江苏省苏州市太仓2017年中考数学一模试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年太仓市初中毕业暨升学考试模拟试卷
数 学
一、本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1.实数3的相反数是 A .3
B .3-
C .
13
D .13
-
2.已知3a b =,则代数式a b
a b
+-的值等于 A .2
B .2-
C .12
D .12
-
3.在一次科技作品制作比赛中,参赛的八件作品的成绩(单位:分)分别是:7,10,9,8,
7,9,9,8.则这组数据的中位数是 A .7.5
B .8
C .8.5
D .9
4.下列计算一定正确的是 A .325a a a += B .32a a a -=
C .326a a a ⋅=
D .32a a a ÷=
5. 已知23x y =⎧⎨
=⎩ 与3
2x y =⎧⎨=⎩
是二元一次方程5mx ny +=的两组解,则m n +的值为 A .1
B .2
C .3
D .4
6.将边长大于5(cm)的正方形的一边增加5(cm),另一边缩短5(cm),则得到的长方形的面积与原来正方形的面积相比 A .保持不变 B .增加25(cm 2) C .减少25(cm 2)
D .不能确定大小关系
7.已知一次函数(0)y kx b k =+≠的图像如图所示, 则不等式1kx b +>的解集为
A .0x <
B .0x >
C .2x <
D .2x >
8.如图,在边长为2的菱形ABCD 中,60A ∠=︒,DE AB ⊥,DF BC ⊥,则DEF ∆的周长
(第7题图)
1
2
y x
O
F
E
D
C
B
A
(第8题图) E
D
y
x
C
B
A O
(第9题图)
为
A.3B
C.6D
.
9.如图,在平面直角坐标系xOy中,O为坐标系原点,A(3,0),B(3,1),C(0,1),将OAB
∆
沿直线OB折叠,使得点A落在点D处,OD与BC交于点E,则OD所在直线的解析式为
A.
4
5
y x
=B.
5
4
y x
=C.
3
4
y x
=D.
4
3
y x
=
10.已知二次函数y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四个命题,则一定正确命题的序号是
①x=1是二次方程ax2+bx+c=0的一个实数根;
②二次函数y=ax2+bx+c的开口向下;
③二次函数y=ax2+bx+c的对称轴在y轴的左侧;
④不等式4a+2b+c>0一定成立.
A.①②B.①③C.①④D.③④
二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上
.........
11
.函数y=x的取值范围是▲.
12.据统计,2016年度太仓市国民生产总值(GDP)为11550000(万元).数据11550000用科学记数法表示为▲.
13.因式分解:33
a b ab
-=▲.
14.一个不透明的盒子中装有7个黑球和若干个白球,它们除了颜色不同外,其余均相同,从盒子中随机摸出一球并记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验2000次,其中有600次摸到白球,由此估计盒子中的白球大约有▲个.
15.已知扇形AOB的半径为4cm,圆心角的度数为90︒,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为▲cm.
16.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上
一点,且∠EDC=30°,弦EF∥AB,则EF的长度为▲.
17.将边长为2的等边△OAB按如图位置放置,AB边与y轴
的交点为C,则OC= ▲ .
18.已知△ABC中,AB=4,AC=3,当∠B取得最大值时,BC的长度为▲.
三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上
........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.
19.(本题满分4分)
21
()3
-︒.
20.(本题满分5分)先化简,再求值: 21x x -÷111x ⎛
⎫+ ⎪-⎝⎭
,其中1x =.
21.(本题满分6分)解不等式组6226
3212
x x x x ->-++>⎧⎪
⎨⎪⎩,并写出它的整数解.
22.(本题满分6分)某校举办演讲比赛,对参赛20名选手的得分m (满分10分)进行分组统计,统计结果如表所示: (1)求a 的值;
(2)若用扇形图来描述,求分值在8≤m <9范围内所对应的扇形图的圆心角大小;
(3)将在第一组内的两名选手记为:A 1、A 2,在第四组内的两名选手记为:B 1、B 2,现从第一组和第四组中随机选取2名选手进行座谈,用树状图或列表法列出所有可能结果,并求第一组至少有1名选手被选中的概率.
23.(本题满分6分)如图,在ABC D 中,4AC =,D 为BC 边上的一点,CD =2,且ADC ∆与ABD ∆的面积比为1:3. (1)求证:ADC ∆∽BAC ∆; (2)当8AB =时,求AD 的长度.
24.(本题满分9分)某文具用品商店销售A 、B 两种款式文具盒,已知购进1个A 款文具盒比B 款文具盒便宜5元,且用300元购入A 款文具盒的数量比购入B 款文具盒的数量多5个.(1)购进一个A 款文具盒、一个B 款文具盒各需多少元?
(2)若A 款文具盒与B 款文具盒的售价分别是20元和30元,现该文具用品商店计划用不超过1000元购入共计60个A 、B 两种款式的文具盒,且全部售完,问如何安排进货才能使销售利润最大?并求出最大利润.
C D
A
25.(本题满分8分)如图,已知点 A (−2,m +4),点B (6,m )在反比例函数k y x =(0k ≠)
的图像上.
(1) 求m ,k 的值;
(2)过点M (a ,0)(0a <)作x 轴的垂线交直线AB 于点P ,交反比例函数k y x =(0k ≠)于点
Q ,若PQ =4QM ,求实数a 的值.
26.(本题满分10分)如图,AB 是半圆O 的直径,D 为BC 的中点,延长OD 交弧BC 于点E ,点F 为OD 的延长线上一点且满足∠OBC =∠OFC . (1)求证:CF 为⊙O 的切线;
(2)若DE =1,30ABC ∠=︒.①求⊙O 的半径;②求sin ∠BAD 的值. (3)若四边形ACFD 是平行四边形,求sin ∠BAD 的值.
E
D
C
B
27.(本题满分10分)如图,四边形中ABCD ,//AB CD ,BC AB ⊥,8AD CD ==(cm),
12AB =(cm),动点M 从A 出发,沿线段AB 作往返运动(A -B -A )
,速度为3(cm/s),动点N 从C 出发,沿折线段C -D -A 运动,速度为2(cm/s),当N 到达A 点时,动点M 、N 运动同时停止.已知动点M 、N 同时开始运动,记运动时间为t (s ) .
(1)当t =5(s)时,则M 、N 两点间距离等于
▲ (cm);
(2)当t 为何值时,MN 将四边形ABCD 的面积分为相等的两个部分?
(3)若线段MN 与AC 的交点为P ,探究是否存在t 的值,使得:1:2AP PC =,若存在,请求出所有t 的值;若不存在,请说明理由.
28.(本题满分12分)如图1,已知ABC ∆的三顶点坐标分别为(1,1)A --,(3,1)B -,(0,4)C -,二次函数y = ax 2 + bx +c 恰好经过A 、B 、C 三点. (1)求二次函数的解析式;
(2)如图1,若点P 是ABC ∆边AB 上的一个动点,过点P 作PQ ∥AC ,交BC 于点Q ,连接CP ,当CPQ ∆的面积最大时,求点P 的坐标; (3)如图2,点M 是直线y x =上的一个动点,点N 是二次函数图像上的一动点,若 CMN ∆构成以CN 为斜边的等腰直角三角形,直接写出所有满足条件的点N 的横坐标.
N M D C B A N M D C B A N
M
D C B
A (备用图1) (备用图2)
(图1) (图2)
2017年太仓市初中毕业暨升学考试模拟试卷
数学参考答案及评分标准
一、选择题(每小题3分,共30分)
二、选择题(每小题3分,共24分) 11.1x ≥ 12.1.155×107
13.()()ab a b a b -+
14.3
15.1 16. 17. 18
三、解答题(共11大题,共76分)
19.(本题共4分) 解:原式= 2+9-1 ················································································ 3分
=10 ························································································ 4分
20.(本题共5分) 解:原式=
21
1x x
x x ÷
-- ··········································································· 1分 =1
(1)(1)x x x x x
-⋅
+- ····································································· 2分 =
11
x + ···················································································· 3分
当x 1时,原式
··································································· 4分
.··················································································· 5分 21.(本题共6分)
解:由①式得:x <3. ··········································································· 2分
由②式得:x 1
3
>. ·········································································· 4分
∴不等式组的解集为: 1
33x <<
. ···················································· 5分
∴不等式组的整数解为: 1,2
. ························································ 6分 22.(本题满分6分) (1)8 ·································································································· 1分 (2)144︒ ···························································································· 3分 (3) 树状图或列表法略. ······································································· 5分 第一组至少有1名选手被选中的概率为5
6
. ··········································· 6分
23.(本题共6分)
(1)证明:∵CD =2,且ADC ∆与ABD ∆的面积比为1:3.∴BD =3DC=6 ·············· 1分
∴在ADC ∆与ABD ∆中,
2BC AC
AC BD
==,∠BCA =∠ACD . ·
·················· 3分 ∴ADC ∆∽BAC ∆. ···································································· 4分
(2)解:∵ADC ∆∽BAC ∆,∴AD DC =AB
AC
,又∵8AB =,4,2AC CD ==.
∴.AD =4 ····································································································· 6分
24.(本题共9分)
解:(1)设A 款文具盒单价为x 元,则B 公司为x +5元. ·
······························ 1分 由题意得:
300300
55
x x =++. ································································ 2分 解之得:x =15. ·
·············································································· 3分 经检验:x =15是方程的根.
································································ 4分 ∴购进一个A 款文具盒、一个B 款文具盒分别需要15元和20元. (2)设购入A 款文具盒为y 个,则购入B 款文具盒为60−y 个.
由题意得:1520(60)1000y y +-≤. ·
····················································· 5分 解之得:40y ≥. ·
············································································ 6分 又∵售完60个文具盒可获得利润为S =510(60)6005y y y +-=- ·
················ 7分 ∴当40y =时,S 可取得最大值为400. ·
··············································· 8分 答:应购入40个A 款文具盒和20个B 款文具盒可使销售利润最大,最大利润
为400元. ··············································································· 9分 25.(本题共8分)
解:(1) ∵点 A (−2,m +4),点B (6,m )在反比例函数k
y x
=
的图像上. ∴42
6k m k m ⎧
+=-⎪⎪⎨
⎪=⎪⎩
. ········································································· 1分 ∴解得:m =−1,k =−6. ·
································································ 3分 (2)设过A 、B 两点的一次函数解析式为y =ax +b .
∵A (−2,3),B (6,−1),∴2361k b k b -+=⎧⎨+=-⎩.解得:1
22
k b ⎧=-
⎪⎨
⎪=⎩
. ∴过A 、B 两点的一次函数解析式为122
y x =-+. ·
··························· 5分 ∵过点M (a ,0)作x 轴的垂线交AB 于点P ,∴点P 的纵坐标为:1
22
a -+. 又∵过点M (a ,0)作x 轴的垂线交6y x -=
于点Q ,∴点Q 的纵坐标为:6
a
-. ∴16|2|2PQ a a =-++ ,6
||||QM a
=-.
又∵PQ =4QM 且a <0,∴1624
22a a a
-++=-. ·
································· 7分 ∴24600a a --=.∴6a =-或10a =.
∵0a <.∴实数a 的值为−6. ·
····················································· 8分
26.(本题共10分)
解:(1) 连接CO .
∵D 为BC 的中点,且OB =OC ,∴OD ⊥BC . ·
··········································· 1分 ∵OB =OC ,∴∠OBC =∠OCB .
又∵∠OBC =∠OFC ,∴∠OCB =∠OFC . ·
······································ 2分 ∵OD ⊥BC ,∴∠DCF +∠OFC =90︒.
∴∠DCF +∠OCB =90︒.即OC ⊥CF ,∴CF 为⊙O 的切线. ·
··············· 3分 (2) ①设⊙O 的半径为r .
∵OD ⊥BC 且∠ABC=30︒.
∴OD=12OB=1
2
r .
又∵DE=1,且OE =OD +DE .
∴112
r r =+,解得:r =2. ·
·························································· 4分 ②作DH ⊥AB 于H,在RT △ODH 中,∠DOH =60︒,OD =1.
∴DH
,OH =12.
在RT △DAH 中,∵AH =AO +OH =5
2
,∴由勾股定理:
∴sin DH BAD AD ∠=
==. ·
·············································· 6分 (3)设⊙O 的半径为r .
∵O 、D 分别为AB 、BC 中点,∴AC =2OD .
又∵四边形ACFD 是平行四边形,∴DF =AC=2OD .
∵∠OBC =∠OFC ,∠CDF =∠ODB=90︒,∴△ODB ∽△CDF . ∴
OD BD CD DF =,∴2OD BD
BD OD
=
,解得:BD =. ··························· 8分 ∴在Rt △OBD 中,OB=r
,∴,OD BD =.
∴1,3OH r DH =.
∴在RT △DAH 中,∵AH =AO +OH =4
3
r ,∴由勾股定理:
.
∴1
sin 3
DH BAD AD ∠==. ·
····················································· 10分
27.(本题共10分)
解:
(1)
······················································································· 2分 (2) ∵四边形中ABCD ,//AB CD ,BC AB ⊥,8AD CD ==,12AB =.
则BC =
ABCD S 四边形.
1︒ 当04t ≤≤时.
如图,则BM =12−3t ,CN =2t .
∴1(12))2
BCNM S t t =-⋅=-四边形.
∵MN
将四边形的面积分为相等的两个部分,∴)t -= ·
······· 3分 ∴t =2. ·
······················································································ 4分 2︒ 当48t <≤时,
如图,则AM =24−3t ,AN =16-2t
∴2AMN 1=(243)(162))2S t t t -⋅--三角形. ·
······························· 5分 ∵MN
2)t -= ∴t
=8,又∵48t <≤,∴t
=8. 综上所述:2t =或t
=8 ·
······················································ 6分
(3) 1︒当04t ≤≤时,
如图,则AM =3t ,CN =2t .
∵//AB CD ,则
31
22
AP AM PC CN ==≠. ∴不存在符合条件的t 值.
··························································· 7分 2︒ 当48t <≤时,如图,分别延长CD 、MN 交于点Q . 则AM =24−3t ,AN =16−2t ,DN =2t −8. ∵//AB CD ,则
28
3(4)243162QD DN DQ t DQ t AM AN t t
-=⇒=⇒=--- ····················· 8分 ∴34CQ t =-.
∵//AB CD ,则243152
3429AM AP t t CQ PC t -=⇒=⇒=-. 综上可知:存在实数52
9
t =
使得:1:2AP PC =成立. ····························· 10分 28.(本题共12分)
解:(1)224y x x =--. ········································································ 3分
(2)设点(t,1)P -(13t -≤
≤),则AP =t +1,BP =3−t ,三角形ABC 的面积为6. ∵//PQ AC ,∴BPQ BAC ∆~∆.
∴
223(
)()4BPQ BAC
S BP t S BA ∆∆-==, ∴2233()(3)48BPQ BAC t S S t ∆∆-=⋅=- 5分 又∵133(3)2
2
PCB S BP t ∆=⋅⋅=-.
∴2233933
(1)84882
PCQ PBC PBQ S S S t t t ∆∆∆=-=-++=--+. 8分
∴t =1时,PCQ S ∆最大,此时点(1,1)P -. ·············································· 9分 (3) 所有满足条件的点N
的横坐标为4,1- ···························· 12分。