浏阳市第一中学2018-2019学年下学期高二期中数学模拟题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浏阳市第一中学2018-2019学年下学期高二期中数学模拟题
一、选择题
1. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于
,且获得一等奖
的人数不能少于2人,那么下列说法中错误的是( )
A .最多可以购买4份一等奖奖品
B .最多可以购买16份二等奖奖品
C .购买奖品至少要花费100元
D .共有20种不同的购买奖品方案 2.
经过两点
,的直线的倾斜角为( )
A .120°
B .150°
C .60°
D .30°
3. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列
{}n a 的前n 项和为( )
A .22n
- B .1
2
2n +- C .21n - D .121n +-
4.
若向量=(3,m
),=(2,﹣1
),
∥,则实数m 的值为( ) A
.﹣ B
.
C .2
D .6
5. 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.
杂质高 杂质低 旧设备 37 121 新设备
22
202
根据以上数据,则( ) A .含杂质的高低与设备改造有关 B .含杂质的高低与设备改造无关 C .设备是否改造决定含杂质的高低
D .以上答案都不对
6. 自主招生联盟成行于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.在调查某高中学校高三学生自主招生报考的情况,得到如下结果: ①报考“北约”联盟的学生,都没报考“华约”联盟 ②报考“华约”联盟的学生,也报考了“京派”联盟 ③报考“卓越”联盟的学生,都没报考“京派”联盟 ④不报考“卓越”联盟的学生,就报考“华约”联盟 根据上述调查结果,下列结论错误的是( ) A .没有同时报考“华约” 和“卓越”联盟的学生 B .报考“华约”和“京派”联盟的考生一样多 C .报考“北约” 联盟的考生也报考了“卓越”联盟 D .报考“京派” 联盟的考生也报考了“北约”联盟
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
7. 已知f (x )=x 3﹣6x 2+9x ﹣abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0; ②f (0)f (1)<0; ③f (0)f (3)>0; ④f (0)f (3)<0.
其中正确结论的序号是( ) A .①③
B .①④
C .②③
D .②④
8. 设P 是椭圆+
=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )
A .22
B .21
C .20
D .13
9. 6
2
)21(x x -
的展开式中,常数项是( ) A .45- B .45 C .16
15- D .1615
10.点集{(x ,y )|(|x|﹣1)2
+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )
A .
B .
C .
D .
11.已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )
A .(1)与(2)
B .(1)与(3)
C .(2)与(4)
D .(3)与(4)
12.设为虚数单位,则( ) A .
B .
C .
D .
二、填空题
13.抛物线
的准线与双曲线
的两条渐近线所围成的三角形面积为__________
14.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .
15.已知a=
(
cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .
16.已知圆22
240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.
17.向量=(1,2,﹣2),=(﹣3,x ,y ),且∥,则x ﹣y= .
18.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .
三、解答题
19.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},
(1)求A∪B,(∁U A)∩(∁U B);
(2)若集合C={x|x>a},A⊆C,求a的取值范围.
20.已知椭圆,过其右焦点F且垂直于x轴的弦MN的长度为b.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)已知点A的坐标为(0,b),椭圆上存在点P,Q,使得圆x2+y2=4内切于△APQ,求该椭圆的方程.
21.在△ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB.
(1)求B;
(2)若b=2,求△ABC面积的最大值.
22.已知等差数列的公差,,.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,记数列前n项的乘积为,求的最大值.
23.(本小题满分12分)已知12,F F 分别是椭圆C :22
221(0)x y a b a b
+=>>的两个焦点,且12||2F F =,点
)2
在该椭圆上.
(1)求椭圆C 的方程;
(2)设直线l 与以原点为圆心,b 为半径的圆上相切于第一象限,切点为M ,且直线l 与椭圆交于P Q 、两
点,问22F P F Q PQ ++是否为定值?如果是,求出定值,如不是,说明理由.
24.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x =相交于点A 、B 两点,设
11(,)A x y ,22(,)B x y .
(1)求证:12y y 为定值;
(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.
浏阳市第一中学2018-2019学年下学期高二期中数学模拟题(参考答案)
一、选择题
1.【答案】D
【解析】【知识点】线性规划
【试题解析】设购买一、二等奖奖品份数分别为x,y,
则根据题意有:,作可行域为:
A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。
其中,x最大为4,y最大为16.
最少要购买2份一等奖奖品,6份二等奖奖品,所以最少要花费100元。
所以A、B、C正确,D错误。
故答案为:D
2.【答案】A
【解析】解:设经过两点,的直线的倾斜角为θ,
则tanθ==﹣,
∵θ∈[0°,180°),
∴θ=120°.
故选:A .
【点评】本题考查了直线的倾斜角与斜率的关系、三角函数求值,考查了推理能力与计算能力,属于基础题.
3. 【答案】C
【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n
-,选C .
4. 【答案】A
【解析】
解:因为向量=(3,m
),=(2,﹣1
),
∥, 所以﹣3=2m , 解得m=
﹣. 故选:A .
【点评】本题考查向量共线的充要条件的应用,基本知识的考查.
5. 【答案】
A
【解析】
独立性检验的应用. 【专题】计算题;概率与统计.
【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.
【解答】解:由已知数据得到如下2×2列联表 杂质高 杂质低 合计 旧设备 37 121 158 新设备 22 202 224 合计
59
323
382
由公式κ2
=
≈13.11,
由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.
【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.
6. 【答案】D
【解析】集合A 表示报考“北约”联盟的学生,集合B 表示报考“华约”联盟的学生, 集合C 表示报考“京派”联盟的学生,集合D 表示报考“卓越”联盟的学生,
由题意得U A B B C
D C D B
=∅
⎧⎪⊆⎪⎨=∅⎪⎪=⎩ð,∴U A D B C D B ⊆⎧⎪=⎨⎪=⎩ð, 选项A .B D =∅,正确;
A D B=C
选项B .B C =,正确; 选项C .A D ⊆,正确.
7. 【答案】C
【解析】解:求导函数可得f ′(x )=3x 2
﹣12x+9=3(x ﹣1)(x ﹣3), ∵a <b <c ,且f (a )=f (b )=f (c )=0. ∴a <1<b <3<c ,
设f (x )=(x ﹣a )(x ﹣b )(x ﹣c )=x 3﹣(a+b+c )x 2
+(ab+ac+bc )x ﹣abc , ∵f (x )=x 3﹣6x 2
+9x ﹣abc ,
∴a+b+c=6,ab+ac+bc=9, ∴b+c=6﹣a ,
∴bc=9﹣a (6﹣a )<
,
∴a 2
﹣4a <0,
∴0<a <4,
∴0<a <1<b <3<c ,
∴f (0)<0,f (1)>0,f (3)<0, ∴f (0)f (1)<0,f (0)f (3)>0. 故选:C .
8. 【答案】A
【解析】解:∵P 是椭圆
+
=1上一点,F 1、F 2是椭圆的焦点,|PF 1|等于4,
∴|PF 2|=2×13﹣|PF 1|=26﹣4=22.
故选:A .
【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用.
9. 【答案】D
【解析】2612316611()()()22
r
r r r r r
r T C x C x
x --+=-
=-, 令1230r -=,解得4r =.
∴常数项为44
61
15()216
C -=
. 10.【答案】A
【解析】解:点集{(x ,y )|(|x|﹣1)2+y 2
=4}表示的图形是一条封闭的曲线,关于x ,y 轴对称,如图所示.
由图可得面积S==+=+2.
故选:A .
【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.
11.【答案】B
【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确;
∵直线l⊥平面α,α⊥β,∴l∥平面β,或l⊂平面β,又∵直线m⊂平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;
∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m⊂平面β,∴α⊥β,故(3)正确;
∵直线l⊥平面α,l⊥m,∴m∥α或m⊂α,又∵直线m⊂平面β,则α与β可能平行也可能相交,故(4)错误;
故选B.
【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.
12.【答案】C
【解析】【知识点】复数乘除和乘方
【试题解析】
故答案为:C
二、填空题
13.【答案】
【解析】【知识点】抛物线双曲线
【试题解析】抛物线的准线方程为:x=2;
双曲线的两条渐近线方程为:
所以
故答案为:
14.【答案】x﹣y﹣2=0.
【解析】解:直线AB的斜率k AB=﹣1,所以线段AB的中垂线得斜率k=1,又线段AB的中点为(3,1),
所以线段AB的中垂线得方程为y﹣1=x﹣3即x﹣y﹣2=0,
故答案为x﹣y﹣2=0.
【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.
15.【答案】 240 .
【解析】解:a=
(
cosx ﹣sinx )dx=(
sinx+cosx )
=﹣1﹣1=﹣2,
则二项式(x 2﹣)6=(x 2+)6
展开始的通项公式为T r+1=
•2r •x 12﹣3r ,
令12﹣3r=0,求得r=4,可得二项式(x 2
﹣)6
展开式中的常数项是•24=240,
故答案为:240.
【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.
16.【答案】(1,2)-,(,5)-∞.
【解析】将圆的一般方程化为标准方程,22(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞. 17.【答案】 ﹣12 .
【解析】解:∵向量=(1,2,﹣2),=(﹣3,x ,y ),且∥,
∴
==
,
解得x=﹣6,y=6, x ﹣y=﹣6﹣6=﹣12.
故答案为:﹣12.
【点评】本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题目.
18.【答案】 [
,1] .
【解析】解:设两个向量的夹角为θ,
因为|2﹣|=1,|﹣2|=1,
所以,
,
所以,
=
所以5
=1,所以,所以5a 2
﹣1∈[
],
[
,1],
所以;
故答案为:[,1].
【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范
围.
三、解答题
19.【答案】
【解析】解:(1)∵A={x|3≤x<10},B={x|2<x≤7},
∴A∩B=[3,7];A∪B=(2,10);(C U A)∩(C U B)=(﹣∞,3)∪[10,+∞);(2)∵集合C={x|x>a},
∴若A⊆C,则a<3,即a的取值范围是{a|a<3}.
20.【答案】
【解析】解:(Ⅰ)设F(c,0),M(c,y1),N(c,y2),
则,得y1=﹣,y2=,
MN=|y1﹣y2|==b,得a=2b,
椭圆的离心率为:==.
(Ⅱ)由条件,直线AP、AQ斜率必然存在,
设过点A且与圆x2+y2=4相切的直线方程为y=kx+b,转化为一般方程kx﹣y+b=0,
由于圆x2+y2=4内切于△APQ,所以r=2=,得k=±(b>2),
即切线AP、AQ关于y轴对称,则直线PQ平行于x轴,
∴y Q=y P=﹣2,
不妨设点Q在y轴左侧,可得x Q=﹣x P=﹣2,
则=,解得b=3,则a=6,
∴椭圆方程为:.
【点评】本题考查了椭圆的离心率公式,点到直线方程的距离公式,内切圆的性质.
21.【答案】
【解析】(本小题满分12分)
解:(1)∵bsinA=,
由正弦定理可得:sinBsinA=sinAcosB,即得tanB=,
∴B=…
(2)△ABC的面积.
由已知及余弦定理,得.
又a2+c2≥2ac,
故ac≤4,当且仅当a=c时,等号成立.
因此△ABC面积的最大值为…
22.【答案】
【解析】【知识点】等差数列
【试题解析】(Ⅰ)由题意,得
解得或(舍).
所以.
(Ⅱ)由(Ⅰ),得.
所以.
所以只需求出的最大值.
由(Ⅰ),得.
因为,
所以当,或时,取到最大值.
所以的最大值为.
23.【答案】
【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.
x=.
24.【答案】(1)证明见解析;(2)弦长为定值,直线方程为1
【解析】
(2,进而得a=时为定值.
1
试题解析:(1)设直线AB 的方程为2my x =-,由22,
4,
my x y x =-⎧⎨=⎩
得2480y my --=,∴128y y =-,
因此有128y y =-为定值.111]
(2)设存在直线:x a =满足条件,则AC 的中点11
2(
,)22
x y E +,AC =,
因此以AC 为直径圆的半径12r AC ==
=E 点到直线x a =的距离12||2
x d a +=-,
所以所截弦长为==
=.
当10a -=,即1a =时,弦长为定值2,这时直线方程为1x =.
考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题.。