2018届高三数学理一轮复习课后作业第9章 第4节 随机事

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业 A 组 基础对点练
1.设事件A ,B ,已知P (A )=15,P (B )=13,P (A ∪B )=8
15,则A ,B 之间的关系一定为( )
A .两个任意事件
B .互斥事件
C .非互斥事件
D .对立事件
解析:因为P (A )+P (B )=15+13=8
15=P (A ∪B ),所以A ,B 之间的关系一定为互斥事件. 答案:B
2.(2017·铜川模拟)做抛掷两颗骰子的试验,用(x ,y )表示结果,其中x 表示第一颗骰子正面朝上的点数,y 表示第二颗骰子正面朝上的点数,则x +y >10的概率是( ) A.25 B .512 C.16
D .112
解析:(x ,y )的所有基本事件共有6×6=36(个),事件“x +y >10”包含(5,6),(6,5),(6,6),共3个基本事件.根据古典概型的概率计算公式可知,x +y >10的概率是1
12,故选D. 答案:D
3.(2017·云南统一检测)在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( ) A.34 B .58
C.12
D .14
解析:分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P =1
2. 答案:C
4.(2017·河北三市联考)袋子中装有大小相同的5个小球,分别有2个红球、3个白球.现从中随机抽取2个小球,则这2个小球中既有红球也有白球的概率为( ) A.34 B .710 C.45
D .35
解析:设2个红球分别为a 、b,3个白球分别为A 、B 、C ,从中随机抽取2个,则有(a ,b ),(a ,A ),(a ,B ),(a ,C ),(b ,A ),(b ,B ),(b ,C ),(A ,B ),(A ,C ),(B ,C ),共10个基本事件,其中既有红球也有白球的基本事件有6个,则所求概率为P =610=3
5. 答案:D
5.已知向量a =(x ,y ),b =(1,-2),从6张大小相同、分别标有号码1、2、3、4、5、6的卡片中,有放回地抽取两张,x 、y 分别表示第一次、第二次抽取的卡片上的号码,则满足a·b >0的概率是( ) A.112 B .34 C.15
D .16
解析:设(x ,y )表示一个基本事件,则两次抽取卡片的所有基本事件有6×6=36个.a·b >0,即x -2y >0,满足x -2y >0的基本事件有(3,1)、(4,1)、(5,1)、(6,1)、(5,2)、(6,2),共6个,所以所求概率P =636=1
6.故选D. 解析:D
6.(2017·长沙长郡中学检测)在所有的两位数10~99中,任取一个数,则这个数能被2或3整除的概率是__________.
解析:所有两位数共有90个,其中2的倍数有45个,3的倍数有30个,6的倍数有15个,所以能被2或3整除的共有45+30-15=60(个),所以所求概率是6090=23. 答案:23
7.抛掷一粒骰子,观察掷出的点数,设事件A 为“出现奇数点”,事件B 为“出现2点”,已知P (A )=12,P (B )=16,则“出现奇数点或2点”的概率为________. 解析:因为事件A 与事件B 是互斥事件,所以P (A ∪B )=P (A )+P (B )=12+16=23. 答案:23
8.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39、32、33个成员,一些成员参加了不止一个小组,具体情况如图所示.
现随机选取一个成员,他属于至少2个小组的概率是______,他属于不超过2个小组的概率是________.
解析:“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为
P =11+10+7+86+7+8+8+10+10+11
=3
5.
“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.
故他属于不超过2个小组的概率是 P =1-86+7+8+8+10+10+11=13
15.
答案:35 1315
9.(2017·河北“五个一名校联盟”质量监测)某校高三学生体检后,为了解高三学生的视力情况,该校从高三六个班的300名学生中以班为单位(每班学生50人),每班按随机抽样方法抽取了8名学生的视力数据.其中高三(1)班抽取的8名学生的视力数据与人数见下表:
(2)已知其余五个班学生视力的平均值分别为4.3、4.4、4.5、4.6、4.8.若从这六个班中任意抽取两个班学生视力的平均值作比较,求抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率.
解析:(1)高三(1)班学生视力的平均值为4.4×2+4.6×2+4.8×2+4.9+5.1
8=4.7,
故估计高三(1)班学生视力的平均值为4.7.
(2)从这六个班中任意抽取两个班学生视力的平均值作比较,所有的取法共有15种,而满足抽取的两个班学生视力的平均值之差的绝对值不小于0.2的取法有:(4.3,4.5),(4.3,4.6),(4.3, 4.7),(4.3,4.8),(4.4,4.6),(4.4,4.7),(4.4,4.8),(4.5, 4.7),(4.5,4.8),(4.6,4.8),共有10种,故抽取的两个班学生视力的平均值之差的绝对
值不小于0.2的概率为P=10
15=
2
3.
10.(2017·昆明两区七校调研)某校高三共有900名学生,高三模拟考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,并制成如下的频率分布表.
(1)确定表中a,b
(2)为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生,在这6名学生中又再随机抽取2名与心理老师面谈,求第七组中至少有一名学生被抽到与心理老师面谈的概率;
(3)估计该校本次考试的数学平均分.
解析:(1)因为频率和为1,所以b=0.18,
因为频率=频数/样本容量,所以c=100,a=15.
(2)第六、七、八组共有30个样本,用分层抽样方法抽取6名学生,第六、七、八组被抽取的样本数分别为3,2,1.将第六组、第八组被抽取的样本分别用A,B,C,D表示,第七组抽出的样本用E,F表示.
从这6名学生中随机抽取2个的方法有AB、AC、AD、AE、AF、BC、BD、BE、BF、CD、CE、CF、DE、DF、EF,共15种.
其中至少含E或F的取法有9种,则所求概率为3 5.
(3)估计平均分为75×0.06+85×0.04+95×0.22+105×0.2+115×0.18+125×0.15+135×0.1+145×0.05=110.
B组能力提速练
1.(2016·高考北京卷)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()
A.乙盒中黑球不多于丙盒中黑球
B.乙盒中红球与丙盒中黑球一样多
C.乙盒中红球不多于丙盒中红球
D.乙盒中黑球与丙盒中红球一样多
解析:通过随机事件直接分析出现情况的可能性.
取两个球往盒子中放有4种情况:
①红+红,则乙盒中红球数加1;
②黑+黑,则丙盒中黑球数加1;
③红+黑(红球放入甲盒中),则乙盒中黑球数加1;
④黑+红(黑球放入甲盒中),则丙盒中红球数加1.
因为红球和黑球个数一样多,所以①和②的情况一样多,③和④的情况完全随机. ③和④对B 选项中的乙盒中的红球数与丙盒中的黑球数没有任何影响. ①和②出现的次数是一样的,所以对B 选项中的乙盒中的红球数与丙盒中的黑球数的影响次数一样. 综上,选B. 答案:B
2.如图,在A ,B 两点间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条且使每条网线通过最大信息量,则选取的三条网线由A 到B 可通过的信息总量为6的概率是( )
A.14 B .13 C.12
D .23
解析:设这6条网线从上到下分别是a ,b ,c ,d ,e ,f ,任取3条有:(a ,b ,c ),(a ,b ,d ),(a ,b ,e ),(a ,b ,f ),(a ,c ,d ),(a ,c ,e ),(a ,c ,f ),(a ,d ,e ),(a ,d ,f ),(a ,e ,f ),(b ,c ,d ),(b ,c ,e ),(b ,c ,f ),(b ,d ,e ),(b ,d ,f ),(b ,e ,f ),(c ,d ,e ),(c ,d ,f ),(c ,e ,f ),(d ,e ,f ),共20个不同的取法,选取的三条网线由A 到B 可通过的信息总量为6的取法有:(a ,b ,f ),(a ,c ,e ),(a ,d ,e ),(b ,c ,e ),(b ,d ,e ),共5个不同的取法,所以选取的三条网线由A 到B 可通过的信息总量为6的概率是1
4. 答案:A
3.(2017·泉州质检)一个三位自然数百位、十位、个位上的数字依次为a ,b ,c ,当且仅当a >b ,b <c 时,称该三位自然数为“凹数”(如213,312等),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“凹数”的概率是( ) A.16 B .524 C.13
D .724
解析:由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理由1,2,4组成的三位自然数共6个;由1,3,4组成的三位自然数也是6个;由2,3,4组成的三位自然数也是6个.所以共有6+6+6+6=24(个).当b=1时,有214,213,314,412,312,413,共6个“凹数”;当b=2时,有324,423,共2个“凹
数”.所以这个三位数为“凹数”的概率P=6+2
24=
1
3.
答案:C
4.同时掷两枚质地均匀的骰子,则
(1)向上的点数相同的概率为________;
(2)向上的点数之和小于5的概率为________.
解析:(1)同时掷两枚骰子共有36种情况,其中向上点数相同的有6种情况,其
概率为6
36=1 6;
(2)向上点数之和小于5的有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种情况,
其概率为6
36=1 6.
答案:(1)1
6(2)
1
6
5.(2017·兰州诊断)从2本不同的数学书和2本不同的语文书中任意抽出2本书(每本书被抽中的机会相等),求抽出的书是同一学科的概率.
解析:从2本不同的数学书和2本不同的语文书中任意抽出2本书共有6种不同
的取法,其中抽出的书是同一学科的取法共有2种,因此所求的概率等于2
6=
1
3.。

相关文档
最新文档