河北省衡水2020届高三第二次摸底考试数学试题(理)有答案(已审阅)

合集下载

2020届河北省衡水中学高三二调考试数学(理)试题(含答案)

2020届河北省衡水中学高三二调考试数学(理)试题(含答案)

2020届河北省衡水中学高三二调考试数学(理)试题一、单选题1.已知集合{}|10A x x =+>,{}|1B x x =∈≤Z ,则A B =I ( ) A .{}|011x x ≤+≤ B .{}|11x x -<≤C .{}0,1D .{}1【答案】C【解析】对集合A 进行化简,然后根据集合的交集运算,得到A B I 的值.【详解】集合{}{}|10|1A x x x x =+>=>-,集合{}|1B x x =∈≤Z所以{}{}|110,1B x x A =∈-<≤=Z I .故选:C.【点睛】本题考查集合的交集运算,属于简单题.2.设函数()()f x x R ∈满足()(),(2)()f x f x f x f x -=+=,则()y f x =的图像可能是 A . B . C . D .【答案】B【解析】根据题意,确定函数()y f x =的性质,再判断哪一个图像具有这些性质. 由()()f x f x -=得()y f x =是偶函数,所以函数()y f x =的图象关于y 轴对称,可知B ,D 符合;由(2)()f x f x +=得()y f x =是周期为2的周期函数,选项D 的图像的最小正周期是4,不符合,选项B 的图像的最小正周期是2,符合,故选B .3.若函数2ln y ax b x =-在1x =处的切线方程为52y x =-,则a ,b 的值为( )A .2,1B .-2,-1C .3,1D .-3,-1【答案】C 【解析】将1x =代入切线方程得到切点,将切点代入到解析式中,得到a ,利用导数的几何意义,对函数求导,代入1x =,得到切线斜率,得b 的值.【详解】将1x =代入切线52y x =-,得到切点坐标为()1,3,将()1,3代入到函数解析式中,得到3=a ,所以23ln y x b x =-, 求导得6b y x x'=-, 代入1x =得6k b =-,所以65b -=,得1b =.故选:C.【点睛】本题考查导数的几何意义,根据导数的切线求参数的值,属于简单题.4.已知命题p :0[0,)x ∃∈+∞使00420x x k --=,命题q :()0,x ∀∈+∞,20x k +>,则命题p 成立是命题q 成立的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】C【解析】根据命题p 和命题q ,分别得到k 的范围,从而得到答案.【详解】命题p :0[0,)x ∃∈+∞使00420x x k --=,则0042x x k =-, 0[0,)x ∈+∞,所以设[)021,x t =∈+∞,则2k t t =-,在[)1,t ∈+∞上单调递增,所以[)0,k ∈+∞,命题q :()0,x ∀∈+∞,20x k +>,可得[)0,k ∈+∞所以命题p 成立是命题q 成立的充要条件.故选:C.【点睛】本题考查二次函数相关的复合函数的值域,判断充分必要条件,属于简单题.5.已知()22,026ln ,0x x f x x x x ⎧-≤=⎨-+>⎩,则()y f x =与y x =的交点个数为( )A .1B .2C .3D .4【答案】B【解析】令()f x x =,得()()g x f x x =-,分0x ≤和0x >进行讨论,利用零点存在定理,得到()g x 的零点个数,从而得到答案.【详解】要求()y f x =与y x =的交点,则令()f x x =,设()()g x f x x =-,即求()g x 的零点个数, 所以()22,06ln ,0x x x g x x x x ⎧--≤=⎨-+>⎩,当0x ≤时,220x x --=,解得1x =-,2x =(舍),所以0x ≤时,()g x 有且仅有一个零点;当0x >,()6ln g x x x =-+,()110g x x'=+>,所以()g x 在()0,∞+上单调递增, 而()150g =-<,()6ln60g =>,由零点存在定理可知()g x 在()0,∞+上有且仅有一个零点;综上所述,()g x 有且仅有两个零点,所以()y f x =与y x =的交点个数为2.故选:B.【点睛】本题考查分段函数的性质,函数图像交点与零点的转化,根据零点存在定理求零点的个数,属于中档题.6.已知函数2,2()24x x f x x -+≤⎧=<≤,则定积分412()f x dx ⎰的值为( ) A .948π+ B .144π+ C .12π+ D .324π+ 【答案】A【解析】根据积分定义,将积分区间分为两段分别求:左段可根据微积分基本定理求得积分值,右段根据几何意义求得积分值,两个部分求和即可.【详解】 因为()2,224x x f x x -+≤⎧=<≤ 所以()412f x dx =⎰()12222x d x -++⎰⎰()22211221222x dx x x -+=-+⎰()22111122222222⎡⎤⎡⎤⎛⎫=-+⨯--+⨯⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦ 98=2⎰的几何意义为以()3,0为圆心,以1r =为半径的圆,在x 轴上方的部分因而21122S ππ=⨯⨯= 所以()21229942828x dx ππ+-++=+=⎰⎰ 所以选A【点睛】本题考查了积分的求法,微积分基本定理的应用及利用几何法求积分值,属于中档题.7.已知函数()y f x =的导函数为()f x ',满足R x ∀∈,()()f x f x '>且(1)e f =,则不等式(ln )f x x >的解集为( )A .(e,)+∞B .(1,)+∞C .(0,e)D .(0,1)【答案】A【解析】令ln t x =,这样原不等式可以转化为()e t f t >,构造新函数()()e x f x g x =,求导,并结合已知条件()()f x f x '>,可以判断出()g x 的单调性,利用单调性,从而可以解得1t >,也就可以求解出x e >,得到答案.【详解】解:令ln t x =,则(ln )()e t f x x f t >⇔>, 令()()e x f x g x =,则()()()0ex f x f x g x '-'=>, ()g x ∴在R 上单调递增,()()e 1e t t f t f t ∴>⇔> ()(1)1ln 1e g t g t x x ⇔>⇔>⇔>⇔>,故选A.【点睛】本题考查了利用转化法、构造函数法、求导法解决不等式解集问题,考查了数学运算能力和推理论证能力.8.若函数()1y f x =+为偶函数,且1x ≥时,()2xf x x e =-则不等式()()3f x f ≥的解集为( )A .[]3,-+∞B .[]1,3-C .(][),13,-∞-+∞UD .(][),22,-∞-+∞U【答案】B【解析】根据题意得到()f x 关于1x =成轴对称,得到()()31f f =-再利用导数,得到1x ≥时的单调性,从而得到不等式()()3f x f ≥的解集.【详解】因为函数函数()1y f x =+为偶函数,所以可得()f x 关于1x =成轴对称,所以()()31f f =-,当1x ≥时,()2x f x x e =-, 所以()2xf x x e '=- 设()2xg x x e =-,则()2xg x e '=-, 当1x ≥,()0g x '<,()g x 单调递减,。

衡水中学2019-2020学年度高三年级下学期第二次模拟考试 理数试卷(含答案)

衡水中学2019-2020学年度高三年级下学期第二次模拟考试 理数试卷(含答案)

4
故选:A.
12.【答案】D
【解析】由题意可知 f ′(= x)
aex (x
−1)
+
1 x

x= 12
0
有两个不等根.即
ae
x
(
x

1)
=−
x− x2
1
,
x ∈ (0, 2) ,有一根 x = 1 .另一根在方程 1 = −x2ex , x ∈ (0, 2) 中,令 h(x) = x2ex , x ∈ (0, 2) , a
上式对 n = 1 也成立,
可得数列
{an
}
是首项为
1,公比为
1 2
的等比数列,
可= 得 S5
1= − 215 1− 1
31

16
2
故答案为: 31 . 16
15. ①②
16.【答案】 6π 【解析】如图,设球心 O 在平面 ABC 内的射影为 O1 ,在平面 BCD 内的射影为 O2 则二面角 A − BC − D 的平面角为∠AMD ,点 A 在截面圆 O1 上运动,点 D 在截面圆 O2 上运 动,由图知,当 AB = AC ,BD = CD 时,三棱锥 A − BCD 的体积最大,此时 ∆ABC 与 ∆BDC
是等边三角形,
高三数学理科试题 第 1 页(共 10 页)
高三数学理科试题 第 2 页(共 10 页)
设 BC = a ,则 A= M D= M
3 2
a , S∆BCD
=
3 a2 . 4
=h AM sin(π −= ∠AMD)
6 3
a
, VA− B= CD
1 3
S∆DBC= ⋅ h

2020年河北省衡水市高考数学二模试卷(理科)

2020年河北省衡水市高考数学二模试卷(理科)
次达到最大值时,N 运动的时间为(

A. 37.5 分钟
C. 49.5 分钟
B. 40.5 分钟
D. 52.5 分钟
11. 在圆锥 PO 中,已知高 PO=2,底面圆的半径为 4,M 为母线 PB 的中点,根据圆锥
曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下
面四个命题,正确的个数为


①圆的面积为 4π;
②椭圆的长轴长为√37;
4
③双曲线两渐近线的夹角为 π-arcsin5;
4√5
④抛物线中焦点到准线的距离为
A. 1 个
5

B. 2 个
C. 3 个
D. 4 个

12. 设使直线 y=ax 与曲线() = ( + 4 ) + 有公共点的 a 的取值范围为集合 A,
的一个焦点 F,
与 y 轴交于 P,Q 两点,若|| =
B. √5
A. √3
2√3
3

,则双曲线 C 的离心率是
C. 2

D. √2
8. 在斜△ 中,设角, , 的对边分别为, , ,已知
,若是角的角平分线,且 = ,则

A.

3
4
B.
1
C.
8
2
3பைடு நூலகம்
D.
1
6
9. 如图所示,边长为 1 的正方形网络中粗线画出的是某几何体的三视图,则该几何体
所有棱长组成的集合为(
A. {1,√5}
C. {1,√2,√5}

B. {1,√6}
D. {1,√2,2√2,√6}
第 2 页,共 19 页

2020年河北省衡水二中高考二模数学试题(附答案解析)

2020年河北省衡水二中高考二模数学试题(附答案解析)
2.D
采用逐一验证法,根据图表,可得结果.
A正确,从图表二可知,
3月份四个城市的居民消费价格指数相差不大
B正确,从图表二可知,
4月份只有北京市居民消费价格指数低于102
C正确,从图表一中可知,
只有北京市4个月的居民消费价格指数相差不大
D错误,从图表一可知
上海市也是从年初开始居民消费价格指数的增长呈上升趋势
4.C
设导函数 的图象与x轴的交点从左到右依次为 ,写出函数的单调区间即得极值点.
设导函数 的图象与x轴的交点从左到右依次为 ,
所以函数f(x)的单调增区间为 ,单调减区间为 ,
所以函数有两个极大值点 ,两个极小值点 .
故选:C
本题主要考查函数的单调性和极值,意在考查学生对这些知识的理解掌握水平,属于基础题.
21.为了估计某校的某次数学期末考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在 上.将这些成绩分成六段 , ,…, 后得到如下部分频率分布直方图.
(Ⅰ)求抽出的60名学生中分数在 内的人数;
(Ⅱ)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校的优秀人数.
22.已知函数 ( 且 ).
(1)当 时,曲线 与 相切,求 的值;
(2)若 ,求 的取值范围.
23.如图, 是直角 斜边 上一点, .
(Ⅰ)若 ,求角 的大小;
(Ⅱ) ,且 ,求 的长.
【答案与解析】
1.A
根据图象可知,函数 为奇函数,以及函数在 上单调递增,且有一个零点,即可对选项逐个验证即可得出.
(1)求圆 的极坐标方程;
(2)若射线 分别与圆 和直线 交于点 , (点 异于坐标原点 ),求线段 的长.

2020年衡水中学高三第2轮模拟考试-数学(理)(含答案)

2020年衡水中学高三第2轮模拟考试-数学(理)(含答案)

河北衡水中学高三第2轮模拟考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}|0B x x =≥,且A B A =,则集合A 可能是( )A . {}1,2B .{}|1x x ≤C .{}1,0,1-D .R 2.复数1iz i=+ 的共轭复数在复平面上对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.已知平面向量,a b 满足()5a a b +=,且2,1a b ==,则向量a 与b 夹角的余弦值为( ) A . 2 B . 2-C .12D .12-4.执行如图所示的程序框图,若输人的a 值为1,则输出的k 值为( )A . 1B . 2C .3D .45.已知数列{}n a 中,()111,21,n n na a a n NS *+==+∈为其前n 项和,5S的值为( )祝您高考马到成功!A .57B .61C .62D .636.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .23π B .3πC .29π D .169π7.为了得到cos 2y x =,只需将sin 23y x π⎛⎫=+⎪⎝⎭作如下变换( ) A .向右平移3π个单位 B .向右平移6π个单位C .向左平移12π个单位D .向右平移12π个单位8.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩,表示的平面区域,则当a 从2-连续变化到1时,动直线x y a +=扫过A中的那部分区域的面积为( )A .1B .32C .34D .749.焦点在x 轴上的椭圆方程为()222210x y a b a b+=>>,短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为3b,则椭圆的离心率为( ) A .14B .13C .12D .2310.在四面体S ABC -中,,2AB BC AB BC SA SC ⊥=====,二面角S AC B--的余弦值是,则该四面体外接球的表面积是( ) A . B .6πC .24πD祝您高考马到成功!11.已知函数()()()()()52log 11221x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则关于x 的方程()()f x a a R =∈实根个数不可能为 ( ) A . 2个B .3个C . 4个D .5 个12.函数()()sin 2,02f x A x A πϕϕ⎛⎫=+≤> ⎪⎝⎭部分图象如图所示,且()()0f a f b ==,对不同的[]12,,x x a b ∈,若()()12f x f x =,有()12f x x += )A .()f x 在5,1212ππ⎛⎫-⎪⎝⎭上是减函数 B .()f x 在5,1212ππ⎛⎫-⎪⎝⎭上是增函数C .()f x 在5,36ππ⎛⎫⎪⎝⎭上是减函数 D .()f x 在5,36ππ⎛⎫⎪⎝⎭上增减函数 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. ()4111x x ⎛⎫-+ ⎪⎝⎭的展开式中2x 项的系数为 .14.已知抛物线()220y px p =>上一点()1,M m 到其焦点的距离为5,双曲线221y x a-=的左顶点为A ,若双曲线一条渐近线与直线AM 垂直,则实数a = . 15.如图,为测量出山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角60,MAN C ∠=点的仰角45CAB ∠=以及75MAC ∠=,从C 点测得60MCA ∠=,已知山高100BC m =,则山高MN =m .祝您高考马到成!16.设函数()()21,x x xf xg x x e+==,对任意()12,0,x x ∈+∞,不等式()()121g x f x k k ≤+恒成立,则正数k 的取值范围是.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)中国人口已经出现老龄化与少子化并存的结构特征,测算显示中国是世界上人口老龄化速度最快的国家之一,再不实施“放开二胎”新政策,整个社会将会出现一系列的问题,若某地区2015年人口总数为45万,实施“放开二胎”新政策后专家估计人口总数将发生如下变化:从2016年开始到2025年每年人口比上年增加0.5万人,从2026年开始到2035年每年人口为上一年的0099.(1)求实施新政策后第n 年的人口总数n a 的表达式(注:2016年为第一年);(2)若新政策实施后的2016年到2035年人口平均值超过49万,则需调整政策,否则继续实施, 问到2035年后是否需要调整政策?(说明:()10100.9910.010.9=-≈).18.(本小题满分12分)如图, 已知矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面, 平面ABCD平面ABPE AB =,且2,1,AB BP AD AE AE AB ====⊥,且AE BP .(1)设点M 为棱PD 中点, 在面ABCD 内是否存在点N ,使得MN ⊥平面ABCD ?若存在, 请证明, 若不存在, 说明理由; (2)求二面角D PE A --的余弦值.祝您高考马到成功!19.(本小题满分12分)某产品按行业生产标准分成8个等级,等级系数X 依次1,2,...8,其中5X ≥为标准A ,3X ≥为标准B .已知甲厂执行标准A 生产该产品,产品的零售价为6元/件; 乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数1X 的概率分布列如下所示:且1X 的数学期望()16E X =,求,a b 的值;(2)为分析乙厂产品的等级系数2X ,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数2X 的数学期望; (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:①产品的“性价比”;②“性价比”大的产品更具可购买性.20.(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>短轴的两个顶点与右焦点的连线构成等边三角形,直线3460x y ++=与圆()222x y b a +-=相切.(1)求椭圆C 的方程;(2)已知椭圆C 的左顶点A 的两条直线12,l l 分别交椭圆C 于,M N 两点, 且12l l ⊥,求证:直线MN 过定点, 并求出定点坐标; (3)在(2) 的条件下求AMN ∆面积的最大值.21.(本小题满分12分)已知函数()()()1x f x a x e a =--(常数0a R a ∈≠且).祝您高考马到成!(1)证明: 当0a >时, 函数()f x 有且只有一个极值点;(2)若函数()f x 存在两个极值点12,x x ,证明:()()12224400f x f x e e <<<<且. 请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,,,,A B C D 四点在同一个圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上. (1)若11,32EC ED EB EA ==,求DCAB的值; (2)若2EF FA FB =,证明:EF CD .23.(本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合,直线l 的参数方程为:1(12x t y t ⎧=-⎪⎪⎨⎪=⎪⎩为参数), 曲线C 的极坐标方程为:4cos ρθ=. (1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)设直线l 与曲线C 相交于,P Q 两点, 求PQ 的值. 24.(本小题满分10分)选修4-5:不等式选讲已知函数()()223,12f x x a x g x x =-++=-+. (1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得()()12f x g x =成立, 求实数a 的取值范围.祝您考马到成功!一、 选择题:每小题5分,共60分,每小题所给选项只有一项符合题意.ADCBA DCDCB DB二、 填空题:每题5分,共20分.13.2 14.1415.15016. 1e 21k -≥三、解答题 17.本题满分12分解:(1)当10n ≤时,数列{}n a 是首项为45.5,公差为0.5的等差数列,因此,新政策实施后第年的人口总数n a (单位:万)的表达式为()1045.50.51,110500.99,11n n n n a n -⎧+⨯-≤≤⎪=⎨⨯≥⎪⎩n 祝您高考马到成功!(2)设n S 为数列{}n a 的前项和,则从2016年到2035年共20年,由等差数列及等比数列的求和公式得:()()102010111220...477.5495010.99972.5S S a a a =++++=+⨯-≈万新政策实施到2035年年人口均值为2048.634920S ≈< 故到2035年不需要调整政策. 18.本题满分12分解:(1)连接AC ,BD 交于点N ,连接MN ,则⊥MN 平面ABCD 证明: M 为PD 中点,N 为BD 中点MN ∴为PDB ∆的中位线,PBMN //∴又平面⊥ABCD 平面ABPE平面平面=,⊂BC 平面,ABBC ⊥⊥∴BC 平面PB BC ⊥∴,又AB PB ⊥,B BC AB =⋂⊥∴PB 平面ABCD所以⊥MN 平面ABCD(2)以A 为原点,AE ,AB ,AD 所在直线分别为x 轴,y 轴,z 轴建立坐标系,⊥AD 平面PEA∴平面PEA 的法向量)1,0,0(1==AD n 另外)1,0,0(D ,)0,0,1(E ,)0,2,2(P)1,0,1(-=∴DE ,)1,2,2(-=DP ,设平面DPE 的法向量),,(2z y x n =,则⎩⎨⎧=-+=-0220z y x z x ,令1=x ,得)1,21,1(2-=n 32,cos 21>=<∴n n 又A PE D --为锐二面角,所以二面角A PE D --的余弦值为32n S n ∴ABCD ABPE AB ABCD ABPE 祝您高考马到成功!19.本题满分12分解:(1)16,50.46780.16EX a b =⨯+++⨯=,即67 3.2a b +=①又由1X 的概率分布列得0.40.11,0.5a b a b +++=+= ② 由①②得0.30.2a b =⎧⎨=⎩(2)由已知得,样本的频率分布表如下:用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X 2的概率分布列如下:所以,230.340.250.260.170.180.1 4.8EX =⨯+⨯+⨯+⨯+⨯+⨯=即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性,理由如下:因为甲厂产品的等级系数的数学期望等于6 ,价格为6 元/件,所以其性价比为616=因为乙厂产品的等级系数的期望等于4.8 ,价格为4 元/件,所以其性价比为4.81.24=据此,乙厂的产品更具可购买性。

衡水中学2020届高三数学下学期第二次调研试题理含解析

衡水中学2020届高三数学下学期第二次调研试题理含解析
2。如图,复平面上的点 到原点的距离都相等,若复数 所对应的点为 ,则复数 ( 是虚数单位)的共轭复数所对应的点为( )
A. B. C。 D.
【答案】B
【解析】
试题分析: 为将复数 所对应的点逆时针旋转 得 ,选B.
考点:复数几何意义
【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题。首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如 。 其次要熟悉复数相关基本概念,如复数 的实部为 、虚部为 、模为 、共轭为
11。定义在 上的函数 对任意 都有 ,且函数 的图象关于 成中心对称,若 满足不等式 ,则当 时, 的取值范围是( )
A。 B。 C。 D.
【答案】D
【解析】
试题分析:由已知条件知函数 为奇函数且在 上为减函数,由 有 ,所以 , ,若以 为横坐标, 为纵坐标,建立平面直角坐标系,如图所示,阴影部分为不等式 表示的平面区域,即 及其内部, ,令 ,则 ,求出 ,所以 ,解得 ,∴ 的取值范围是 ,选D.
A。 2B。3C。 D.
【答案】B
【解析】
试题分析:设这两个数列的前 项和分别为 ,则 ,故选B.
考点:1、等差数列的前 项和;2、等差数列的性质.
7.在某次数学测试中,学生成绩 服从正态分布 ,若 在 内的概率为 ,则 在 内的概率为( )
A. 0.05B.0。1C。 0.15D。 0.2
【答案】B
因为 为锐角三角形,所以 .
(2)在 中,由余弦定理 ,得 ,即 .解得 或 .
当 时,因为 ,所以角 为钝角,不符合题意,舍去.当 时,因为 ,又 ,所以 为锐角三角形,符合题意。所以 面积 .
考点:1、正余弦定理;2、三角形面积公式.

河北省衡水2020届高三第二次摸底考试数学试题(理)有答案(已纠错)

河北省衡水2020届高三第二次摸底考试数学试题(理)有答案(已纠错)

河北省衡水2020届高三下学期第二次摸底考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{A k =∈N |}N ,{|2B x x n ==或3,x n n =∈}N ,则AB =( )A .{}6,9B .{}3,6,9C .{}1,6,9,10D .{}6,9,10 2. 若复数z 满足()2z 12i 13i (i -+=+为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 某校为了解学生学习的情况,采用分层抽样的方法从高一2400人、高二 2000人、高三n 人中,抽取90人进行问卷调查.已知高一被抽取的人数为36,那么高三被抽取的人数为( )A .20B .24C .30D .324.已知命题1:,ln 2xp x e x ⎛⎫∃>> ⎪⎝⎭;命题:1,1,log 2log a b q a b b a ∀>>+≥则下列命题中为真命题的是 ( )A .()p q ⌝∧B .p q ∧ C. ()p q ∧⌝ D .()p q ∨⌝ 5. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( ) A .310π B .320π C.3110π- D .3120π- 6. 若实数,x y 满足条件21025020x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则432x z x y =+的最大值为( )A .1B .6415C.1619 D .127.已知)221sin a x dx π-=⎰,则二项式922x a x ⎛⎫- ⎪⎝⎭的展开式中的常数项为( )A .158-B .212- C.54- D .1-8. 已知奇函数()()()cos 0,0,0f x A x A ωϕωϕπ=+>><<的导函数的部分图象如图所示,E 是最高点,且MNE ∆是边长为1的正三角形,那么13f ⎛⎫= ⎪⎝⎭( )A.2π-B .12-C.14 D .34π- 9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A.28+.36+C. 36+.44+10. 执行如图所示的程序框图,输出S 的值等于( )A.21tan9π-- B.25tan922tan9ππ-C. 22tan9π-- D.25tan921tan9ππ-- 11.椭圆()222101y x b b+=<<的左焦点为F ,上顶点为A ,右顶点为B ,若FAB ∆的外接圆圆心(),P m n 在直线y x =-的左下方,则该椭圆离心率的取值范围为 ( )A.⎫⎪⎭ B .1,12⎛⎫ ⎪⎝⎭C.⎛ ⎝ D .10,2⎛⎫⎪⎝⎭ 12. 已知()'f x 是函数()f x 的导函数,且对任意的实数x 都有()()()'23(xf x e x f x e =++是自然对数的底数),()01f =,若不等式()0f x k -<的解集中恰有两个整数,则实数k 的取值范围是( )A .1,0e ⎡⎫-⎪⎢⎣⎭B .21,0e ⎡⎤-⎢⎥⎣⎦ C.21,0e ⎛⎤- ⎥⎝⎦D .21,0e ⎛⎫- ⎪⎝⎭ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知4,5,(,a b c a b λμλμ===+∈R),若(),⊥⊥-a b c b a ,则λμ= . 14.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,23B π=,若224a c ac +=,则()sin sin sin A C A C += .15.已知点12,F F 分别是双曲线()222:10y C x b b-=>的左、右焦点,O 为坐标原点,点P 在双曲线C 的右支上,且满足12212,tan 4F F OP PF F =∠≥,则双曲线C 的焦点的取值范围为 . 16.点M 为正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为11B C 上一点,112,NB NC DM BN =⊥,若球O 的体积为,则动点M 的轨迹的长度为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 满足112,a n ==∈N *. (1)求数列{}n a 的通项公式;(2)设以2为公比的等比数列{}n b 满足2214log log 1211(n n n b b a n n +⋅=++∈N *),求数列{}2log n n b b -的前n 项和n S .18. 如图是某市2019年3月1日至16日的空气质量指数趋势图,空气质量指数()AQI 小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月14日中的某一天到达该市.(1)若该人到达后停留2天(到达当日算1天),求此人停留期间空气质量都是重度污染的概率; (2)若该人到达后停留3天(到达当日算1天〉,设X 是此人停留期间空气重度污染的天数,求X 的分布列与数学期望.19. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//,2AB CD AB DC AC BD F ===,且PAD ∆与ABD ∆均为正三角形,G 为PAD ∆的重心.(1)求证://GF 平面PDC ;(2)求平面AGC 与平面PAB 所成锐二面角的正切值.20. 已知抛物线()2:20C y px p =>的焦点为,F A 为C 上位于第一象限的任意一点,过点A 的直线l 交C于另一点B ,交x 轴的正半轴于点D .(1)若FA AD =,当点A 的横坐标为3+时,ADF ∆为等腰直角三角形,求C 的方程; (2)对于(1)中求出的抛物线C ,若点()001,02D x x ⎛⎫≥⎪⎝⎭,记点B 关于x 轴的对称点为,E AE 交x 轴于点P ,且AP BP ⊥,求证:点P 的坐标为()0,0x -,并求点P 到直线AB 的距离d 的取值范围.21. 设函数()()2,1(xf x eg x kx k ==+∈R ).(1)若直线()=y g x 和函数()y f x =的图象相切,求k 的值;(2)当0k >时,若存在正实数m ,使对任意()0,x m ∈都有()()2f x g x x ->恒成立,求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中xOy 中,曲线C 的参数方程为cos (2sin x a tt y t =⎧⎨=⎩为参数,0a >). 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为cos 4πρθ⎛⎫+=- ⎪⎝⎭(1)设P 是曲线C 上的一个动点,当a =P 到直线l 的距离的最大值; (2)若曲线C 上所有的点均在直线l 的右下方,求a 的取值范围. 23.选修4-5:不等式选讲已知定义在R 上的函数()2,f x x m x m =--∈N *,且()4f x <恒成立. (1)求实数m 的值;(2)若()()()()0,1,0,1,3f f αβαβ∈∈+=,求证:4118αβ+≥.河北省衡水中学2020届高三下学期第二次摸底考试数学(理)试题参考答案一、选择题1-5:DCBAD 6-10: ABDBA 11-12:AC二、填空题13. 251615.⎛⎝⎦三、解答题17. 解:(1)由题知数列是以2为首项,2为公差的等差数列,()22212,43nn n a n=+-==-.(2)设等比数列{}n b的首项为1b,则112nnb b-=⨯,依题有()()()()1221212121214log log4log2log24log1logn nn nb b b b b n b n-+⋅=⨯⋅⨯=+-+()()2222121214log4log42log144128b b b n n n n=-+⨯-+=++,即()()212212142log1124log4log8bb b⨯-=⎧⎪⎨-=⎪⎩,解得211log2,4b b==,故()1112422,log21n nn n nb b b n-++=⨯=-=-+,()()()2221221324222nnnn n n nS+-+++∴=-=--.18. 解:设iA表示事件“此人于3月i日到达该市”()1,2,...,14i=.依题意知,()114iP A=,且()i jA A i j=∅≠.(1)设B为事件“此人停留2天空气质量都是重度污染”,则12121314B A A A A A=,所以()()()()()()12121314514P B P A P A P A P A P A ==,即此人停留2天空气质量都是重度污染的概率为514. (2) 由题意可知,X 的所有可能取值为0,1,2,3,且()()()()()4894893014P X P A A A P A P A P A ===++=,()()()()()21114211143214P X P A A A P A P A P A ===++=,()()()()()112131********P X P A A A P A P A P A ===++=, ()()()()333511023114141414P X P X P X P X ==-=-=-==---=,(或()()()()()()()3567103567105114P X P A A A A A P A P A P A P A P A ===++++=), 所以X 的分布列为故X 的期望()3100123141414147E X =⨯+⨯+⨯+⨯=. 19. 解:(1)连接AG 并延长交PD 于H ,连接CH .由梯形,//ABCD AB CD 且2AB DC =,知21AF FC =,又G 为PAD ∆的重心,21AG AF GH FC ∴==,故//GF HC .又HC ⊂平面,PCD GF ⊄平面,//PCD GF ∴平面PDC .(2)平面PAD ⊥平面,ABCD PAD ∆与ABD ∆均为正三角形,延长PG 交AD 的中点E ,连接,,,BE PE AD BE AD PE ∴⊥⊥∴⊥平面ABCD ,以E 为原点建立如图所示的空间直角坐标系,)()()()()2,0,0,3,0,3,0,,0,0,1AB DC A P B D G ==∴, ()()()3,0,1,3,3,0,3,0,3AG AB AP ∴=-=-=-,设()()()00000011,,,,,22C x y z DC AB x y z =∴=,可得000333,0,,0,,0222222x y z C AC ⎛⎫⎛⎫=-==∴-∴=- ⎪ ⎪⎝⎭⎝⎭,设平面PAB 的一个法向量为()1111,,n x y z =,由11111111113030n AB y x n AP z x ⎧⎧⎧⊥+==⎪⎪⎪⇒⇒⎨⎨⎨⊥+==⎪⎪⎪⎩⎩⎩,令11z =,得()13,1,1n =,同理可得平面AGC 的一个法向量()11212123,5,3,cos ,5n n n nn n n ⋅====AGC 与平面PAB 所成锐二面角的正切值为811. 20. 解:(1)由题知,0,3,422p pF FA FD ⎛⎫=+==+⎪⎝⎭,则4,0,2p DFD ⎛⎫+ ⎪⎝⎭的中点坐标为(22,024p ⎛⎫++ ⎪⎝⎭,则23+=+2p =,故C 的方程为24y x =. (2) 依题可设直线AB 的方程为()()()011220,,,,x my x m A x y B x y =+≠,则()22,E x y -,由204y x x my x ⎧=⎨=+⎩消去x ,得220001440,.161602y my x x m x --=≥∴∆=+>,121204,4y y m y y x +==-,设P 的坐标为(),0P x ,则()()2211,,,P P PE x x y PA x x y =--=-,由题知//PE PA ,所以()()21210P P x x y y x x -+-=,即()()221212211221211244P y y y y y y y y x y y x y y x +++=+==,显然1240y y m +=≠,所以1204P y yx x ==-,即证()0,0P x x -,由题知EPB ∆为等腰直角三角形,所以1AP k =,即12121y y x x +=-,也即()122212114y y y y +=-,所以()21212124,416y y yy y y -=∴+-=,即22000161616,1,1m x m x x +==-<,又因为012x ≥,所以011,2x d ≤<===,令()220224,2,2t t x t d t t t ⎛-=∈=-==- ⎝⎦,易知()42f t t t =-在⎛ ⎝⎦上是减函数,所以23d ⎫∈⎪⎪⎣⎭. 21. 解:(1)设切点的坐标为()2,tt e ,由()2xf x e=得()2'2xf x e =,所以切线方程为()222t t y e e x t -=-,即()2212tty e x t e =+-,由已知()22212tty e x t e =+-和1y kx =+为同一条直线,()222,121t t e k t e ∴=-=,令()()1x h x x e =-,则()'x h x xe =-,当(),0x ∈-∞时,()()'0,h x h x >单调递增,当()0,x ∈+∞时,()()'0,h x h x <单调递减,()()01h x h ∴≤=.当且仅当0x =时等号成立,0,2t k ∴==.(注明:若由函数()2x f x e =与()1g x kx =+相交于点()0,1,直线()1g x kx =+和函数()2x f x e =的图象相切于()0,1,得出022k e ==,得3分)(2) ①当2k >时,由(1)结合函数的图象知,存在00x >,使得对于任意的()00,x x ∈,都有()()f x g x <,则不等式()()2f x g x x ->等价于()()2f x g x x ->,即()2210xk x e -+->,设()()()2221,'2x x t x k x e t x k x e =-+-=--,令()'0t x >得12ln22k x -<,令()'0t x <得12ln 22k x ->.若()()0121224ln 0,0,ln,,2222k k k x t x --⎛⎫<≤≤⊆+∞∴ ⎪⎝⎭在()00,x 上单调递减,注意到()00t =,所以对任意的()00,x x ∈,都有()0t x <,与题设不符. 若()1212124,ln 0,0,ln ,ln ,222222k k k k t x ---⎛⎫⎛⎫>>⊆-∞∴ ⎪ ⎪⎝⎭⎝⎭在120,ln 22k -⎛⎫⎪⎝⎭上单调递增,()00t =,所以对任意的120,ln 22k x -⎛⎫∈ ⎪⎝⎭,都有()0t x >,符合题设.此时取0120min ,ln 22k m x -⎧⎫<≤⎨⎬⎩⎭,可得对任意()0,x m ∈,都有()()2f x g x x ->.②当02k <≤时,由(1)结合函数的图象知()()22100,xex x -+≥>()()()()()22121220x x f x g x e kx e x k x k x -=--=-++-≥-≥,对任意0x >都成立,()()2f x g x x ∴->等价于()2210x e k x -+->.设()()221x x e k x ϕ=-+-,则()()2'22x x e k ϕ=-+,由()'0x ϕ>,得()12ln 0,'022k x x ϕ+>><得()12ln ,22k x x ϕ+<∴在120,ln 22k +⎛⎫ ⎪⎝⎭上单调递减,注意到()00ϕ=,所以对任意的120,ln 22k x +⎛⎫∈ ⎪⎝⎭,都有()0x ϕ<,不符合题设.综上所述,k 的取值范围为()4,+∞. 22. 解:(1)由cos 4πρθ⎛⎫+=- ⎪⎝⎭()cos sin 2ρθρθ-=-)2x y -=-l 的方程为40x y -+=,依题意,设(),2sin P t t ,则P 到直线l 的距离6d t π⎛⎫===+ ⎪⎝⎭,当26t k ππ+=,即2,6t k k Z ππ=-∈时,max d ==,故点P 到直线l 的距离的最大值为(2)因为曲线C 上的所有点均在直线l 的右下方,t ∴∀∈R ,cos 2sin 40-+>a t t 恒成立,即()4t ϕ+-(其中2tan aϕ=)恒成立,4<,又0a >,解得0a <<a 取值范围为(.23. 解:(1)222x m x x m x m --≤--=,要使24x m x --<恒成立,则2m <,解得22m -<<.又m ∈N *,1∴=m .(2)()()()()0,1,0,1,22223f f αβαβαβ∈∈∴+=-+-=,即()141414,22525182βααβαβαβαβαβ⎛⎛⎫⎛⎫+=∴+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭⎝,当且仅当4βααβ=,即11,36αβ==时取等号,故4118αβ+≥.。

2020年河北省衡水二中高考数学二模试卷(理科) (解析版)

2020年河北省衡水二中高考数学二模试卷(理科) (解析版)

2020年河北省衡水二中高考数学二模试卷(理科)一、选择题(本大题共12小题,共36.0分)1.设集合A={x∈Z|x2−2x−3<0},B={−1,0,1,2},则A∩B=()A. {0,1}B. {0,1,2}C. {−1,0,1}D. {−1,0}2.i是虚数单位,z=4i则|z|=()1−iA. 2B. 2√2C. 4D. 4√23.风雨桥是侗族最具特色的建筑之一.风雨桥由桥、塔、亭组成,其亭、塔平面图通常是正方形、正六边形和正八边形.下图是风雨桥亭、塔正六边形的正射影,其正六边形的边长计算方法如下:A1B1=A0B0−B0B1,A2B2=A1B1−B1B2,A3B3=A2B2−B2B3,…,A n B n=A n−1B n−1−B n−1B n,其中B n−1B n=⋯=B2B3=B1B2=B0B1,n∈N∗.根据每层边长间的规律,建筑师通过推算,可初步估计需要多少材料.所用材料中,横向梁所用木料与正六边形的周长有关.某一风雨桥亭、塔共5层,若A0B0=8m,B0B1=0.5m,则这五层正六边形的周长总和为()A. 35mB. 45mC. 210mD. 270m4.已知l,m,n是三条不同的直线,α,β是两个不同的平面,则α⊥β的一个充分条件是()A. l⊂α,m⊂β,且l⊥mB. l⊂α,m⊂β,n⊂β,且l⊥m,l⊥nC. m⊂α,n⊂β,且l⊥m,l⊥nD. l⊂α,l//m,且m⊥β5.下图可能是下列哪个函数的图象()A. y=x2(x−2)x−1B. y=x(x−2)ln|x−1|C. y=x2ln|x−1|D. y=tanx⋅ln(x+1)6.已知a⃗,b⃗ 为单位向量,其夹角为120°,则(a⃗−2b⃗ )⋅b⃗ =()A. −52B. −32C. −1D. 27.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么至多有一名女生参加的概率是()A. 110B. 310C. 35D. 9108.条形码是由一组规则排列的条、空及其对应的代码组成,用来表示一定的信息,我们通常见的条形码是“EAN−13”通用代码,它是由从左到右排列的13个数字(用a1,a2,…,a13表示)组成,这些数字分别表示前缀部分、制造厂代码、商品代码和校验码,其中a13是校验码,用来校验前12个数字代码的正确性.图(1)是计算第13位校验码的程序框图,框图中符号[m]表示不超过m的最大整数(例如[365.8]=365).现有一条形码如图(2)所示(97a37107202551),其中第3个数被污损,那么这个被污损数字a3是A. 9B. 8C. 7D. 69.如图是1990年−2017年我国劳动年龄(15−64岁)人口数量及其占总人口比重情况:根据图表信息,下列统计结论不正确的是()A. 2000年我国劳动年龄人口数量及其占总人口比重的年增幅均为最大B. 2010年后我国人口数量开始呈现负增长态势C. 2013年我国劳动年龄人口数量达到峰值D. 我国劳动年龄人口占总人口比重极差超过6%10. 设抛物线x 2=4y 的焦点为F ,过点F 作斜率为k(k >0)的直线l 与抛物线相交于A 、B 两点,且点P 恰为AB 的中点,过点P 作x 轴的垂线与抛物线交于点M ,若|MF |=3,则直线l 的方程为( )A. y =2√2x +1B. y =√3x +1C. y =√2x +1D. y =2√3x +211. 在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为AB 和AA 1的中点,则直线EF 与平面ACC 1A 1所成的角等于( )A. 30°B. 45°C. 60°D. 90° 12. 若函数在(0,2)上存在两个极值点,则a 的取值范围是( ) A.B. C. D.二、填空题(本大题共4小题,共12.0分)13. 已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为√3,则双曲线C 的焦距为_______.14. 在等比数列{a n }中,已知a 1+a 2+⋯+a n =2n −1,则a 12+a 22+⋯+a n 2=______.15. 已知定义在R 上的函数f (x )满足:f(x)={x 2+2,x ∈[0,1),2−x 2,x ∈[−1,0),且f(x +2)=f(x),g(x)=2x+5x+2,则方程f (x )=g (x )在区间[−5,1]上的所有实根之和为____.16. 在三棱锥D − ABC 中,AB = BC = DB = DC = 1,当三棱锥D – ABC 的体积最大时,其外接球的表面积为 ____________ .三、解答题(本大题共7小题,共84.0分)17. 如图所示,在平面四边形ABCD 中,BC =CD =2,△BCD 的面积是2.(1)求∠BCD 的大小(2)若∠ABD =2∠ACB =60°,求线段AD 的长.18.如图,在四棱锥P−ABCD中,底面ABCD为平行四边形,已知PA=AC=2,,CE⊥AD与E.(1)求证:AD⊥PC;(2)若平面PAD⊥平面ABCD,且AD=3,求二面角C−PD−A的余弦值.19.已知F1(−1,0),F2(1,0)为椭圆Γ:x2a2+y2b2=1(a>b>0)的左右焦点,过F2的直线交椭圆于A,B两点,△F1AB的周长为8.(1)求椭圆Γ的标准方程;(2)已知P(x0,y0)(y0≠0)是直线l:x=4上一动点,若PA,PB与x轴分别交于点M(x M,0),N(x N,0),则1x M−1+1x N−1是否为定值,若是,求出该定值,不是请说明理由.20.已知函数f(x)=x2−aln x有两个零点x1,x2(x1<x2),有一个极值点x0.(1)求实数a的取值范围;(2)求证:x1+3x2>4x0.21.在某市创建全国文明城市的过程中,创文专家组对该市的中小学进行了抽检,其中抽检的一个环节是对学校的教师和学生分别进行问卷测评.下表是被抽检到的5所学校A、B、C、D、E 的教师和学生的测评成绩(单位:分):(1)建立y关于x的回归方程ŷ=b̂x+â;(2)现从A、B、C、D、E这5所学校中随机选2所派代表参加座谈,用X表示选出的2所学校中学生的测评成绩大于90分的学校数,求随机变量X的分布列及数学期望E(X).附:b ̂=ni=1i −x)(y i −y)∑(x −x)2n ,a ̂=y −b ̂x .22. 在直角坐标系xOy 中,直线l 1的参数方程为{x =−4t +2y =kt (t 为参数),直线l 2的参数方程为{x =m −2y =m k(m 为参数),当k 变化时,设 l 1与l 2的交点的轨迹为曲线C .(I)以原点为极点,x 轴的非负半轴为极轴建立极坐标系,求曲线C 的极坐标方程; (II)设曲线C 上的点A 的极角为π6,射线OA 与直线l 3:ρsin(θ+φ)−2√2=0 (0<φ<π2)的交点为B ,且|OB|=√7|OA|,求φ的值.23. 已知函数f(x)=|x +2a|+|x −a|.(1)当a =1时,求不等式f(x)≥4−|x +2|的解集;(2)设a >0,b >0,f(x)的最小值为t ,若t +3b =3,求1a +2b 的最小值。

河北省衡水中学2020届高三数学下学期第二次调研试题理(含解析)

河北省衡水中学2020届高三数学下学期第二次调研试题理(含解析)

uuur uuur uuur AB AC 且 AP
uuur BC ,
则实数 的值为__________.
【答案】1
【解析】
试题分析:因为 AP BC ,所以 AP BC 0 .
AP
BC
(
AB
AC)
( AC
AB)
AB
AC
2 AC

2 AB
AB
AC

( 1) AB AC cos 60 AC |2 AB |2 = 2( 1) 4 4 2 2 0 ,解得 1 .
【解析】
试题分析:令 x 0 ,得 a0 1;令 x 1 ,得 2 a0 a1 a2 a8 ,即
a1 a2 a8 3 .又 a8 (2)7 C77 128 ,所以 a1 a2 a7 3 a8 125 ,
故选 C.
考点:二项式定理.
10.已知圆 C1 : x2
2cx
它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离, 就是球的半径,
三棱柱中,底面 BDC , BD CD 1, BC 3 , BDC 120 ,
BDC
的外接圆的半径为
1 2
sin
3 120
1

3 由题意可得:球心到底面的距离为 2 .
r 3 1 7
球的半径为
y2
0 ,圆 C2 : x2
2cx
y2
x2 0 , c 是椭圆 C : a2
y2 b2
1

半焦距,若圆 C1 , C2 都在椭圆内,则椭圆离心率的范围是( )
A.
1 2
,1
【答案】B
B.
0,
1 2

河北省衡水市2020届高三数学二模试题 理(含解析)

河北省衡水市2020届高三数学二模试题 理(含解析)

2020学年度第二学期二模考试 高三年级数学试卷(理科)一、选择题(下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.集合{}{}11324x A x x B x ,+=-≤=≥,则A B =U ( )A. []02,B. ()13,C. []14, D.[)2-+∞,【答案】D 【解析】 【分析】解不等式313x -≤-≤可得集合A ,解1222x +≥可得集合B ,进而得到集合A,B 的并集。

【详解】由题得{}|24A x x =-≤≤,{}|1B x x =≤,则有{}|2A B x x ⋃=≥-,故选D 。

【点睛】本题考查求集合的并集,属于基础题。

2.复数121z i z i =+=,,其中i 为虚数单位,则12z z 的虚部为( ) A. 1- B. 1C. iD. i -【答案】A 【解析】 【分析】根据复数共轭的概念得到__1z ,再由复数的除法运算得到结果即可.【详解】11211,1,z i z i i z i-=-==--虚部为-1, 故选A.【点睛】本题考查了复数的运算法则、复数的共轭复数等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.3.某中学2020年的高考考生人数是2020年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2020年和2020年的高考情况,得到如图柱状图:则下列结论正确的是( )A. 与2020年相比,2020年一本达线人数减少B. 与2020年相比,2020二本达线人数增加了0.5倍C. 2020年与2020年艺体达线人数相同D. 与2020年相比,2020年不上线的人数有所增加 【答案】D 【解析】 【分析】设2020年该校参加高考的人数为S ,则2020年该校参加高考的人数为1.5S . 观察柱状统计图,找出各数据,再利用各数量间的关系列式计算得到答案.【详解】设2020年该校参加高考的人数为S ,则2020年该校参加高考的人数为1.5S . 对于选项A.2020年一本达线人数为0.28S .2020年一本达线人数为0.24 1.50.36S S ⨯=,可见一本达线人数增加了,故选项A 错误;对于选项B ,2020年二本达线人数为0.32S ,2020年二本达线人数为0.4 1.50.6S S ⨯=,显然2020年二本达线人数不是增加了0.5倍,故选项B 错误;对于选项C ,2020年和2020年.艺体达线率没变,但是人数是不相同的,故选项C 错误; 对于选项D ,2020年不上线人数为0.32S .2020年不上线人数为0.28 1.50.42S S ⨯=.不达线人数有所增加.故选D.【点睛】本题考查了柱状统计图以及用样本估计总体,观察柱状统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.4.如图所示,ABC ∆中,点D 是线段BC的中点,E 是线段AD 的靠近A 的三等分点,则AC =u u u r( )A. 43AD BE +u u ur u u u rB. 53AD BE +u u ur u u u rC. 4132AD BE +u u ur u u u rD. 5132AD BE +u u ur u u u r【答案】B 【解析】 【分析】利用向量的加减运算求解即可 【详解】据题意,2533AC DC DA BD AD BE ED AD BE AD AD AD BE =-=+=++=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r.故选:B . 【点睛】本题考查向量加法、减法以及向量的数乘运算,是基础题5.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序配图,求得该垛果子的总数S 为( )A. 120B. 84C. 56D. 28 【答案】B【解析】运行程序:i=1,n=1,s=1,1<7,i=2,n=3,s=4,2<7,i=3,n=6,s=10,3<7,i=4,n=10,s=20,4<7,i=5.n=15,s=35,5<7,i=6,n=21,s=56,6<7,i=7,n=28,s=84,7≮7,s=84.故选C.6.某人在微信群中发一个8元“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领到的钱数不少于其他任何人的概率为( ) A.13B.827C.37D.518【答案】B 【解析】 【分析】利用隔板法得到共计有n 27C ==21种领法,利用列举法求得甲领到的钱数不少于其他任何人的情况总数m =8,由此能求出结果. 【详解】如下图,利用隔板法,得到共计有n 27C ==21种领法,甲领3元“甲领取的钱数不少于其他任何人”的情况有2种,即乙领3元,丙领2元或丙领3元,乙领2元,记为(乙2,丙3)或(丙2,乙3);甲领4元“甲领取的钱数不少于其他任何人”的情况有3种,即(乙1,丙3)或(丙1,乙3)或(乙2,丙2)甲领5元“甲领取的钱数不少于其他任何人”的情况有2种,即(乙1,丙2)或(丙1,乙2);甲领6元“甲领取的钱数不少于其他任何人”的情况只有1种,即(乙1,丙1) “甲领取的钱数不少于其他任何人”的情况总数m =2+3+2+1=6, ∴甲领取的钱数不少于其他任何人的概率p 821=. 故选B .【点睛】本题考查概率的求法,考查隔板法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.以双曲线()2222:100x y C a b a b-=>>,上一点M 为圆心作圆,该圆与x 轴相切于C 的一个焦点F ,与y 轴交于P Q ,两点,若PQ =,则双曲线C 的离心率是( )C. 2【答案】A 【解析】 【分析】根据圆与x 轴相切于C 的一个焦点F ,且圆心在双曲线上,可确定圆心坐标和半径,再由弦长3PQ c =,即可求出结果. 【详解】因为以双曲线2222:1(0,0)x y C a b a b-=>>上一点M 为圆心作圆,该圆与x 轴相切于C 的一个焦点F ,所以MF x ⊥轴;不妨令M 在第一象限,所以易得2b M c a ,⎛⎫⎪⎝⎭,半径2b r a=;取PQ 中点N ,连结MN ,则MN 垂直且平分PQ ,所以MQ ==;又MQ r =,所以23b c a =222ac =220e -=,解得e =故答案为A【点睛】本题主要考查双曲线的离心率,根据题意,结合双曲线的性质即可求解,属于常考题型.8.在斜ABC ∆中,设解 A B C ,,的对边分别为a b c ,,,已知sin sin sin 4sin a A b B c C b B +-=cos C ,若CD 是角C 的角平分线,且CD b =,则cos C =( )A.34B.18C.23D.16【答案】B 【解析】 【分析】由已知sin sin sin 4sin cos a A b B c C b B C +-=,可得22224cos ,a b c b C +-= 结合余弦定理可得2,a b = 又CD 是角C 的角平分线,且CD b =,结合三角形角平分线定理可得2BD AD =,再结合余弦定理可得cos2C的值,则cos C 可求. 【详解】由已知sin sin sin 4sin cos a A b B c C b B C +-=,根据正弦定理可得22224cos ,a b c b C +-=又由余弦定理可得2222cos ,a b c ab C +-=故24,a b =即2,a b =结合三角形角平分线定理可得2BD AD =,再结合余弦定理可得()22222222cos54cos 22C CBD b b b b b b =+-⨯⨯⨯=- , 222222cos 22cos 22C CAD b b b b b b =+-⨯⨯⨯=-,由2224BD AD BD AD =⇒= ,可得2222354cos 88cos ,cos ,2224C C C b b b b -=-∴=故2231cos 2cos 121,248C C ⎛⎫=-=⨯-= ⎪⎝⎭故选B.【点睛】本题考查正弦定理,余弦定理及三角形角平分线定理,属中档题.9.如图所示,边长为1的正方形网络中粗线画出的是某几何体的三视图,则该几何体所有棱长组成的集合为A. {1,5}B. {1,6}C. {1,2,5}D.{1,2,22,6}【答案】B 【解析】 【分析】将三视图还原成四棱柱即可得解.【详解】该几何体是四棱柱,底面是边长为16, 故选B.【点睛】由三视图还原几何体时应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.10.如图,在平面直角坐标系xOy 中,质点M N ,间隔3分钟先后从点P ,绕原点按逆时针方向作角速度为6弧度/分钟的匀速圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( )A. 37.5分钟B. 40.5分钟C. 49.5分钟D. 52.5分钟 【答案】A 【解析】【详解】分析:由题意可得:y N =sin cos 626x x πππ⎛⎫-=-⎪⎝⎭,y M =()x+3sin 626x πππ⎡⎤-=⎢⎥⎣⎦,计算y M ﹣y N 2sin 64x ππ⎛⎫+⎪⎝⎭,即可得出.详解:由题意可得:y N =sin cos 626x x πππ⎛⎫-=- ⎪⎝⎭,y M =()cos x+3sin 626x πππ⎡⎤-=⎢⎥⎣⎦∴y M ﹣y N = y M ﹣y N 2sin 64x ππ⎛⎫+⎪⎝⎭,令sin 64x ππ⎛⎫+ ⎪⎝⎭=1,解得:64x ππ⎛⎫+ ⎪⎝⎭=2kπ+2π,x=12k+32,k=0,1,2,3.∴M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间=3×12+32=37.5(分钟). 故选:A .点睛:本题考查了三角函数的图象与性质、和差公式、数形结合方法,考查了推理能力与计算能力,属于中档题.也查到了三角函数的定义的应用,三角函数的定义指的是单位圆上的点坐标和这一点的旋转角之间的关系.11.在圆锥PO 中,已知高2PO =,底面圆的半径为4,M 为母线PB 的点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为( )①圆的面积为4π; 37;③双曲线两渐近线的夹角正切值为34-④抛物线中焦点到准线的距离为55. A. 1个 B. 2个C. 3个D. 4个【答案】B 【解析】 【分析】根据点M 是母线的中点,求出截面圆的半径即可判断①;由勾股定理求出椭圆长轴可判断②;建立坐标系,求出,a b 的关系可判断③;建立坐标系,求出抛物线方程,可判断④. 【详解】①Q 点M 是母线的中点, ∴截面的半径2r =,因此面积224ππ=⨯=,故①正确;②由勾股定理可得椭圆的长轴为()2242137=++=,故②正确;③在与底面、平面PAB 的垂直且过点M 的平面内建立直角坐标系,不妨设双曲线的标准方程为()22221,0x y a b a b-=>,则()1,0M ,即1a =,把点(2,23代入可得21241b -=,解得2,2b b a =∴=,设双曲线两渐近线的夹角为2θ,2224tan 2123θ⨯∴==--,4sin 25θ∴=,因比双曲线两渐近线的夹角为4arcsin 5,③不正确;④建立直角坐标系,不彷设抛物线的标准方程为22y px =,把点)5,4代入可得2425p =,解得85p =∴抛物线中焦点到准线的距离p 85,④不正确,故选B .【点睛】本题通过对多个命题真假的判断,综合考查圆锥的性质、椭圆的性质、双曲线的性质,抛物线的方程与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.12.设使直线y ax =与曲线()sin ln 4x x x f π⎛⎫=++ ⎪⎝⎭有公共点的a 的取值范围为集合A ,则( )A. ()1A ⊆-∞,B. ()1A +∞≠∅I , C. ()1A ⊆+∞, D. ()1R A ⋃+∞=, 【答案】A 【解析】 【分析】设公共点(),s t ,可得πsin ln 1ln 4s ss a s s⎛⎫++ ⎪+⎝⎭=≤,通过构造函数()1ln g s s s =+-,求导分析单调性可得1ln 1ss+≤,从而得1a <. 【详解】设直线y ax =与曲线()πsin ln 4f x x x ⎛⎫=++ ⎪⎝⎭有公共点(),s t ,则πsin ln 1ln 4s ss a s s⎛⎫++ ⎪+⎝⎭=≤, 设()1ln g s s s =+-,则()111sg s s s-=-=' , 所以()g s 在()0,1上是增函数,在()1,+∞上是减函数, 所以()()10g s g ≤=,1+ln s s ≤,又0s >,所以1ln 1ss+≤,当1s =时,πsin ln 1ln 41s ss s s⎛⎫++ ⎪+⎝⎭<=,所以1a <,故选A. 【点睛】本题是一道灵活处理方程问题求参的试题,用到了放缩的思想和构造新函数的方法,方法较为巧妙,难度较大,属于难题.二、填空题(把答案在答题纸的横线上)13.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到 第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42 84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04 32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45 若从表中第6行第6列开始向右依次读取数据,则得到的第6个样本编号_____ 【答案】535 【解析】 【分析】根据题意按既定的方法向右读,直到取到第六个样本为止,即可得其编号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省衡水2020届高三下学期第二次摸底考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{A k =∈N |}N ,{|2B x x n ==或3,x n n =∈}N ,则A B =I ( ) A .{}6,9 B .{}3,6,9 C .{}1,6,9,10 D .{}6,9,10 2. 若复数z 满足()2z 12i 13i (i -+=+为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 某校为了解学生学习的情况,采用分层抽样的方法从高一2400人、高二 2000人、高三n 人中,抽取90人进行问卷调查.已知高一被抽取的人数为36,那么高三被抽取的人数为( )A .20B .24C .30D .324.已知命题1:,ln 2xp x e x ⎛⎫∃>> ⎪⎝⎭;命题:1,1,log 2log a b q a b b a ∀>>+≥则下列命题中为真命题的是 ( )A .()p q ⌝∧B .p q ∧ C. ()p q ∧⌝ D .()p q ∨⌝ 5. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( ) A .310π B .320π C.3110π- D .3120π- 6. 若实数,x y 满足条件21025020x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则432x z x y =+的最大值为( )A .1B .6415C.1619 D .127.已知)221sin a x dx π-=⎰,则二项式922x a x ⎛⎫- ⎪⎝⎭的展开式中的常数项为( )A .158-B .212- C.54- D .1-8. 已知奇函数()()()cos 0,0,0f x A x A ωϕωϕπ=+>><<的导函数的部分图象如图所示,E 是最高点,且MNE ∆是边长为1的正三角形,那么13f ⎛⎫= ⎪⎝⎭( )A.32π-B .12-C.14 D .34π- 9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .2843122++B .3643122++ C. 3642123++ D .44122+ 10. 执行如图所示的程序框图,输出S 的值等于( )A .321tan9π-- B .25tan3922tan9ππ- C. 2322tan9D .25tan3921tan9ππ-- 11.椭圆()222101y x b b+=<<的左焦点为F ,上顶点为A ,右顶点为B ,若FAB ∆的外接圆圆心(),P m n 在直线y x =-的左下方,则该椭圆离心率的取值范围为 ( )A .22⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭ C.20,2⎛⎫ ⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭12. 已知()'f x 是函数()f x 的导函数,且对任意的实数x 都有()()()'23(xf x e x f x e =++是自然对数的底数),()01f =,若不等式()0f x k -<的解集中恰有两个整数,则实数k 的取值范围是( )A .1,0e ⎡⎫-⎪⎢⎣⎭B .21,0e ⎡⎤-⎢⎥⎣⎦ C.21,0e ⎛⎤- ⎥⎝⎦D .21,0e ⎛⎫- ⎪⎝⎭ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知4,5,(,a b c a b λμλμ===+∈r r r r r R),若(),⊥⊥-r r r r r a b c b a ,则λμ= .14.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,23B π=,若224a c ac +=,则()sin sin sin A C A C += .15.已知点12,F F 分别是双曲线()222:10y C x b b-=>的左、右焦点,O 为坐标原点,点P 在双曲线C 的右支上,且满足12212,tan 4F F OP PF F =∠≥,则双曲线C 的焦点的取值范围为 . 16.点M 为正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为11B C 上一点,112,NB NC DM BN =⊥,若球O 的体积为92π,则动点M 的轨迹的长度为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 满足111,332,n n a a a n +=+=++∈N *. (1)求数列{}n a 的通项公式;(2)设以2为公比的等比数列{}n b 满足2214log log 1211(n n n b b a n n +⋅=++∈N *),求数列{}2log n n b b -的前n 项和n S .18. 如图是某市2019年3月1日至16日的空气质量指数趋势图,空气质量指数()AQI 小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月14日中的某一天到达该市.(1)若该人到达后停留2天(到达当日算1天),求此人停留期间空气质量都是重度污染的概率; (2)若该人到达后停留3天(到达当日算1天〉,设X 是此人停留期间空气重度污染的天数,求X 的分布列与数学期望.19. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//,223,AB CD AB DC AC BD F ===I ,且PAD ∆与ABD ∆均为正三角形,G 为PAD ∆的重心.(1)求证://GF 平面PDC ;(2)求平面AGC 与平面PAB 所成锐二面角的正切值.20. 已知抛物线()2:20C y px p =>的焦点为,F A 为C 上位于第一象限的任意一点,过点A 的直线l 交C于另一点B ,交x 轴的正半轴于点D .(1)若FA AD =,当点A 的横坐标为322+时,ADF ∆为等腰直角三角形,求C 的方程; (2)对于(1)中求出的抛物线C ,若点()001,02D x x ⎛⎫≥⎪⎝⎭,记点B 关于x 轴的对称点为,E AE 交x 轴于点P ,且AP BP ⊥,求证:点P 的坐标为()0,0x -,并求点P 到直线AB 的距离d 的取值范围.21. 设函数()()2,1(xf x eg x kx k ==+∈R ).(1)若直线()=y g x 和函数()y f x =的图象相切,求k 的值;(2)当0k >时,若存在正实数m ,使对任意()0,x m ∈都有()()2f x g x x ->恒成立,求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中xOy 中,曲线C 的参数方程为cos (2sin x a tt y t =⎧⎨=⎩为参数,0a >). 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为cos 224πρθ⎛⎫+=- ⎪⎝⎭(1)设P 是曲线C 上的一个动点,当3a =P 到直线l 的距离的最大值; (2)若曲线C 上所有的点均在直线l 的右下方,求a 的取值范围. 23.选修4-5:不等式选讲已知定义在R 上的函数()2,f x x m x m =--∈N *,且()4f x <恒成立. (1)求实数m 的值;(2)若()()()()0,1,0,1,3f f αβαβ∈∈+=,求证:4118αβ+≥.河北省衡水中学2020届高三下学期第二次摸底考试数学(理)试题参考答案一、选择题1-5:DCBAD 6-10: ABDBA 11-12:AC二、填空题13. 251615. 2,3⎛⎝⎦三、解答题17. 解:(1)由题知数列是以2为首项,2为公差的等差数列,()22212,43nn n a n=+-==-.(2)设等比数列{}n b的首项为1b,则112nnb b-=⨯,依题有()()()()1221212121214log log4log2log24log1logn nn nb b b b b n b n-+⋅=⨯⋅⨯=+-+()()2222121214log4log42log144128b b b n n n n=-+⨯-+=++,即()()212212142log1124log4log8bb b⨯-=⎧⎪⎨-=⎪⎩,解得211log2,4b b==,故()1112422,log21n nn n nb b b n-++=⨯=-=-+Q,()()()2221221324222nnnn n n nS+-+++∴=-=--.18. 解:设iA表示事件“此人于3月i日到达该市”()1,2,...,14i=.依题意知,()114iP A=,且()i jA A i j=∅≠I.(1)设B为事件“此人停留2天空气质量都是重度污染”,则12121314B A A A A A=U U U U,所以()()()()()()12121314514P B P A P A P A P A P A ==U U U U ,即此人停留2天空气质量都是重度污染的概率为514. (2) 由题意可知,X 的所有可能取值为0,1,2,3,且()()()()()4894893014P X P A A A P A P A P A ===++=U U ,()()()()()21114211143214P X P A A A P A P A P A ===++=U U ,()()()()()11213112133314P X P A A A P A P A P A ===++=U U , ()()()()333511023114141414P X P X P X P X ==-=-=-==---=,(或()()()()()()()3567103567105114P X P A A A A A P A P A P A P A P A ===++++=U U U U ), 所以X 的分布列为X123P314514314314故X 的期望()3533100123141414147E X =⨯+⨯+⨯+⨯=. 19. 解:(1)连接AG 并延长交PD 于H ,连接CH .由梯形,//ABCD AB CD 且2AB DC =,知21AF FC =,又G 为PAD ∆的重心,21AG AF GH FC ∴==,故//GF HC .又HC ⊂平面,PCD GF ⊄平面,//PCD GF ∴平面PDC .(2)Q 平面PAD ⊥平面,ABCD PAD ∆与ABD ∆均为正三角形,延长PG 交AD 的中点E ,连接,,,BE PE AD BE AD PE ∴⊥⊥∴⊥平面ABCD ,以E 为原点建立如图所示的空间直角坐标系,)()()()()223,3,0,0,0,0,3,0,3,0,3,0,0,0,0,1AB DC A P B D G ==∴-Q , ()()()3,0,1,3,3,0,3,0,3AG AB AP ∴=-=-=-u u u r u u u r u u u r,设()()()00000011,,,,3,,3,3,022C x y z DC AB x y z =∴=-u u u r u u u r Q ,可得000333,0,,0,,0222222x y z C AC ⎛⎫⎛⎫=-==∴-∴=- ⎪ ⎪⎝⎭⎝⎭u u u r ,设平面PAB 的一个法向量为()1111,,n x y z =u r,由11111111113030n AB y x n AP z x ⎧⎧⎧⊥+==⎪⎪⎪⇒⇒⎨⎨⎨⊥+==⎪⎪⎪⎩⎩⎩u r u u u ru r u u u r ,令11z =,得)1,1n =u r ,同理可得平面AGC的一个法向量)1121212,cos ,n n n n n n n ⋅====u r u ru u r u r u u r Q u r u u r AGC 与平面PAB 所成锐二面角的正切值为811. 20. 解:(1)由题知,0,3,422p p F FA FD ⎛⎫=+==+⎪⎝⎭,则4,0,22p D FD ⎛⎫++ ⎪⎝⎭的中点坐标为(22,024p ⎛⎫++ ⎪⎝⎭,则23+=+2p =,故C 的方程为24y x =. (2) 依题可设直线AB 的方程为()()()011220,,,,x my x m A x y B x y =+≠,则()22,E x y -,由204y x x my x ⎧=⎨=+⎩消去x ,得220001440,.161602y my x x m x --=≥∴∆=+>Q ,121204,4y y m y y x +==-,设P 的坐标为(),0P x ,则()()2211,,,P P PE x x y PA x x y =--=-u u u r u u u r,由题知//PE PA u u u r u u u r,所以()()21210P P x x y y x x -+-=,即()()221212211221211244P y y y y y y y y x y y x y y x +++=+==,显然1240y y m +=≠,所以1204P y yx x ==-,即证()0,0P x x -,由题知EPB ∆为等腰直角三角形,所以1AP k =,即12121y y x x +=-,也即()122212114y y y y +=-,所以()21212124,416y y y y y y -=∴+-=,即22000161616,1,1m x m x x +==-<,又因为012x ≥,所以011,2x d ≤<===,令()220224,2,2t t x t d t t t ⎛-=∈=-==- ⎝⎦,易知()42f t t t =-在⎛ ⎝⎦上是减函数,所以2d ⎫∈⎪⎪⎣⎭. 21. 解:(1)设切点的坐标为()2,tt e ,由()2x f x e =得()2'2xf x e =,所以切线方程为()222t t y e e x t -=-,即()2212tty e x t e =+-,由已知()22212tty e x t e =+-和1y kx =+为同一条直线,()222,121t t e k t e ∴=-=,令()()1x h x x e =-,则()'x h x xe =-,当(),0x ∈-∞时,()()'0,h x h x >单调递增,当()0,x ∈+∞时,()()'0,h x h x <单调递减,()()01h x h ∴≤=.当且仅当0x =时等号成立,0,2t k ∴==.(注明:若由函数()2x f x e =与()1g x kx =+相交于点()0,1,直线()1g x kx =+和函数()2x f x e =的图象相切于()0,1,得出022k e ==,得3分)(2) ①当2k >时,由(1)结合函数的图象知,存在00x >,使得对于任意的()00,x x ∈,都有()()f x g x <,则不等式()()2f x g x x ->等价于()()2f x g x x ->,即()2210xk x e -+->,设()()()2221,'2x x t x k x e t x k x e =-+-=--,令()'0t x >得12ln22k x -<,令()'0t x <得12ln 22k x ->.若()()0121224ln 0,0,ln ,,2222k k k x t x --⎛⎫<≤≤⊆+∞∴ ⎪⎝⎭Q 在()00,x 上单调递减,注意到()00t =,所以对任意的()00,x x ∈,都有()0t x <,与题设不符. 若()1212124,ln 0,0,ln ,ln ,222222k k k k t x ---⎛⎫⎛⎫>>⊆-∞∴ ⎪ ⎪⎝⎭⎝⎭在120,ln 22k -⎛⎫⎪⎝⎭上单调递增,()00t =Q ,所以对任意的120,ln 22k x -⎛⎫∈ ⎪⎝⎭,都有()0t x >,符合题设.此时取0120min ,ln 22k m x -⎧⎫<≤⎨⎬⎩⎭,可得对任意()0,x m ∈,都有()()2f x g x x ->.②当02k <≤时,由(1)结合函数的图象知()()22100,xex x -+≥>()()()()()22121220x x f x g x e kx e x k x k x -=--=-++-≥-≥Q ,对任意0x >都成立,()()2f x g x x ∴->等价于()2210x e k x -+->.设()()221x x e k x ϕ=-+-,则()()2'22x x e k ϕ=-+,由()'0x ϕ>,得()12ln 0,'022k x x ϕ+>><得()12ln ,22k x x ϕ+<∴在120,ln 22k +⎛⎫ ⎪⎝⎭上单调递减,注意到()00ϕ=,所以对任意的120,ln22k x +⎛⎫∈ ⎪⎝⎭,都有()0x ϕ<,不符合题设.综上所述,k 的取值范围为()4,+∞. 22. 解:(1)由cos 4πρθ⎛⎫+=- ⎪⎝⎭()cos sin 2ρθρθ-=-)2x y -=-l 的方程为40x y -+=,依题意,设(),2sin P t t ,则P 到直线l 的距离6d t π⎛⎫===+ ⎪⎝⎭,当26t k ππ+=,即2,6t k k Z ππ=-∈时,max d ==,故点P 到直线l 的距离的最大值为(2)因为曲线C 上的所有点均在直线l 的右下方,t ∴∀∈R ,cos 2sin 40-+>a t t 恒成立,即()4t ϕ+-(其中2tan aϕ=)恒成立,4<,又0a >,解得0a <<a 取值范围为(.23. 解:(1)222x m x x m x m --≤--=Q ,要使24x m x --<恒成立,则2m <,解得22m -<<.又m ∈Q N *,1∴=m .(2)()()()()0,1,0,1,22223f f αβαβαβ∈∈∴+=-+-=Q ,即()141414,22525182βααβαβαβαβαβ⎛⎛⎫⎛⎫+=∴+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭⎝,当且仅当4βααβ=,即11,36αβ==时取等号,故4118αβ+≥.。

相关文档
最新文档