点M , M 、N 关于点B 对称. (1)求这条抛物线的表达式和点B 的坐标;
BE CH AF AC ⋅=⋅G
F E
D
A
B
C
图9
A B
图8
(2)联结ON、AN,求△OAN的面积;
(3)点Q在x轴上,且在直线x=4右侧,
当∠ANQ=45°时,求点Q的坐标.
25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)
已知:在Rt△ABC中,∠ACB=90°,AC=1,D是AB的中点. 以CD为直径的⊙Q分别交BC、BA于点F、E,点E位于点D下方,联结EF交CD于点G.
(1)如图11,如果BC=2,求DE的长;
(2)如图12,设BC =x ,
,求关于的函数关系式及其定义域; (3)如图13,联结CE ,如果CG =CE ,求BC 的长.
=GD
y GQ
y x 图11
图13
图12
青浦区2018学年九年级第二次学业质量调研测试评分参考
一、选择题:
1.C ; 2.A ; 3.B ; 4.D ; 5.A ; 6.B . 二、填空题:
7.6
8-x ; 8.()()+33-a a a ; 9.3≥x ; 10
.=x 11. 1; 12.0<k ;
13.16; 14.77.5%; 15.11
36
--a b ;16
; 17
.18
. 三、解答题: 19.解:原式
=
)
11--
. ························································· (8分)
=10. ···················································································· (2分)
20.解:由①得+30=x y 或20-=x y .························································· (2分)
原方程组可化为302 1.,+=⎧⎨
+=⎩x y x y 或202 1.

-=⎧⎨+=⎩x y x y ········································· (4分)
解得原方程的解是113515,;⎧=⎪⎪⎨⎪=-⎪⎩x y 2225
15,.⎧=⎪⎪⎨
⎪=⎪⎩
x y ··············································· (4分) 21.解:(1)∵DE 垂直平分AB ,
∴DA = DB , ············································································ (1分) ∴∠DAB =∠B . ········································································ (1分) ∵∠CAD ∶∠DAB =1∶2,
∴∠B =2∠CAD , ······································································ (1分) ∵∠C =90°,
∴∠CAD +∠DAB +∠B =90°, ······················································· (1分) ∴5∠CAD =90°,
∴∠CAD =18°. ······································································· (1分) (2)∵∠C =90°,AC =1,,
∴BC =2. ··············································································· (1分) 设DB =x ,则DA =x ,CD =2-x ,
1tan 2
B ∠=
∵∠C =90°,∴222+=AC CD AD ,∴()2
212+-=x x . ················ (1分) 解得 5
4
=x , ········································································· (1分) ∴CD =
3
4
, ············································································ (1分) ∴33
4sin 55
4
∠===CD CAD AD . ·
················································· (1分) 22.解:由题意,得∠ADH =26.6°,∠BDH =22.8°,AH =33. ······························· (1分)
在Rt △AHD 中, ∵tan ∠=
AH ADH HD ,∴33tan 26.6︒=HD , ∴33
660.5
==HD . ··········· (4分)
在Rt △BHD 中, ∵tan ∠=
BH BDH HD ,∴tan 22.866
︒=BH
,∴0.426627.7=⨯≈HB . ·· (4分) ∵=-AB AH BH ,∴3327.7 5.3=-=AB . ··································· (1分) 答:该古塔塔刹AB 的高约为5.3米.
23.证明:(1)∵四边形ABCD 是菱形,
∴AB =BC . ··········································································· (1分)
∵AB =AC ,∴AB =BC =AC ,∴∠B =∠BAC =60°. ··························· (1分) 在△EAC 与△FBA 中,
∵EA =FB ,∠EAC =∠FBA ,AC =BA ,
∴△EAC ≌△FBA , ································································ (1分) ∴∠ACE =∠BAF , ································································· (1分) ∵∠BAF+∠F AC =60°,∴∠ACE +∠F AC =60°,∴∠FGC =60°, ······ (1分) ∴∠FGC =∠B . ···································································· (1分) (2)∵四边形ABCD 是菱形,
∴∠B =∠D ,AB =DC ,AB //DC , ··············································· (1分) ∴∠BEC =∠HCD , ································································ (1分) ∴△BEC ∽△DCH , ······························································· (1分) ∴
=
BE EC
DC CH
, ···································································· (1分)
∴⋅=⋅BE CH EC DC .
∵AB =AC ,∴CD =AC , ··························································· (1分) ∵△EAC ≌△FBA , ∴EC =F A ,
∴⋅=⋅BE CH AF AC . ························································· (1分)
24.解:(1)∵抛物线经过点A (6,−3),对称轴是直线x =4,
∴366=34.2,
+-⎧⎪
⎨-=⎪⎩a b b a
……(2分)解得1=42.,⎧⎪⎨⎪=-⎩a b ································ (1分)
∴抛物线的解析式为2
124
=
-y x x . 把x =4代入抛物线的解析式,得y =−4, ∴B (4,−4). ··················· (1分) (2)设直线OA 的解析式为=y kx (0≠k ),
把点A (6,−3)代入得6=3-k ,解得1=2-
k ,1
2
=-y x . ·············· (1分) ∴M (4,−2),N (4,−6). ························································· (2分) ∴11
44421222
=+=⨯⨯+⨯⨯=OAN
MNO MNA
S
S
S
. ······················· (1分) (3)记抛物线与x 轴的另外一个交点为C ,可得C (8,0).
设直线AN 的解析式为1=+y k x b (10≠k ),
把A (6,−3),N (4,−6)代入得11366=4.,-=+⎧⎨-+⎩k b k b 解得132=12.,⎧
=⎪⎨
⎪-⎩
k b ∴3
122=-y x . ∵当x =8时,y =0,∴点C 在直线AN 上. ········································ (1分) ∵tan ∠CNM =
2
13
<,∴∠CNM<45°,∴点Q 在点C 右侧. ················· (1分) 过点Q 作QH ⊥NC ,交NC 的延长线于点为H . ∵∠OCN =∠HCQ ,∴tan ∠OCN =tan ∠HCQ , ∵tan ∠OCN =
32,∴tan ∠HCQ =32
, ················································ (1分)
设CH=2x,则QH=3x,QC
.∵N(4,−6),C(8,0),∴NC
=
∵∠HNQ=45°,∴HQ= HN,∴3x=2
x+x
=QC=26,∴QO=34,∴Q(34,0).········································································(1分)25.解:(1)联结CE,QE.∵QC=QD=QE,∴∠QCE=∠QEC,∠QED=∠QDE,
∵∠QCE+∠QEC+∠QED+∠QDE=180°,
∴2∠QEC+2∠QED =180°,∴∠QEC+∠QED =90°,即∠CED =90°. ··(1分)
∵∠ACB =90°,AC =1,BC =2,∴AB
BD=
····
·····
······
··(1分)∵,∴
.···
·································(1分)∴·······································(1分)
(2)联结CE,QF.∵QF=QC,∴∠QCF=∠QFC.
∵∠ACB =90°,DB =DA,∴DB =DC,∴∠B=∠DCB,∴∠B=∠QFC,
∴QF//BD, ···············································································(1分)
∴=
GD DE
GQ FQ
. ··········································································(1分)同理可证∠CED =90°.∵CB =x,∴=
AB.∵cos
BE BC
B
BC AB
∠==,∴
2
=
BE
2
=
DE.(1分)∴
22
2
22
21
=
⎛⎫-
==-⎪
⎪+

GD DE
GQ FQ
x
y
x
(1
>
x). ··(2分)
(3)联结FQ.同理可证QF//BD,∴CQ∶QD= CF∶BF,∵CQ = QD,∴BF= CF.∵∠CED=90°,∴FC=FE=FB,∴∠FCE=∠FEC,∠B=∠FEB.
∵BD= CD,∴∠B=∠BCD,∴∠FEB=∠BCD. ································(1分)
∵CG=CE,∴∠CGE=∠CEG,∴∠CGE=∠FCE. ·····························(1分)
∵∠FCE=∠FCD+∠GCE,∠CGE=∠DEG+∠GDE,
∴∠GCE=∠GDE,∴EC=ED.·······················································(1分)
设CE=m,则DE=m,DC m,BD m.
2
210
=-==
DE BE BD
cos∠==
BE BC
B
BC AB
=
BE
2
BD CD FQ
===
∵tan ∠=
=CE AC
B
BE BC 1=BC , ··································· (1分)
∴BC 1. ············································································· (1分)。

相关文档
最新文档