高三上学期期末统考数学(理)试题

合集下载

高三上学期期末考试数学(理)试题及答案解析

高三上学期期末考试数学(理)试题及答案解析

高三第一学期期末考试数学(理科)试卷第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合21M y y x ⎧⎫==⎨⎬⎩⎭,{N x y ==,那么M N =( )A.()0,+∞B.()1,+∞C.[)1,+∞D.[)0,+∞2. 已知向量a =⎝ ⎛⎭⎪⎫8+12x ,x ,b =(x +1,2),其中x >0,若a ∥b ,则x 的值为( )A .8B .4C .2D .03. 在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A.143 B.176 C. 58 D. 88 4.同时具有性质①最小正周期是;②图像关于直线3π=x 对称;③在]3,6[ππ-上是增函数的一个函数是( ) A .)62sin(π-=x y B .)32cos(π+=x y C .)62sin(π+=x y D .cos()26x y π=- 5.等比数列{}n a 中,0n a >,965=a a ,则313233310log log log log a a a a +++⋅⋅⋅+=( ) A.12 B.10 C.8 D.32log 5+6.函数1(0,1)x y a a a a=->≠的图象可能是( )7.已知关于x 的不等式x 2-4x ≥m 对任意x ∈(0,1]恒成立,则有( ) A .m ≤-3 B .m ≥-3 C .-3≤m <0D .m ≥-48.设变量x ,y 满足约束条件⎩⎨⎧x +y ≤3,x -y ≥-1,y ≥1,则目标函数z =4x +2y 的最大值为( )A .12B .10C .8D .29.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则∫21f (-x )d x 的值等于( ) A. 16B.12C.23D. 5610.设a =log 36,b =log 510,c =log 714,则( )A .c >b >aB .b >c >aC .a >c >bD .a >b >c11.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18 12.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之差为A .2+ 3B .4C .3D .2- 3第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.) 13.数列{a n }的前n 项和S n =3n 2-2n +1,则它的通项公式是________.14.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若AB →·AC →=BA →·BC →=2,那么c =__________. 15.已知函数f (x )=⎩⎨⎧(a -2)x -1,x ≤1, log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.16.对于三次函数32()(0)f x ax bx cx d a =+++≠,给出定义:设()f x '是函数()y f x =的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”应对对称中心.根据这一发现,则函数32115()33212f x x x x =-+-的对称中心为 .三、解答题(要求写出必要的计算步骤和解答过程。

高三上学期期末数学(理)试题答案

高三上学期期末数学(理)试题答案

第一学期期末练习 高三数学(理科)参考答案一、选择题题号 1 2 3 4 5 6 7 8 答案 DCCABCDA二、填空题:9.20; 10.[-2,2] ; 11. x+2y-3=0; 12.2±(只写一个答案给3分);13.3; 14.5,16 12n m+ (第一个空2分,第二个空3分) 三.解答题15.(本题共13分)函数2()lg(23)f x x x =--的定义域为集合A ,函数()2(2)x g x a x =-≤的值域为集合B .(Ⅰ)求集合A ,B ; (Ⅱ)若集合A ,B 满足AB B =,求实数a 的取值范围.解:(Ⅰ)A=2{|230}x x x -->={|(3)(1)0}x x x -+>={|1,3}x x x <->或,..………………………..……3分 B={|2,2}{|4}xy y a x y a y a =-≤=-<≤-. ………………………..…..7分 (Ⅱ)∵A B B =,∴B A ⊆, ..……………………………………………. 9分∴41a -<-或3a -≥, …………………………………………………………...11分 ∴3a ≤-或5a >,即a 的取值范围是(,3](5,)-∞-+∞.…………………….13分16.(本题共13分)如图,在平面直角坐标系xOy 中,锐角α和钝角β的终边分别与单位圆交于A ,B 两点. (Ⅰ)若点A 的横坐标是35,点B 的纵坐标是1213,求sin()αβ+的值;(Ⅱ) 若∣AB ∣=32, 求OA OB ⋅的值. xyBAO解:(Ⅰ)根据三角函数的定义得, 3cos 5α=, 12sin 13β=. ………………………………………………………2分 ∵α的终边在第一象限,∴4sin 5α=. ……………………………………………3分∵β的终边在第二象限,∴ 5cos 13β=-.………………………………………4分∴sin()αβ+=sin cos cos sin αβαβ+=455()13⨯-+351213⨯=1665.……………7分(Ⅱ)方法(1)∵∣AB ∣=|AB |=|OB OA -|, ……………………………………9分又∵222||222OB OA OB OA OA OB OA OB -=+-⋅=-⋅,…………………11分 ∴9224OA OB -⋅=, ∴18OA OB ⋅=-.…………………………………………………………………13分方法(2)∵222||||||1cos 2||||8OA OB AB AOB OA OB +-∠==-, …………………10分 ∴OA OB ⋅=1||||cos 8OA OB AOB ∠=- . ………………………………… 13分 17.(本题共14分)如图,在三棱锥P-ABC 中,PA=PB=AB=2,3BC =,90=∠ABC °,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 中点. (Ⅰ)求证:DE//平面PBC; (Ⅱ)求证:AB ⊥PE ; (Ⅲ)求二面角A-PB-E 的大小. 解:(Ⅰ) D 、E 分别为AB 、AC 中点,∴DE//BC .DE ⊄平面PBC ,BC ⊂平面PBC , ∴DE //平面PBC .…………………………4分 (Ⅱ)连结PD , PA=PB ,∴ PD ⊥ AB . …………………………….5分 //DE BC ,BC ⊥ AB ,∴ DE ⊥ AB . .... .......................................................................................................6分EDB CAP_E_ D_ _ A_ P又 PD DE D = ,∴AB ⊥平面PDE .......................................................................................................8分 PE ⊂平面PDE ,∴AB ⊥PE . ..........................................................................................................9分 (Ⅲ) 平面PAB ⊥平面ABC ,平面PAB 平面ABC=AB ,PD ⊥ AB ,∴ PD ⊥平面ABC .................................................................................................10分 如图,以D 为原点建立空间直角坐标系∴B (1,0,0),P (0,0,3),E(0,32,0) , ∴PB =(1,0,3- ),PE =(0, 32, 3-). 设平面PBE 的法向量1(,,)n x y z =,∴30,330,2x z y z ⎧-=⎪⎨-=⎪⎩令3z = 得1(3,2,3)n =. ............................11分 DE ⊥平面PAB ,∴平面PAB 的法向量为2(0,1,0)n =.………………….......................................12分 设二面角的A PB E --大小为θ, 由图知,121212||1cos cos ,2n n n n n n θ⋅=<>==⋅,所以60,θ=︒即二面角的A PB E --大小为60︒. ..........................................14分18.(本题共14分)已知函数2()(0)xax bx cf x a e ++=>的导函数'()y f x =的两个零点为-3和0.(Ⅰ)求()f x 的单调区间;(Ⅱ)若f(x)的极小值为3e -,求()f x 在区间[5,)-+∞上的最大值.解:(Ⅰ)222(2)()(2)()()x x x xax b e ax bx c e ax a b x b cf x e e+-++-+-+-'==........2分 _E_ D_ B_C_ A _ Pz y x令2()(2)g x ax a b x b c =-+-+-,因为0xe >,所以'()yf x =的零点就是2()(2)g x ax a b x b c =-+-+-的零点,且()f x '与()g x 符号相同.又因为0a >,所以30x -<<时,g(x)>0,即()0f x '>, ………………………4分 当3,0x x <->时,g(x)<0 ,即()0f x '<, …………………………………………6分所以()f x 的单调增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞).……7分 (Ⅱ)由(Ⅰ)知,x =-3是()f x 的极小值点,所以有3393,0,93(2)0,a b c e eb c a a b b c --+⎧=-⎪⎪-=⎨⎪---+-=⎪⎩解得1,5,5a b c ===, …………………………………………………………11分所以255()xx x f x e ++=.()f x 的单调增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞), ∴(0)5f =为函数()f x 的极大值, …………………………………………………12分∴()f x 在区间[5,)-+∞上的最大值取(5)f -和(0)f 中的最大者. …………….13分而555(5)5f e e--==>5,所以函数f(x)在区间[5,)-+∞上的最大值是55e ..…14分 19.(本题共13分)曲线12,C C 都是以原点O 为对称中心、离心率相等的椭圆 . 点M 的坐标是(0,1),线段MN 是1C 的短轴,是2C 的长轴 . 直线:(01)l y m m =<<与1C 交于A,D 两点(A 在D 的左侧),与2C 交于B,C 两点(B 在C 的左侧).(Ⅰ)当m=3 54AC =时,求椭圆12,C C 的方程; (Ⅱ)若OB ∥AN ,求离心率e 的取值范围.解:(Ⅰ)设C 1的方程为2221x y a+=,C 2的方程为2221x y b +=,其中1,01a b ><<...2分C 1 ,C 2的离心率相同,所以22211a b a-=-,所以1ab =,……………………….…3分 ∴C 2的方程为2221a x y +=.当m=32时,A 3(,)22a -,C 13(,)22a . .………………………………………….5分 又 54AC =,所以,15224a a +=,解得a=2或a=12(舍), ………….…………..6分 ∴C 1 ,C 2的方程分别为2214x y +=,2241x y +=.………………………………….7分 (Ⅱ)A(-21a m -,m), B(-211m a-,m) . …………………………………………9分 OB ∥AN,∴OB AN k k =,∴22111m a m m a=----,∴211m a =- . …………………………………….11分 2221a e a -=,∴2211a e =-,∴221e m e -=. ………………………………………12分01m <<,∴22101e e-<<,∴212e <<.........................................................13分 20.(本题共13分)已知曲线2:2(0)C y x y =≥,111222(,),(,),,(,),n n n A x y A x y A x y ⋅⋅⋅⋅⋅⋅是曲线C 上的点,且满足120n x x x <<<⋅⋅⋅<<⋅⋅⋅,一列点(,0)(1,2,)i i B a i =⋅⋅⋅在x 轴上,且10(i i i B A B B -∆是坐标原点)是以i A 为直角顶点的等腰直角三角形. (Ⅰ)求1A ,1B 的坐标; (Ⅱ)求数列{}n y 的通项公式;(Ⅲ)令21,2iy i i ib c a -==,是否存在正整数N ,当n≥N 时,都有11n niii i b c ==<∑∑,若存在,写出N 的最小值并证明;若不存在,说明理由. 解:(Ⅰ)∆B 0A 1B 1是以A 1为直角顶点的等腰直角三角形,∴直线B 0A 1的方程为y=x .由220y x y x y =⎧⎪=⎨⎪>⎩得112x y ==,即点A 1的坐标为(2,2),进而得1(4,0)B .…..3分(Ⅱ)根据1n n n B A B -∆和11n n n B A B ++∆分别是以n A 和1n A +为直角顶点的等腰直角三角形可得11n n nn n n a x y a x y ++=+⎧⎨=-⎩ ,即11n n n n x y x y +++=- .(*) …………………………..5分n A 和1n A +均在曲线2:2(0)C y x y =≥上,∴22112,2n n n n y x y x ++==,∴2211,22n n n n y y x x ++==,代入(*)式得22112()n n n n y y y y ++-=+,∴*12()n n y y n N +-=∈, ………………………………………………………..7分 ∴数列{}n y 是以12y =为首项,2为公差的等差数列,∴其通项公式为2n y n =(*n N ∈). ……………………………………………....8分(Ⅲ)由(Ⅱ)可知,2222nn y x n ==, ∴2(1)n n n a x y n n =+=+, ……………………………………………………9分∴12(1)i b i i =+,12122iy i i c -+==. ∴11112(12)2(23)2(1)ni i b n n ==+++⨯⨯+∑=111111(1)22231n n -+-++-+ =11(1)21n -+.….……………..…………10分 231111(1)1111142(1)12222212nn in ni c+=-=+++==--∑. ……………………….11分 (方法一)1ni i b =∑-1ni i c =∑=1111111112(1)-(1)()21222212(1)nn n n n n n n ++---=-=+++.当n=1时11b c =不符合题意, 当n=2时22b c <,符合题意,猜想对于一切大于或等于2的自然数,都有11n niii i b c ==<∑∑.(*) 观察知,欲证(*)式,只需证明当n≥2时,n+1<2n 以下用数学归纳法证明如下:(1)当n=2时,左边=3,右边=4,左边<右边; (2)假设n=k (k≥2)时,(k+1)<2k ,当n=k+1时,左边=(k+1)+1<2k +1<2k +2k =2k+1=右边,∴对于一切大于或等于2的正整数,都有n+1<2n ,即1n i i b =∑<1ni i c =∑成立.综上,满足题意的n 的最小值为2. ……………………………………………..13分 (方法二)欲证11n niii i b c ==<∑∑成立,只需证明当n≥2时,n+1<2n.()012323211...1...nn n nn n n n n n n nC C C C C n C C C =+=+++++=+++++, 并且23...0nn n n C C C ++>,∴当2n ≥时,21nn ≥+.。

2023届江西省临川第一中学高三上学期期末考试数学(理)试题(解析版)

2023届江西省临川第一中学高三上学期期末考试数学(理)试题(解析版)

2023届江西省临川第一中学高三上学期期末考试数学(理)试题一、单选题1.设集合2{|230}A x Z x x =∈--≤,{0,1}B =,则A C B = A .{3,2,1}--- B .{1,2,3}-C .{1,0,1,2,3}-D .{0,1}【答案】B【详解】由题可知{}1,0,1,2,3A =-,则{}1,2,3A B =-.故本题选B .2.在复平面内,复数1z ,2z 对应的向量分别是(1,2)OA =-,(3,1)=-OB ,则复数12z z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B【分析】利用复数的几何意义写出复数1z ,2z ,再结合共轭复数、复数的乘法运算求解作答.【详解】因复数1z ,2z 对应的向量分别是(1,2)OA =-,(3,1)=-OB ,则2112i,3i z z =-=-+,23i z =--, 于是得12(12i)(3i)55i z z =---=-+, 所以复数12z z 对应的点(5,5)-位于第二象限. 故选:B3.对于实数x ,条件p :152x x +≠,条件q :2x ≠且12x ≠,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】解分式不等式,得到解集,从而作出判断. 【详解】152x x +≠,解得:2x ≠且12x ≠且0x ≠,故p q ⇒,但q p ⇒/,所以p 是q 的充分不必要条件. 故选:A4.设0a >,0b >,且21a b +=,则12a a a b++( )A .有最小值为4B .有最小值为1C .有最小值为143D .无最小值【答案】B【分析】0a >,0b >,且21a b +=,可得12b a =-.代入12a a a b++,化简整理利用基本不等式的性质即可得出.【详解】0a >,0b >,且21a b +=, 120b a ∴=->,解得102a <<.∴12122(1)1212122(1)()2321111a a a a a a a a b a a a a a a a a ---+=+=+-=+-+-=++-+---- 122111a aa a-+=-,当且仅当1a =,3b =-∴12aa a b++有最小值1. 故选:B .【点睛】本题考查基本不等式的性质、方程的解法,考查推理能力与计算能力. 5.设537535714a ,,log 755b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小顺序是 A .b a c << B .c<a<b C .b<c<a D .c b a <<【答案】D【分析】先利用指数函数的性质比较得a>b>1,再分析得c<1,从而得到a,b,c 的大小关系.【详解】553775577()()()755a b -==>=,30577()()1,55b =>=因为314log 5c =3log 31<=,所以c b a <<. 故答案为D【点睛】(1)本题主要考查指数对数函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)比较大小,一般先把所有的数分成正负两个集合,再把正数和1比,负数和-1比.6.已知(0,)4πα∈,4cos25α=,则2sin ()4πα+=( )A .15B .25C .35D .45【答案】D【解析】首先由角(0,)4πα∈知sin20α>,再利用同角三角函数平方关系求sin 2α,二倍角余弦公式以及诱导公式求2sin ()4πα+即可.【详解】(0,)4πα∈,∴2(0,)2πα∈,又4cos25α=,∴3sin 25α=.2311cos(2)1sin 2452sin ()42225παπαα+-++∴+====. 故选:D.7.已知ABC 的内角,,A B C 的对边分别是,,a b c ,且()()222cos cos a b c a B b A abc +-⋅+=,则角C =( ) A .30° B .45° C .60° D .90°【答案】C【分析】根据余弦定理和正弦定理将条件转化为1cos 2C =,由此可得60C =︒. 【详解】由条件及余弦定理得:()2cos cos cos ab C a B b A abc ⋅+= ∴()2cos cos cos C a B b A c ⋅+=,由正弦定理得2cos (sin cos sin cos )sin C A B B A C +=, ∴2cos sin()sin C A B C +=,即2cos sin sin C C C = ∵sin 0C ≠,∴1cos 2C =, 又0180C ︒<<︒,∴60C =︒. 故选:C .8.已知函数()()2log 3a f x x ax =-+在[]0,1上是减函数,则实数a 的取值范围是( )A .()0,1B .()1,4C .()()0,11,4⋃D .[)2,4【答案】D【分析】根据给定的函数,结合对数函数、二次函数单调性,分类讨论求解作答.【详解】函数()()2log 3a f x x ax =-+在[]0,1上是减函数,当01a <<时,22223()330244a a a x ax x -+=-+-≥->恒成立, 而函数23u x ax =-+在区间[]0,1上不单调,因此01a <<,不符合题意,当1a >时,函数log a y u =在(0,)+∞上单调递增,于是得函数23u x ax =-+在区间[]0,1上单调递减, 因此12a≥,并且21130a -⋅+>,解得24a ≤<, 所以实数a 的取值范围是[)2,4. 故选:D9.已知圆C :()()22344x y -+-=和两点(),0A,)(),00Bm >.若圆C 上存在点P ,使得90APB ∠=︒,则m 的最小值为( )ABC .2 D【答案】D【分析】根据点P为半径的圆上和在圆C 上,由两圆有交点求解. 【详解】解:由题意得:点P为半径的圆上, 又因为点P 在圆C 上, 所以只要两圆有交点即可,252-≤≤+,m ≤≤, 所以m故选:D10.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点A 的坐标为,02a ⎛⎫- ⎪⎝⎭,点P 是双曲线在第二象限的部分上一点,且1212∠=∠F PF F PA ,112PF F F ⊥,则双曲线的离心率为( ) A .3 B .2C .32D【答案】B【分析】由角平分线的性质可得1122||||||||PF AF PF AF =及双曲线的定义,化简方程即可求双曲线的离心率. 【详解】如图,因为112PF F F ⊥,所以=-P x c ,由2222(1)ya c b-=-可得21||||b PF y a ==,由双曲线定义可知22||2b PF a a=+,由1212∠=∠F PF F PA 知:PA 平分12F PF ∠,所以1122||||||||PF AF PF AF =,即22222b ac aa b c a a-=++,整理得:222222b c a a b c a -=++, 由222b c a =-,c e a =,可化简为22121121e e e e --=++,即22211121e e -=-++,可得2121e e +=+,解得2e =或1e =(舍去), 故选:B11.在ABC 中,4AB =,3BC =,5CA =,点P 在该三角形的内切圆上运动,若BP mBC nBA =+(m ,n 为实数),则m n +的最小值为( ) A .12B .13C .16D .17【答案】C【分析】设该三角形的内切圆的半径为r ,CA 边上的高为 h ,由BP mBC nBA =+,得到BPm n m nBC BA m n m n+=+++,再利用平行线等比关系求解. 【详解】解:在ABC 中,4AB =,3BC =,5CA =, 设该三角形的内切圆的半径为r , 则()113453422r ⨯++⨯=⨯⨯,解得 1r =, 设CA 边上的高为 h ,则1153422h ⨯⨯=⨯⨯,解得 125h =,因为 BP mBC nBA =+,所以()m n BP m n BC BA m n m n ⎛⎫=++⎪++⎝⎭, 因为点P 在该三角形的内切圆上运动,所以BPm n m nBC BA m n m n+=+++, 设m n BE BC BA m n m n+=++,则 ()BP m n BE =+, 因为1m n m n m n+=++, 则BP m n BE+=,且,,B P E 三点共线,E 在AC 上,由平行线等比关系得:要使m n +,即BP 与BE 之间的比例最小,则点P 内切圆的最高点,如图所示:由222BA BC AC +=,知2B π=,所以()111222ABCS BA BC h AC r BA BC AC =⋅=⋅=⋅++, 由12,5h =所以1r = 所以m n +的最小值为216h r h -=, 故选:C12.若函数()f x 的定义域为R ,且()21f x +偶函数,()31f x -关于点()1,3成中心对称,则下列说法正确的个数为( ) ①()f x 的一个周期为2; ②()()222f x f x =-;③()f x 的一个对称中心为()6,3;④()19157i f i ==∑.A .1B .2C .3D .4【答案】C【分析】由()()2121f x f x +=-+得到()()222f x f x =-+,故②正确;由()31f x -关于点()1,3成中心对称,得到()f x 关于()2,3中心对称,推理出()()4f x f x +=,从而得到周期为4,①错误;由函数的周期及()f x 关于()2,3中心对称,得到一个对称中心为()6,3,③正确;利用函数的周期性及对称性求出函数值的和.【详解】由题意得:()()2121f x f x +=-+,将x 替换为12x -得:11212122f x f x ⎡⎤⎡⎤⎛⎫⎛⎫-+=--+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,即()()222f x f x =-+,②正确;()()2121f x f x +=-+中将x 替换为12x 得:()()11f x f x +=-+,因为()31f x -向左平移13个单位得到()3f x ,而()31f x -关于点()1,3成中心对称,所以()3f x 关于2,33⎛⎫⎪⎝⎭中心对称,故()f x 关于()2,3中心对称,所以()()226f x f x ++-+=,故()()()()()2626116116f x f x f x f x f x +=--+=---=-+-=-⎡⎤⎡⎤⎣⎦⎣⎦, 所以()()()()()46266f x f x f x f x +=-+=--=, 所以()f x 的一个周期为4,①错误;()f x 关于()2,3中心对称,又()f x 的一个周期为4,故()f x 的一个对称中心为()6,3,③正确;()()226f x f x ++-+=中,令1x =得:()()316f f +=,()()226f x f x ++-+=中,令0x =得:()()226f f +=,故()23f =, ()()226f x f x ++-+=中,令2x =得:()()406f f +=,又因为()()04f f =,故()246f =,所以()43f =, 所以()()246f f +=,其中()()()1717441f f f =-⨯=,()()()18181623f f f =-==,()()()1919163f f f =-=,故()()()()()()()()19141234171819i f i f f f f f f f ==++++++⎡⎤⎣⎦∑()()()()466123483657f f f =⨯++++=++=,④正确.故选:C【点睛】若()()f x a f x b c ++-+=,则函数()f x 关于,22a b c +⎛⎫⎪⎝⎭中心对称, 若()()f x a f x b +=-+,则函数()f x 关于2a bx +=对称.二、填空题13.已知P 是椭圆22110036x y +=上一点,1F ,2F 分别是椭圆的左、右焦点,若1260F PF ∠=︒,则12PF F △的面积为________.【答案】【分析】借助韦达定理得1248PF PF ⋅=,再套用面积公式即可. 【详解】易得1212220,216PF PF a F F c +====, 则222121212122cos F F PF PF PF PF F PF =+-⋅∠()21212121222cos PF PF PF PF PF PF F PF =+-⋅-⋅∠,即22121211620222PF PF PF PF =-⋅-⋅⨯,故1248PF PF ⋅=121211sin 604822PF F SPF PF =⋅︒=⨯=,故答案为:14.若(13)n x -展开式中第6项的二项式系数与系数分别为p q 、,则pq=__________. 【答案】1243-【分析】根据二项式定理中二项式系数与项系数的求解即可得. 【详解】有题意可知5C n p =,55C (3)n q =-,所以555C 1C (3)243n n p q ==--.故答案为:1243-.15.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为26,则模型中九个球的表面积和为__________.【答案】9π【分析】先求出正四面体内切球半径与正四面体棱长和高的关系,再分析大、中、小内切于正四面体的高即可求解.【详解】如图所示正四面体A BCD -,记棱长为a ,高为h ,O 为正四面体A BCD -内切球的球心,延长AO 交底面BCD 于E ,E 是等边三角形BCD △的中心,过A 作AF CD ⊥交CD 于F ,连接BF ,则OE 为正四面体A BCD -内切球的半径, 因为3AF BF ==,233BE BF ==,133EF BF ==, 所以226h AE AF EF ==-, 所以()2222OE BO BE AE OE BE =---614r OE h ===, 由图可知最大球内切于高6264h ==大的正四面体中,最大球半径114r h ==大,中等球内切于高22h h r =-=中大大的正四面体中,中等球半径1142r h ==中中, 最小求内切于高21h h r =-=小中中的正四面体中,最小球半径1144r h ==小小, 所以九个球的表面积之和222114π1449π24V ⎛⎫⎛⎫⎛⎫=+⨯+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故答案为:9π16.若函数()3e 3ln x f x a x x x ⎛⎫=-+ ⎪⎝⎭的极小值点只有一个,则a 的取值范围是_________.【答案】32e e ,49【分析】对()f x 求导,利用导数与函数极值的关系,分类讨论3是否为极值点,结合2e xy x=的图像性质即可求得a 的取值范围.【详解】因为()3e 3()ln 0x f x a x x x x ⎛⎫=-+> ⎪⎝⎭,所以()()4222333e e xx x x x f x a a x x x x -⎛⎫--=-=- ⎪⎝⎭',设2(e )xg x x=(0x >),因为32(e )x x g x x -'=,所以当02x <<时,()0g x '<,当2x >时,()0g x '>, 则2(e )xg x x =在()0,2上单调递减,在()2,+∞上单调递增,①若2e 0x a x -≥恒成立,即2e xa x≤在(0,)+∞上恒成立,因为2222e e e ()24x g x x =≥=,所以22min e e 4x a x ⎛⎫≤= ⎪⎝⎭,此时令()0f x '<,解得03x <<;令0fx,解得3x >;所以()f x 在()0,3单调递减,在(3,)+∞单调递增,有唯一极小值点,满足题意; ②方程2e 0xa x-=有两个不同的根1x ,2x ,且12x x <,当10x x <<和2x x >时,2e 0x a x ->;当12x x x <<时,2e 0xa x-<,因为()f x 只有一个极小值点,所以3是2e 0x a x -=即2e xa x =的一个根,且存在另一个根02m <<,此时3e 9a =;当3e 9a =时,()()3223e e 9x x f x x x -⎛⎫=- ⎪⎝⎭', 令()0f x '<,解得0x m <<;令0fx,解得x >m ;所以()f x 在()0,m 单调递减,在(,)m +∞单调递增,满足题意, 综上:2e 4a ≤或3e 9a =,即32e e 9,4a. 故答案为:32e e ,49. 【点睛】()()223e x x f x ax x-⎛⎫=- ⎝'⎪⎭,因为函数()f x 只有一个极小值点,需对2ex y a x =-的符号进行分类讨论.三、解答题17.已知数列{}n a 满足数列{}1n n a a +-为等比数列,11a =,22a =,且对任意的n *∈N ,2132n n n a a a ++=-. (1)求{}n a 的通项公式;(2)n n b n a =⋅,求数列{}n b 的前n 项和S n .【答案】(1)12n n a -=(2)()121nn -+【分析】(1)利用等比数列的定义以及累加法求通项; (2)利用错位相减法求和.【详解】(1)设{}1n n a a +-的公比为q ,2132n n n a a a ++=-,()2112n n n n a a a a +++-=-又211a a -=,112n n n a a -+∴-=,()()()1211213211211221212n n n n n n a a a a a a a a -----∴=+-+-++-=++++=+=-,又11a =符合上式,所以{}n a 的通项公式为12n n a -=.(2)()1122n n n n b n a n n --=⋅=⋅=⋅,{}n b 的前n 项和为01211222322n n -⋅+⋅+⋅++⋅记01211222322n n S n -=⋅+⋅+⋅++⋅, 则12321222322n n S n =⋅+⋅+⋅++⋅,作差可得01211222222212nn nn n S n n ---++++-⋅=-⋅-=,()121n n S n ∴=-+,因此,数列{}n b 的前n 项和为()121nn -+.18.如图,在直三棱柱111ABC A B C -中,E ,F ,G 分别为线段111,B C B B 及AC 的中点,P 为线段1A B 上的点,1,8,62BG AC AB BC ===,三棱柱111ABC A B C -的体积为240.(1)求点F 到平面1A AE 的距离;(2)试确定动点P 的位置,使直线FP 与平面11A ACC 所成角的正弦值最大. 【答案】2473(2)P 为1BA 中点【分析】(1)由题意,建立空间直线坐标系,求解平面法向量,根据点面距向量计算公式,可得答案;(2)由(1)的空间直角坐标系,求解平面法向量以及直线方向向量,根据线面角与向量夹角的关系,结合二次函数的性质,可得答案. 【详解】(1)在ABC 中,12BG AC =,G 为AC 的中点,=90ABC ∴∠,即AB BC ⊥, 由直三棱柱111ABC A B C -的体积111==2ABC V BB SBB AB BC ⋅⋅⋅⋅,则11×8?6=2402BB ⋅,解得110BB =, 以B 为原点,并分别以1,,BA BC BB 所在直线为,,x y z 轴,建立空间直角坐标系,则()8,0,0A ,()18,0,10A ,()10,0,10B ,()10,6,10C ,()0,0,0B , 由E 为11B C 的中点,则()0,3,10E ,由F 为1BB 的中点,则()0,0,5F ,在平面1AA E 中,取()10,0,10AA =,()=8,3,10AE -,设该平面的法向量为(),,n x y z =, 则1=0=0n AA n AE ⎧⋅⎪⎨⋅⎪⎩,即10=08+3+10=0z x y z ⎧⎨-⎩,令=3x ,则8,0y z ==,故平面1AA E 的一个法向量为()3,8,0n =,取()=8,0,5AF -,由点面距公式,可得F 到平面1AA E 的距离242473==9+64AF n d n⋅-(2)由(1)可知:()8,0,0A ,()18,0,10A ,()0,6,0C ,()10,6,10C ,()0,0,5F , 由1P A B ∈,1A B ⊂平面11AA B B ,则设(),0,P a b ,08,010a b ≤≤≤≤, 设1==(4,0,5)2kBP BA k k ,即()4,0,5P k k ,02k ≤≤,在平面11AA B B 内,取()10,0,10AA =,()=8,6,0AC -,设其法向量(),,m x y z '''=, 则1=0=0m AA m AC ⎧⋅⎪⎨⋅⎪⎩,即10=08+6=0z x y ''-'⎧⎨⎩,令=3x ',则=4,=0y z '',故平面11AA B B 的一个法向量()3,4,0m =,取()=4,0,55FP k k -,设直线FP 与平面11A ACC 所成角为θ,则sin =|cos ,|m FP θ, 则212sin ==53m FP m FP⋅θ⋅⋅ 当=0k 时,P 与B 重合,sin 0θ= 当0k ≠时,12sin =5θ⋅令11=[,)2x k +∞∈,1212sin =55=θ⋅当=1x 时,即=1k ,P 为1BA 中点时,()max 123sin 55θ== 19.在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从这10张中任抽2张. (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的分布列. 【答案】(1)23;(2)分布列见解析.【分析】(1)根据古典概型的概率公式,结合组合数即可求解;(2)求得X 所有可能的取值为(单位:元):0,10,20,50,60,求出对应的概率,即可列出分布列.【详解】(1)记顾客中奖为事件A ,11204646210302()453C C C C P A C ⋅+⋅===,即该顾客中奖的概率为23; (2)X 所有可能的取值为(单位:元):0,10,20,50,60,且02462101(0)3C C P X C ⋅===,11362102(10)5C C P X C ⋅===, 232101(20)15C P X C ===,11162102(50)15C C P X C ⋅===,11132101(60)15C C P X C ⋅===, 故X 的分布列为:20.已知抛物线C :22y px =,抛物线上两动点()11,A x y ,()22,B x y ,12x x ≠且126x x +=(1)若线段AB 过抛物线焦点,且10AB =,求抛物线C 的方程.(2)若2:8C y x =,线段AB 的中垂线与x 轴交于点C ,求ABC 面积的最大值. 【答案】(1)28y x =【分析】(1)假设,02p F ⎛⎫⎪⎝⎭,利用12AF BF x x p +=++辨析即可;(2)先计算AB 方程:()0043y y x y -=-,联立抛物线方程,结合韦达定理得AB ,再计算出d =,进而计算三角形面积.【详解】(1)(1)取抛物线焦点为,02p F ⎛⎫⎪⎝⎭,12p AF x =+,22p BF x =+,126AF BF x x p p +=+=++因为AF BF AB +≥,AB 最大值为10, 所以610p +=,4p =,抛物线方程为28y x =.(2)令()11,A x y ,()22,B x y ,设M 为AB 中点,()00,M x y , 又因为126x x +=,所以03x =,()03,,M y 212112084AB y y k x x y y y -===-+, 所以AB 中垂线方程为:()0034y y y x -=--,令()07,0y C =⇒ 所以AB 方程为:()0043y y x y -=- 与抛物线方程联立()022000243222408y y x y y y y y y x ⎧-=-⎪⇒-+-=⎨⎪=⎩,显然,()22000442240y y y ∆=-->⇒-<<.1202y y y +=,2120224y y y ⋅=-AB,.()C 7,0到AB 的距离为d ,12ABC S AB d =⋅==△≤所以ABC S21.已知()2e x f x x x =+-,()2g x x ax b =--,,a b ∈R(1)若()f x 与()g x 在1x =处的切线重合,分别求a ,b 的值. (2)若b ∀∈R ,()()()()f b f a g b g a -≥-恒成立,求a 的取值范围. 【答案】(1)1a e =-,0b = (2)0a =【分析】(1)求出函数的导函数,依题意可得()()11f g =且()()11f g ''=,即可得到方程组,解得即可;(2)依题意可得()()e e 10b ab a a -+--≥对b ∀∈R 恒成立,令()()()e e 1b a H b b a a =-+--,求出函数的导函数,由()0H a =可得()0H a '=,从而求出a 的值,再验证即可.【详解】(1)解:因为()2e x f x x x =+-,()2g x x ax b =--,所以.()e 21xf x x '=+-,()2g x x a '=-,因为()()11f g =且()()11f g ''=, 即e 212a +-=-且22e 1111a b +-=-⨯-, 解得1a e =-,0b =.(2)解:因为()()()()f b f a g b g a -≥-对b ∀∈R 恒成立,.()()()22222e e b a b b a a b ab b a a b ∴+--+-≥-----对b ∀∈R 恒成立,即()()e e 10b ab a a -+--≥对b ∀∈R 恒成立,令()()()e e 1b a H b b a a =-+--,()e 1bH b a '=+-因为()0H a =,所以a 是()H b 的最小值点,且a 是()H b 的极值点,即()e 10aH a a '=+-=,因为()a H '在R 上单调递增,且()00H '=,所以0a =,下面检验:当0a =时,()e 10bH b b =--≥对b ∀∈R 恒成立,因为()e 1bH b '=-,所以当0x <时()0H b '<,当0x >时()0H b '>,所以()H b 在(),0∞-上单调递减,在()0,∞+上单调递增. 所以()()00H b H ≥=,符合题意, 所以0a =.22.在平面直角坐标系xOy中,已知直线1:12x l y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)与圆23cos :3sin x C y θθ=+⎧⎨=⎩(θ为参数)相交于,A B 两点.(1)求直线l 及圆C 的普通方程; (2)已知()1,0F ,求FA FB +的值. 【答案】(1) ()2229x y -+=(2)【分析】(1)利用代入消元法可得直线l 普通方程;利用平方关系可得圆C 的普通方程; (2)将直线参数方程代入圆的标准方程得280t -=,再利用参数的几何意义求解.【详解】解:(1)由112x y t ⎧=⎪⎪⎨⎪=⎪⎩,消去t,得10x -=,即直线l的普通方程为10x -=,由23cos 3sin x y θθ=+⎧⎨=⎩,得3cos 23sin x y θθ=-⎧⎨=⎩,两式平方相加得()2229x y -+=, 即圆C 的普通方程为()2229x y -+=.(2)将1:12x l y t ⎧=⎪⎪⎨⎪=⎪⎩代入()2229x y -+=,得280t -=.设方程的两根为12,t t ,则12t t +=128t t =-.所以1212FA FB t t t t +=+=-=23.已知0a >,0b >.(1)求证:3322a b a b ab +≥+; (2)若3a b +=,求14a b+的最小值.【答案】(1)证明见解析;(2)3.【分析】(1)根据条件得33220a b a b ab -+-≥,从而证明不等式成立;(2)根据条件得()141143a b a b a b ⎛⎫+=++ ⎪⎝⎭,然后利用基本不等式,即可求14a b +的最小值,注意等号成立的条件.【详解】(1)证明:∵0a >,0b >.∴()()332222a b a b ab a a b b b a +--=-+-()()()()2220a b a b a b a b =--=-+≥,∴3322a b a b ab +≥+.(2)∵0a >,0b >,3a b +=,∴()1411414455333b a a a b a b a b a b b ⎛⎫⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当4b a a b =,即1a =,2b =时取等号,∴14a b+的最小值为3.。

高三上学期期末考试(数学理)(附答案)

高三上学期期末考试(数学理)(附答案)

上海市崇明县高三上学期期末考试试卷 高三数学(理科)(满分150分,答题时间120分钟 编辑:刘彦利)注意:在本试卷纸上答题无效,必须在答题纸上的规定位置按照要求答题. 一、填空题(每小题4分,共56分)1、设}5,4,3,2,1{=U ,{}1)43(log 22=+-=x x x M ,那么=M C U .2、若函数)(x f y =是函数x y a log =(1,0≠>a a )的反函数, 且2)1(=-f ,则=)(x f .3、一个三阶行列式按某一列展开等于22113311332232 ba b a ba b a ba ba ++,那么这个三阶行列式可能是 .(答案不唯一) 4、已知6π-=x 是方程3)tan(3=+αx 的一个解,)0(,πα-∈,则=α .5、右图是一个算法的流程图,最后输出的 =W .6、若圆锥的侧面积为π20,且母线与底面所成的角的余弦值为54,则该圆锥的体积为.7、已知二项展开式5522105)1(x a x a x a a ax +⋯+++=-中,803=a ,则5210a a a a +⋯+++等于 .8、复数2)2321(i z -=是实系数方程012=++bx ax 的根,则=⨯b a .9、已知nS 是数列{}n a 前n 项和,2,111+==+n n a a a (*N n ∈),则limnn n na S →∞=。

10、定义在R 上的函数)(x f 满足⎩⎨⎧---=+)1()()4(log )1(2x f x f x x f 0,0,>≤x x ,计算)2010(f 的值等于 .11、如图,在半径为3的球面上有A 、B 、C 三点,︒=∠90ABC ,BC BA =,球心O 到平面ABC 的距离是223,则B 、C 两点的球面距离是 .12、若命题p :34-x ≤1;命题q :)2)((---m x m x ≤0,且p 是q 的充分不必要条件,则实数m 的取值范围是 .13、给定两个长度为1的平面向量OA 和OB ,它们的夹角为︒120.如图所示,点C 在以O 为圆心的圆弧AB 上变动. 若OB y OA x OC +=,其中R y x ∈,,则y x + 的取值范围是 . 14、已知函数1)(-=x x f ,关于x 的方程0)()(2=+-k x f x f ,给出下列四个命题:① 存在实数k ,使得方程恰有2个不同的实根; ② 存在实数k ,使得方程恰有4个不同的实根; ③ 存在实数k ,使得方程恰有5个不同的实根; ④ 存在实数k ,使得方程恰有8个不同的实根. 其中真命题的序号为 .二、选择题(每小题4分,共16分)15、公差不为零的等差数列{}n a 的前n 项和为n S . 若31-=a 且4a 是3a 与7a 的等比中项, 则10S 等于 …………………………………………………………………………………( ) (A )18(B )24(C )60(D )9016、函数⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=4cos 12sin 2ππx x y 的最大值、最小值分别为 …………………………( ) (A )2,2-(B )21,23-(C )21,23(D )23,21- 17、投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数))((mi n ni m -+为实数的概率为 …………………………………………………………………………………………( )((A )31(B )41(C )61(D )12118、定义在R 上的偶函数)(x f 满足:对任意的]0,(,21-∞∈x x )(21x x ≠,有0))()()((1212>--x f x f x x 恒成立. 则当*N n ∈时,有……………………………( )(A ))1()()1(-<-<+n f n f n f (B ))1()()1(+<-<-n f n f n f (C ))1()1()(+<-<-n f n f n f(D ))()1()1(n f n f n f -<-<+三、解答题(本大题共有5题,满分78分,解答下列各题必须写出必要的步骤) 19、(本题满分14分,第1小题6分,第2小题8分) 设函数xx x f 2sin )32cos()(++=π.(1)求函数)(x f 的最大值和最小正周期;(2)设C B A ,,为∆ABC 的三个内角,41)2(-=C f ,且C 为锐角,35=∆ABC S ,4=a , 求c 边的长.20、(本题满分14分,第1小题6分,第2小题8分)如图,在直四棱柱D C B A ABCD ''''-中,底面ABCD 为等腰梯形,AB ∥CD ,4=AB , 2==CD BC ,21=AA ,E 、F 、G 分别是棱11B A 、AB 、11D A 的中点.(1)证明:直线GE ⊥平面1FCC ; (2)求二面角C FC B --1的大小.ABF CDEGA1D1 C1B121、(本题满分16分,第1小题3分,第2小题5分,第3小题8分)某学校数学兴趣小组有10名学生,其中有4名女同学;英语兴趣小组有5名学生,其中有3名女学生,现采用分层抽样方法(层内采用不放回简单随机抽样)从数学兴趣小组、英语兴趣小组中共抽取3名学生参加科技节活动。

高三上学期期末联考数学(理)试题Word版含答案

高三上学期期末联考数学(理)试题Word版含答案

绝密★启用前—第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效. 1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为 A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于A 2B 2C 22D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。

高三上学期期末考试数学(理)试卷含答案

高三上学期期末考试数学(理)试卷含答案

第一学期期末考试试卷高三年级数学(理科) 座位号_____第I卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答题卡上.)1. 已知M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N等于 ( )A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}2.已知向量a与b的夹角为30°,且|a|=3,|b|=2,则|a-b|的值为( ) A.1 B.3 C.13 D.213.一个几何体的三视图如图所示,则这个几何体的体积等于()A.4 B.6 C.8 D.124.如图所示,在直角坐标系xOy中,射线OP交单位圆O于点P,若∠AOP=θ,则点P的坐标是( )A.(cos θ,sin θ) B.(-cos θ,sin θ)C.(sin θ,cos θ) D.(-sin θ,cos θ)5.若(x-1)8=1+a1x+a2x2+…+a8x8,则a5=( )A.56 B.-56 C.35 D.-356.以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程是( )A.(x-2)2+(y+1)2=3 B.(x+2)2+(y-1)2=3C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=9 7.函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)8.要得到2sin(2)3y x π=-的图像, 需要将函数sin 2y x =的图像( ) A .向左平移3π个单位 B .向右平移3π个单位C .向左平移23π个单位D .向右平移23π个单位9.已知△ABC 中,sin A ∶sin B ∶sin C =1∶1( )A .60°B .90°C .120°D .135°10. 已知空间两条不同的直线m ,n 和两个不同的平面α,β,则下列命题中正确的是( )A .若m ∥α,n ∥β,α∥β,则m ∥nB .若m ∥α,n ⊥β,α⊥β,则m ∥nC .若m ⊥α,n ∥β,α⊥β,则m ⊥nD .若m ⊥α,n ⊥β,α⊥β,则m ⊥n 11.在等差数列中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .60012.若定义在R 上的二次函数bax a x f x +-=4)(2[0,2]上是增函数,且f(m)≥f(0),则实数m 的取值范围是( )A .[0,4]B [0,2]C .(-∞,0]D .(-∞,0] [)∞+,4Y第II 卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.) 13. 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________.14如果直线x +y +2a =0和圆x 2+y 2=4相交于A ,B 两点,且弦长|AB |=2,则实数a =________.15.函数223(0)()2ln,(0)x x xf xx x⎧++≤=⎨-+>⎩的零点个数是_____________16.设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为______________.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)已知数列{a n}是等差数列,且a1,a2,a5成等比数列,a3+a4=12.(1)求a1+a2+a3+a4+a5;(2)设b n=10-a n,数列{b n}的前n项和为S n,若b1≠b2,则n为何值时,S n最大?S n最大值是多少?18.(12分如图所示,正四棱锥S-ABCD中,高SO=4,E是BC边的中点,AB=6,求正四棱锥S-ABCD的斜高、侧面积、体积.19.(12分)已知函数()22sin 23sin cos cos f x x x x x =+-.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)求()f x 的最大值及取最大值时x 的集合.20.(12分)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.21.(12分)已知函数f(x)=x+ax+b(x≠0),其中a,b∈R.(1)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式;(2)讨论函数f(x)的单调性.22.(12分)已知直线x-my+3=0和圆x2+y2-6x+5=0.(1)当直线与圆相切时,求实数m的值;(2)当直线与圆相交,且所得弦长2为时,求实数m的值.永昌四中2018—2019学年第一学期期末试卷答案高三年级 数学(理科)一、选择题二、填空题13. 45- ; 14. 2626-或 .15. 1 ; 16. (x +1)2+(y 2=1.三、解答题:17. 解:(1)设{a n }的公差为d ,∵a 1,a 2,a 5成等比数列, ∴(a 1+d )2=a 1(a 1+4d ),解得d =0或d =2a 1.-------- ----------------2 当d =0时,∵a 3+a 4=12,∴a n =6,∴a 1+a 2+a 3+a 4+a 5=30;-----------------4 当d ≠0时,∵a 3+a 4=12,∴a 1=1,d =2, ∴a 1+a 2+a 3+a 4+a 5=25.-------------------5 (2)∵b 1≠b 2,b n =10-a n ,∴a 1≠a 2,∴d ≠0, 由(1)知a n =2n -1,-----------------7∴b n =10-a n =10-(2n -1)=11-2n ,S n =10n -n 2=-(n -5)2+25.---------9 ∴当n =5时,S n 取得最大值,最大值为25.------------------10 18. 解:在Rt △SOE 中OE =3,SO =4,所以斜高为:SE ===5.----------------------2 侧面积为:0.5×6×5×4=60.-----------------6体积为:(1/3)×62×4=48. --------------------------1219.解:由已知,()2cos 22sin(2)6f x x x x π=-=- (4)(1)由222262k x k πππππ-≤-≤+,k Z ∈,得增区间为[,]()63k k k Z ππππ-+∈.………8(2)当2262x k πππ-=+,k Z ∈,即sin(2)16x π-=时,()f x 取最大值2, (10)此时x 的集合为{|,}3x x k k Z ππ=+∈ (12)20.解:(1)由抛物线的定义得|AF |=2+p/2.因为|AF |=3,即2+p/2=3,解得p =2,------------------------2 所以抛物线E 的方程为y 2=4x .------------------------------------4 (2)因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±2.由抛物线的对称性,不妨设A (2,2).由A (2,2),F (1,0)可得直线AF 的方程为y =2(x -1).-------------6 由得2x 2-5x +2=0,---------------------------8 解得x =2或x =,从而B . 又G (-1,0),所以k GA ==,------------------------------------------10k GB ==-,所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.-------------------------1221.解:(1)f ′(x )=1-a x2(x ≠0),由已知及导数的几何意义得f ′(2)=3,则a =-8.由切点P (2,f (2))在直线y =3x +1上可得-2+b =7,解得b =9, 所以函数f (x )的解析式为f (x )=x -8x+9.(2)由(1)知f ′(x )=1-a x2(x ≠0).当a ≤0时,显然f ′(x )>0,这时f (x )在(-∞,0),(0,+∞)上是增函数. 当a >0时,令f ′(x )=0,解得x =±a ,当x变化时,f′(x),f(x)的变化情况如下表:a)上是减函数.22.解:(1)∵圆x2+y2-6x+5=0可化为(x-3)2+y2=4,∴圆心为(3,0).--------------------------------------------------------4 ∵直线x-my+3=0与圆相切,r=2,解得m=±2.------------------------------------------------------6(2)圆心(3,0)到直线x-my+3=0的距离d由r=2得, 3+3m2=36,------------------------------------10解得m2=11,故m=±11.-------------------------------------12。

高三上学期期末考试数学(理)试题含解析

高三上学期期末考试数学(理)试题含解析

秘密★启用前2019届高三期末考试理科数学第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知是虚数单位,则()A. B. C. D.【答案】D【解析】【分析】由题意化简可得答案.【详解】因为故选D【点睛】本题考查了复数的化简,牢记是关键,属于基础题.2.已知集合,,,,则()A. B. C. D.【答案】B【解析】【分析】直接由并集的运算得出结果即可.【详解】因为集合,,,所以故选B【点睛】本题考查了集合的并集的运算,属于基础题.3.双曲线的渐近线方程为()A. B.C. D.【答案】A【解析】【分析】由题意易知,双曲线双曲线的a和b,再利用双曲线的渐近线方程得出结果.【详解】由题意双曲线可得双曲线的渐近线方程为故选A【点睛】本题考查了双曲线的渐近线方程,属于基础题.4.若随机变量,,且,则()A. B. C. D.【答案】A【解析】【分析】根据题意,由随机变量,,且可得,再利用对称性可得结果. 【详解】因为随机变量,,且所以所以故选A【点睛】本题考查了正态分布,了解正态分布的性质对称是解题关键,属于基础题.5.若点为圆的弦的中点,则弦所在直线的方程为()A. B.C. D.【答案】C【解析】【分析】由题意,求出圆的标准方程,再求出圆心与点p确定直线的斜率为,再利用垂径定理求得弦AB直线斜率,再用点斜式求出方程.【详解】圆的标准方程为又因为点为圆的弦AB的中点,圆心与点P确定直线的斜率为故弦AB所在直线的斜率为2所以直线AB的直线方程:y-1=2(x-1)即2x-y-1=0【点睛】本题主要考查了直线与圆的综合知识,对于直线和圆的相关知识点的熟练是解题的关键.属于较易题.6.有如下命题:①函数,,,中有三个在上是减函数;②函数有两个零点;③若,则其中真命题的个数为()A. B. C. D.【答案】D【解析】【分析】①根据函数的单调性可得,,三个函数在上是减函数,在R上递增的,故①正确;②令函数=0化简:=x+2,作出图像,看交点个数得出结果②正确;③若,因为为单调递减函数,所以故③正确.【详解】由题①函数,,,中,根据函数的单调性易知,,,三个函数在上是减函数,在R上递增的,故①正确;②令函数=0化简:=x+2,作出图像有两个交点,故由两个零点;②正确;③若,因为为单调递减函数,所以故③正确.故选D【点睛】本题考查了函数的性质(单调性)以及函数与方程,借助数形结合思想,属于较易题.7.某几何体的三视图如图所示,该几何体表面上的点与点在正视图与侧视图上的对应点分别为,,则在该几何体表面上,从点到点的路径中,最短路径的长度为()A. B. C. D.【答案】C【解析】【分析】画出几何体的图形,然后PQ的路径有正面和右面以及正面和上面两种路径,分别计算出结果,得出答案.【详解】由题,几何体如图所示(1)前面和右面组成一面此时PQ=(2)前面和上面再一个平面此时PQ=故选C【点睛】本题考查了几何体的三视图以及相关的计算,解题的关键是PQ的路径有两种情况,属于较易题.8.设是公差不为零的等差数列,若,则前项的和为()A. B. C. D.【答案】B【解析】【分析】根据题意,是公差不为零的等差数列,若化简得出,再利用求和公式,带入得出结果.【详解】因为是公差不为零的等差数列,得整理的因为,故前6项和故选B【点睛】本题考查了等差数列的性质和求和公式,属于基础题.9.将函数图象上所有的点向左平行移动个单位长度,再将所得图象上所有点的横坐标伸长到原来的倍(纵坐标不变),则所得图象对应的函数解析式为()A. B.C. D.【答案】A【解析】【分析】将图象上所有的点向左平行移动个单位长度得,再将所得图象上所有点的横坐标伸长到原来的倍得,再利用诱导公式得出结果.【详解】先将函数图象上所有的点向左平行移动个单位长度得再将所得图象上所有点的横坐标伸长到原来的倍(纵坐标不变)得故选A【点睛】本题考查了正弦函数的图像变化和诱导公式,正确的掌握图像的平移变化和伸缩变化时解题的关键.10.设,都是不等于的正数,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】先由题意,讨论当a、b都大于1,再利用换底公式得出,再讨论当a、b都大于0小于1时得出,得出结果.【详解】若,当a、b都大于1,此时得出当a、b都大于0小于1时,此时得出所以综上可得“”是“”的充分不必要条件故选A【点睛】本题考查了对数函数的性质和充要条件,要分情况讨论,属于中档题.11.已知函数,,且在,上单调,则的值为()A. B. C. D.【答案】B【解析】【分析】根据题意求得函数的一条对称轴和一个对称中心,再结合在,上单调,求得函数的周期,求得的值.【详解】因为,所以函数,的一条对称轴为,又,即函数的一个对称中心为所以又因为在,单调,所以所以周期又因为故选B.【点睛】本题考查了三角函数的图像和性质,对于三角函数的图像以及性质的数量运用是解题的关键,一定要会利用在,上单调这个条件,属于中档题.12.已知定义域为的函数的图象是连续不断的曲线,且,当时,,则下列判断正确的是 ( )A. B.C.D.【答案】C 【解析】 【分析】先根据题意,构造函数,判断出函数g (x )的单调性,再利用求得函数g (x )的对称轴,然后判断,得出答案即可.【详解】构造函数,因为当时,,所以可得在时,是单调递增的; 因为,化简得即 可得图像关于x=1对称,则 ,因为化简可得,故选C【点睛】本题主要考查了构造函数,然后考查了导函数的应用和函数的对称性来进行求解,解题的关键是在于能否构造出新函数,属于难题.几种导数的常见构造:对于,构造若遇到,构造对于,构造对于,构造对于或,构造对于,构造对于,构造第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知实数满足则的最小值为_________.【答案】【解析】【分析】根据题意约束条件画出可行域,令目标函数x-3y=z,当过点A去最小值,求出点A坐标,带入即可.【详解】已知知实数满足的可行域为,如图所示直线y=-x与交于点A(-1,1)令,当直线过点A,z去最小值故答案为-4【点睛】本题考查了简单的线性规划,画出可行域是解题关键,属于基础题.14.的展开式中的系数是_______.(用数字作答)【答案】【解析】【分析】由题,可得=,分别使用二项式定理展开项,可得的系数.【详解】由题=的展开项系数的展开项系数当,系数为24当,系数为-128当,系数为96所以的系数为:24-128+96=-8故答案为-8【点睛】本题考查了二项式定理,解题的关键是原式要进行变形,属于较易题目.15.在中,,,若,则__________.【答案】【解析】【分析】利用平面向量的基本定理和四则运算,用向量表示出向量,得出的值,求得结果.【详解】由题意,在中,,,可得所以故则故答案为【点睛】本题考查了平面向量的基本定理,熟练运用向量的公式是解题的关键,属于较易题.16.若正实数满足,则函数的零点的最大值为______.【答案】【解析】【分析】根据题意,先求出函数的零点,,然后换元,转化为求得最大值,求导取得其单调性,转化为求t的最大值,再令,再根据单调性求最大值,最后求得结果.【详解】因为正实数满足,则函数的零点令所以零点的最大值就相当于求得最大值令,所以函数是单调递减的,当t去最小值时,f(t)取最大值又因为,a+b=1所以令,令,解得,此时递增,解得,此时递减,所以此时故答案为【点睛】本题主要考查了导函数的应用问题,解题的关键是换元构造新的函数,求其导函数,判断原函数的单调性求其最值,易错点是换元后一定要注意换元后的取值范围,属于难题.三、解答题:本大题共6小题,共70分.17.在中,角的对边分别是,其面积满足.(Ⅰ)求角;(Ⅱ)设的平分线交于,,,求.【答案】(I)(II)【解析】【分析】(1)由余弦定理可得,代入题中条件即可得解;(2)在中,由正弦定理得,从而得,可得,再由代入即可得解.【详解】(1)由得得(2)在中,由正弦定理得所以所以所以【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角恒等变换求值,意在考查学生对这些知识的掌握水平和分析推理能力.18.如图,四棱锥中,是正三角形,四边形是菱形,点是的中点.(I)求证:// 平面;(II)若平面平面,,求直线与平面所成角的正弦值.【答案】(I)证明见解析;(II).【解析】【分析】(I)连接BD角AC于点F,再连接EF,利用EF是三角形DBS的中位线,判断出DS平行EF,再利用线面平行的判定得证;(II)去AB的中点为O,利用已知条件证明DO、SO、BO两两垂直,然后建立空间直角坐标系,求出平面ADC的法向量,再利用线面角的公式求出直线与平面所成角的正弦值.【详解】(I)证明:连接BD角AC于点F,再连接EF.因为四边形是菱形,所以点F是BD的中点,又因为点是的中点,所以EF是三角形DBS的中位线,所以DS平行EF,又因为EF平面ACE,SD平面ACE所以// 平面(II)因为四边形是菱形,,所以又AB=AD,所以三角形ABD为正三角形.取AB的中点O,连接SO,则DO AB因为平面平面,平面平面=AB所以DO平面ABS,又因为三角形ABS为正三角形则以O为坐标原点建立坐标系设AB=2a,则设平面ADS的一个法向量为则取x=1,则所以设直线AC与平面ADS所成角为则【点睛】本题主要考查了线面平行的判定定理以及运用空间向量去解决立体几何的问题,如何建系和求法向量是解题的关键,属于中档题.19.新高考方案的实施,学生对物理学科的选择成了焦点话题. 某学校为了了解该校学生的物理成绩,从,两个班分别随机调查了40名学生,根据学生的某次物理成绩,得到班学生物理成绩的频率分布直方图和班学生物理成绩的频数分布条形图.(Ⅰ)估计班学生物理成绩的众数、中位数(精确到)、平均数(各组区间内的数据以该组区间的中点值为代表);(Ⅱ)填写列联表,并判断是否有的把握认为物理成绩与班级有关?物理成绩物理成绩的学生数班班附:列联表随机变量;【答案】(I);(II)有.【解析】【分析】(Ⅰ)直接根据频率分布直方图,求得各个组的概率,利用公式求得众数、中位数和平均数;(II)利用频率分布直方图填写联表,然后求,即可判断出是否有的把握认为物理成绩与班级有关.【详解】(Ⅰ)估计A班学生物理成绩的总数为:由左至右各个分区间的概率分别为0.1,0.2,0.3,0.2,0.15,0.05中位数60+平均数:(Ⅱ)物理成绩物理成绩的学生数班班所以有的把握认为物理成绩与班级有关【点睛】本题主要考查了统计以及统计案例,众数、中位数、平均数的求法,解题的关键是在于能否明白频率分布直方图,属于基础题.20.已知椭圆:()的左、右焦点分别为,过点的直线交于,两点,的周长为,的离心率(Ⅰ)求的方程;(Ⅱ)设点,,过点作轴的垂线,试判断直线与直线的交点是否恒在一条定直线上?若是,求该定直线的方程;否则,说明理由.【答案】(I);(II).【解析】【分析】(I)由的周长为求得椭圆的a,再离心率,然后求得椭圆的方程;(II)设直线l:x=my+4,,联立方程,运用韦达定理,再写出直线BD的方程直线BD的方程为:与的交点,最后求解计算出与m无关,得出答案.【详解】解:(I)由椭圆的定义,的周长为,即4a=20,解得a=5,又椭圆的离心率,解得c=4所以所以椭圆方程;(II)显然过点的直线l不垂直y轴,设l:x=my+4,联立,得韦达定理:直线的方程为直线BD的方程为:解得又点在直线l上,所以再带入解得又代入解得(与m无关)故直线与直线BD的交点恒落在直线上.【点睛】本题考查了椭圆的方程以及性质,和直线与椭圆的综合问题,属于难题.直线与圆锥曲线解题步骤:(1)设出点和直线的方程(考虑斜率的存在);(2)联立方程,化简为一元二次方程(考虑判别式),利用韦达定理;(3)转化,由题已知转化为数学公式;(4)计算,细心计算.21.已知(I)求函数的极值;(II)若方程仅有一个实数解,求的取值范围.【答案】(I)时,没有极值,时有极小值;(II)或. 【解析】【分析】(I)先根据题意,求出,再求出,然后对a进行讨论,求得的单调性,然后取得极值.(II)仅有一个实数解,即有唯一零点,然后求得,再对a进行讨论,讨论单调性,求得的最小值,再利用零点存在性定理,最后求得a的取值.【详解】(I),当,,在上是增函数,所以,函数没有极值.(2)若,所以在是减函数,在是增函数所以在取极小值,极小值为(II)仅有一个实数解,即有唯一零点.当,,此时在R上递增,因为,所以在递减;在递增,,当x=0取等号,所以满足题意;当时,所以在递减,上递增;令此时当上,递增;当上,递减;当且紧当取等号,所以(1)当,,且因为(利用:当时,),所以由零点存在性定理,可得存在唯一使得,注意()于是,当递增;当递减;当递增;于是且当由零点存在性定理:必然存在一个使得此时,存在两个零点,可见不满足题意;(2)当时,,且此时,且(这里利用)由零点存在性定理:必然存在唯一,使得=0此时在递增;在递减;在递增可见,且当由零点存在性定理:必然存在唯一一个,使得此时,存在两个零点,可见不满足题意;(3)当时,则此时在R上递增,且,所以此时有唯一一个零点所以满足题意综上,a的取值范围为【点睛】本题考查了函数对含参数的函数单调性的讨论,导函数的应用以及零点存在性定理的应用,属于极难题型.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B铅笔在答题卡上把对应的题号涂黑.选修4-4:坐标系与参数方程22.在平面直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,已知曲线:,直线的参数方程为(为参数).直线与曲线交于,两点.(I)写出曲线的直角坐标方程和直线的普通方程(不要求具体过程);(II)设,若,,成等比数列,求的值.【答案】(I),;(II).【解析】【分析】(I)利用所给的极坐标方程和参数方程,直接整理化简得到直角坐标方程和普通方程;(II)联立直线的参数方程和C的直角坐标方程,结合韦达定理以及等比数列的性质即可求得答案.【详解】(I)曲线:,两边同时乘以可得,化简得);直线的参数方程为(为参数),可得x-y=-1,得x-y+1=0;(II)将(为参数)代入并整理得韦达定理:由题意得即可得即解得【点睛】本题考查了极坐标方程、参数方程与直角坐标和普通方程的互化,以及参数方程的综合知识,结合等比数列,熟练运用知识,属于较易题.选修4-5:不等式选讲23.已知函数(I)当时,求不等式的解集;(II)当时,恒成立,求的取值范围.【答案】(I);(II)或.【解析】【分析】(I)由题意,当a=1,代入可得,再用零点分段法,讨论x的取值,解不等式得到答案;(II)当时,恒成立,转化为的最小值大于1即可,只需求出的最小值,再利用绝对值不等式,整理求得最小值即可.【详解】(I)解:当a=1时,当时,,即,即当时,,即,即当时,,即,此时无解综上:的解集为(II)当时,即>1,,当且紧当x=-2时取等号,恒成立即解得或所以a的取值或【点睛】本题考查了解绝对值不等式以及绝对值不等式恒成立问题,属于较易题.。

高三上学期期末考试数学(理)试题(扫描版)

高三上学期期末考试数学(理)试题(扫描版)

高三上学期期末考试数学(理)试题(扫描版)数学评分标准(理)一、选择题:ABCCB ACADD CA二、填空题:13. (-1,0) 14. 78三、解答题17. 解:(1)因为222sin =sin +sin +sin sin A B C B C ,由正弦定理得222a b c bc =++.......................2分再由余弦定理得2221cos -22b c a A bc +-==, 又因为 (0,π)∈A ,所以 2π3A =. ……………… 5分 (2)因为a=3,2b =,2π3A =代入222a b c bc =++得2+250c c -= 解得 c =.........8分故△ABC 的面积1sin 2S bc A ==分 法2.由正弦定理sin sin =a bA B,得sin B ==因为(0,π)∈B所以cos 3=B ...........................................8分故1)sin sin()sin cos cos sin 6C A B A B A B =+=+=故△ABC 的面积113(6sin 2322S ab C -===分18. 解:(1)因为()f x a b ==3x 2-2x.又因为点(,)()n n S n N *∈均在函数()y f x =的图像上,所以n S =3n 2-2n. ....3分当n≥2时,a n =S n -S n -1=(3n 2-2n )-[])1(2)132---n n (=6n -5. ........5分当n =1时,a 1=S 1=3×12-2=1,所以,a n =6n -5 (n N *∈)...............6分 (2)由(1)得知13+=n n n a a b =)161561(21+--n n ,.......................8分故T n =∑=ni i b 1=21⎥⎦⎤⎢⎣⎡+--++-+-)161561(...)13171()711(n n =21(1-161+n )..................... .......................10分因此,要使21(1-161+n )21m >(n N *∈)对n N *∈恒成立,当且仅当3721m >,即m<9,所以满足要求的最大正整数m 为8. .......................12分19. (1)证明:取AB 中点,1AB 的中点为M ,连结CE ME ,,MN,则有ME ∥NC 且ME =NC ∴四边形MNCE 为平行四边形,MN ∥CE -----------------------2分 ∵⊥1AA 面ABC ,ABC CE 面⊂ ∴CE AA ⊥1,又CE AB ⊥∴CE ⊥平面11AA B B 故MN ⊥平面11AA B B . 所以平面1AN B ⊥平面11AA B B ---------------------5分(2)法1:如上图建立空间直角坐标系,则B(0,0,0),A(1,0,0),11(,2,22C 1,(0,2,0)B 因为M 是线段1AB 的中点,所以M 1(,1,0)2【法2:如下图建立空间直角坐标系,则B(-12,0,0),A(12,0,0),1(0,C 11,(-,2,0)2B 因为M 是线段1AB 的中点,所以M (0,1,0)】所以1(0,1,2C M =-----------------------8分设(,,)n x y z =是平面1ABC 的一个法向量,因为1(1,0,0),BA BC ==1(,2所以,由100,12002x BA n x y z BC n =⎧⎧=⎪⎪∴⎨⎨++==⎪⎪⎩⎩ 所以可取3(0,,2)2n =---------------------- ---------------------11分1sin |cos ,|||12133C M n θ∴=<>===--------------------分20. 解:(1)由已知条件可知,在甲、乙两公司分别投资500万元的情况下欲获利1250万元,须且必须两公司均不遭受贸易战的影响.故所求的概率为P=(1-0.6)×(1-0.5)=0.2......................4分 (2)设投资100万元在甲公司获利ξ万元,则ξ的可能取值为150和-50万元. 又甲公司遭受贸易战影响的概率为0.6故投资100万元在甲公司获利的期望为150×0.4+(-50)×0.6=30万元. .......6分 同理在乙公司获利的期望为100×0.5+(-20)×0.5=40万元...............8分 设在甲、乙两公司的投资分别为x,(1000-x)万元,则平均获利z=0.3x+0.4 (1000-x)=400-0.1x 万元(其中350650x ≤≤).................10分 由于上述函数为减函数,所以其获利区间范围为335与365万元之间. ........12分21. 解:(1)因为点P 5322(,)在以12(2,0),(2,0)F F -为焦点的椭圆C 2222:1(0)x y a b a b +=>>上,所以2a ==所以a =分 又因为c=2,所以b =所以椭圆C 的方程为22x y 1106+= .......................5分(2)法一:设A 、B 、M 点的坐标分别为A (1x ,1y ),B (2x ,2y ),M (0,0y ). ∵ 1λ=2, ∴ (1x ,01y y -)),2(111y x --=λ∴ 11112λλ+=x ,1011λ+=y y .......................8分 将A 点坐标代入到椭圆方程中,得220111211()()110161y λλλ+=++. 去分母整理得 :2211018+603050y λλ+-=同理,由2λ=2可得:2222018+603050y λλ+-=∴ 1λ、2λ是方程22018+603050y λλ+-=的两个根,................10分∴12103λλ+=-,又121λλ= 二者联立解得121211=-3-=--333λλλλ==,,或, 12 分【或 所以201230518y λλ-=又121λλ=, 所以20512y =所以上述方程即为23+1030λλ+=所以121211=-3-=--333λλλλ==,,或, 12 分】 法二:设A 、B 、M 点的坐标分别为A (1x ,1y ),B (2x ,2y ),M (0,0y ). 显然直线 m 存在斜率,设直线 m 的斜率为 k ,则直线 m 的方程是 )2(-=x k y . 将直线 m 的方程代入到椭圆 C 的方程中,消去并整理得 2222(35)2020300k x k x k +-+-=.∴ 21222035k x x k +=+,2122203035k x x k-=+.......................8分 又 ∵ 1λ=2,BF MB 2λ=2,将各点坐标代入得1112x x -=λ,2222x x -=λ................... ...............9分 又121λλ=,所以1212121212==1222)(2x x x x x x x x λλ=----(),解得235k =122x x ∴+=,12-3x x =所以1212=3-1=-13x x x x ==,或,代入上式可得121211=-3-=--333λλλλ==,,或, 12 分 22. 解:(1)若k=-1,则32()=24f x x x x d -++,所以2()344f x x x '=-+ 由于△=16-48<0,2()3440f x x x '∴=-+>所以函数()f x 的单调递增区间为(,)-∞+∞,没有单调递减区间. ...............3分 (2)因32()(1)(5)f x x k x k x d =+-+++2()32(1)5f x x k x k '=+-++,因()f x 在区间(0,3)上不单调,....法1:所以()0f x '=在()0,3上有实数解,且无重根,.......................4分 由()0f x '=得2(21)(325),k x x x +=--+()2(325)391021214213x x k x x x -+⎡⎤∴=-=-++-⎢⎥++⎣⎦.......................6分令21,t x =+有()1,7t ∈,记9(),h t t t =+则29()1h t t'=-, 所以在t ∈(]1,3上,h(t)单调递减,在t ∈[)3,7上, h(t)单调递增, 所以有()[)6,10h t ∈,于是得(]5,2k ∈--而当2k =-时有()0f x '=在()0,3上有两个相等的实根1x =,故舍去 所以()5,2k ∈--.............................................8分法2:由题意知,当x ∈[0,3]时“max min 00f f ''><且”,......................4分因为函数()f x '的对称轴为直线x=13k-,所以, ①若13k -<0,则k>1,由max min 2637f f k f f ''''=∴>-=∴()>0, ,且(0)<0, k<-5, 此时解集为空集;②若13k ->3,即k<-8,由max min 2605,37f f k f f ''''=∴>-=∴-()>0, 且()<0, k<,此时解集为空集;..................... ...................6分13701322k k -<<<<③若,则-2maxmin 26125)4(1)3712k k f f k f +--'''=∴>-=(()>0,,且<0,∴k<-2或k>7,此时解集为722-(-,);④若3173232k -≤<≤,则-8<k -,由max0f f ''=()>0, min5k f '∴>-∴ ,且<0, k<-2或k>7 此时解集为75]2--(,综上可得,k 的取值范围是()5,2k ∈--.......................8分 (3)因为2()32(1)5f x x k x k '=+-++所以,当△=224(1)12(5)4(514)0k k k k --+=--≤,即-27k ≤≤时 函数()f x 在R 上单调递增故()f x 在R 上不可能有三个不同零点所以,若()f x 在R 上有三个不同零点,则必有△0>,即27k k <->或是()f x 在R 上有三个不同零点的必要条件..............10分而当0d =,3k =+27k k <->或但322()(1)(5)(1f x x k x k x x x =+-++=++即此时()f x 只有两个不同零点同样,当3k =-27k k <->或,但322()(1)(5)(1f x x k x k x x x =+-++=+-即此时()f x 也只有两个不同零点故k<-2或k>7是()f x 在R 上有三个不同零点的必要不充分条件........12分。

河南省高三上学期期末考试数学(理)

河南省高三上学期期末考试数学(理)

2019〜2020年度河南省高三上学年期末考试数学(理科)考生注意:I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

2.请将各题答案填写在答题卡上。

3.本试卷主要考试内容:高考全部内容。

第I 卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.))(2)(3(R a i a i z ∈+-=为纯虚数,则=z A. i 316 B. i 6 C.i 320 D. 20 A={x x N x 8<|2∈},B={2,3,6},C={2,3,7},则B ∪(C A C)=A. {2,3,4,5}B. {2,3,4,5,6}C. {1,2,3,4,5,6}D. {1,3,4,5,6,7} b a ,满足2||,1||==b a ,且a 与b 的夹角为0120,则=-|3|b aA. 11B. 37C. 102D. 43C: 122=-y mx 的一条渐近线方程为023=+y x ,则=m A. 94 B. 49 C.32 D. 23 5.已知底面是等腰直角三角形的三棱锥PABC 的三视图如图所示,俯视图中的两个小三角形全等,则A.PA ,PB ,PC 两两垂直P —ABC 的体积为38C.6||||||===PC PB PA PABC 的侧面积为53“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:mm)服从正态分布N(80 , 52),则直径在(75,90]内的概率为 附:若),(2σμN X -,9544.0)2X <2(,6826.0)X <(=+≤-=+≤-σμσμσμσμP PA.0.6826B.0.8413)8()8(0),>()sin(2)(x f x f b x x f -=+++=ππωϕω,且5)8(=πf ,则=b A. 3 B.3 或 7 C.5 D.5 或 8 2||ln ||)(x x x x f -=ln 的图象大致为 ⎩⎨⎧≤-≥+030x y x 表示的平面区域为Ω,若从圆C :422=+y x 的内部随机选取一点P ,则P 取自Ω的概率为A. 245B. 247C. 2411D. 2417 10. 已知函数⎪⎩⎪⎨⎧-+≤+=0>,9log 20,34)(29x x x x x f x ,则函数))((x f f y =的零点所在区间为 A. (3,27) B. (1,0) C. (27,4) D. (4,5) )1(-=x k y 与抛物线C: x y 42=交于A ,B 两点,直线:)2(2-=x k y 与抛物线D: x y 82=交于M ,N 两点,设||2||MN AB -=λ,则A. -16<λB. -16=λC. 0<<12λ-D. -12=λ12.“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为A. 56383B. 57171C. 59189D. 61242第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13. 8)212(x x -展开式的第5项的系数为 ▲ .14.函数1)4()(-+-=x x x x f 的值域为 ▲ .{n a }中,0,11≠=n a a ,曲线3x y =在点),(3n n a a 处的切线经过点)0,(1+n a ,下列四个结论:①322=a ;②313=a ;③276541=∑=i i a ;④数列{n a }是等比数列. 其中所有正确结论的编号是 ▲ .ABCD 中,BC=4,M 为BC 的中点,将ABM ∆和DCM ∆分别沿AM ,DM 翻折,使点B 与C 重合于点P.若∠APD=150°,则三棱锥MPAD 的外接球的表面积为 ▲ .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17〜 21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17. (12 分)a ,b ,c 分别为ABC ∆ 内角 A ,B ,C 的对边,已B b A C c a sin sin sin ,3+==,且B =60°.(1)求ABC ∆的面积;(2)若D ,E 是BC 边上的三等分点,求DAE ∠sin .18. (12 分)如图,四棱锥E 一ABCD 的侧棱DE 与四棱锥F —ABCD 的侧棱BF 都与底面ABCD 垂直,AD⊥CD,AB∥CD,AB=3,AD=CD=A,AE=5,AF=23.(1)证明:DF//平面BCE.(2)设平面ABF 与平面CDF 所成的二面角为θ,求θ2cos .19. (12 分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如下:(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有 2天为优的概率;(2)已知某企业每天因空气质量造成的经济损失:y (单位:元)与空气质量指数x 的关系式为⎪⎩⎪⎨⎧≤≤≤≤=300x <1480,250250<100,2201000,0x x y ,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为61,121,121,61,31,61.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i)记该企业9月每天因空气质量造成的经济损失为X 元,求X 的分布列;(ii )试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过万元?说明你的理由.20. (12 分) 已知椭圆C: 0)>b >(12222a b y ax =+过点(1,23),过坐标原点O 作两条互相垂直的射线与椭圆 C 分别交于M ,N 两点.(1)证明:当229b a +取得最小值时,椭圆C 的离心率为22. (2)若椭圆C 的焦距为2,是否存在定圆与直线MN 总相切?若存在,求定圆的方程;若不存在,请说明理由.21.(12分)已知函数1sin )1ln(2)(+++=x x x f ,函数)0,,(,ln 1)(≠∈--=ab R b a x b ax x g .(1)讨论)(x g 的单调性;(2)证明:当0≥x 时,13)(+≤x x f .(3)证明:当-1>x 时,x e x x x f sin 2)22(<)(++ .(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为ϕϕϕ(sin 2,cos 21⎩⎨⎧=+-=y x 为参数).以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系.已知点P 的直角坐标为(2,0),过P 的直线l 与曲线C 相交于M ,N 两点.(1)若l 的斜率为2,求l 的极坐标方程和曲线C 的普通方程;(2)求||||PN PM ⋅的值.23.[选修4—5:不等式选讲](10分)已知函数|12||12|)(++-=x x x f ,记不等式4<)(x f 的解集为M.⑴(1)求M ;(2)设M b a ∈,,证明:0>1|b |-|a |-|ab |+.。

高三上学期期末考试数学(理)试题 含解析

高三上学期期末考试数学(理)试题 含解析

高三学年期末考试数学(理)试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设,,则()A. B. C. D.【答案】B【解析】试题分析:,即..故B正确.考点:集合间的关系.2.已知向量,,且,则实数的值为A. 1B.C.D. 2【答案】C【解析】【分析】直接利用向量共线的坐标表示列方程求解即可.【详解】因为,,且,所以,解得,故选C.【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.3.“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:若,则,所以“”是“”的充分而不必要条件。

考点:本题考查充分必要充要条件;三角函数求值。

点评:熟练掌握充分必要充要条件的判断。

此题为基础题型。

4.已知数列为等差数列,且,则等于A. B. C. D.【答案】B【解析】【分析】由,利用等差数列的性质可得,根据诱导公式,结合特殊角的三角函数即可得结果.【详解】因为数列为等差数列,且,所以,,所以,故选B.【点睛】本题主要考查等差数列的性质以及诱导公式的应用,属于中档题. 解等差数列问题要注意应用等差数列的性质().5.已知变量满足约束条件,则的最大值为A. B. C. D.【答案】D【解析】【分析】首先绘制可行域,然后结合目标函数的几何意义确定其最大值即可.【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点的坐标为:,据此可知目标函数的最大值为:.本题选择D选项.【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z 值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.6.阅读下面的程序框图,输出结果的值为(其中为虚数单位,)A. B. C. D.【答案】D【解析】【分析】由已知的程序框图可知:该程序的功能是利用循环结构计算并输出变量的值,利用虚数单位的乘方运算化简可得结果.【详解】阅读、并执行程序框图可知,该程序的功能是利用循环结构计算并输出变量的值,根据虚数单位的乘方运算法则可得,,故选D .【点睛】算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式、复数、三角函数等自然交汇,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.7.在正方体中,是正方形的中心,则异面直线与所成角为A. B. C. D.【答案】D【解析】【分析】先证明,从而是异面直线与所成角(或所成角的补角),利用余弦定理能求出异面直线与所成角.【详解】在正方体中,所以,可得是矩形,,是异面直线与所成角(或所成角的补角),设正方体中棱长为2,则,,,异面直线与所成角为,故选D.【点睛】本题主要考查异面直线所成的角,属于中档题.求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.8.如果双曲线的两个焦点分别为、, 一条渐近线方程为, 那么经过双曲线焦点且垂直于轴的弦的长度为A. B. C. D.【答案】A【解析】【分析】由焦点坐标求得 ,根据和渐线方程,联立求得和,可得双曲线方程,将代入双曲线方程,进而可得结果.【详解】因为双曲线的两个焦点分别,—条渐近线方程为,,解得,双曲线的方程为,由所以经过双曲线焦点且垂直于轴的弦的长度为,故选A.【点睛】本题主要考查利用双曲线的方程与简单性质,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.9.若某几何体的三视图如下所示,其中正视图与侧视图都是边长为2的正方形,则该几何体的体积是A. B. C. D.【答案】A【解析】【分析】利用三视图,以正方体为载体还原几何体的直观图为四棱锥(如图),利用分割法,将四棱锥分解成棱柱的体积减去两个小棱锥计算体积.【详解】由三视图可知,几何体为不规则放置的四棱锥,是正方体的一部分,如图,因为正视图与侧视图都是边长为2的正方形,所以图中正方体的棱长为2,四棱锥可以看作是棱柱去掉两个三棱锥的几何体,所以几何体的体积,故选A.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.10.已知椭圆的离心率,为椭圆上的一个动点,若定点,则的最大值为A. B. C. D.【答案】C【解析】【分析】首先求得椭圆方程,然后确定的最大值即可.【详解】由题意可得:,据此可得:,椭圆方程为,设椭圆上点的坐标为,则,故:,当时,.本题选择C选项.【点睛】本题主要考查椭圆方程问题,椭圆中的最值问题等知识,意在考查学生的转化能力和计算求解能力.11.已知点在同一个球面上,,若四面体体积的最大值为 10,则这个球的表面积是A. B. C. D.【答案】B【解析】【分析】由三个边长利用勾股定理可知垂直,可知球心的位置在过中点与面垂直的直线上,作出图形,因为面积为定值,所以高最大时体积最大,根据球的几何性质可得,当过球心时体积最大,利用勾股定理列出关于半径的方程,即可得解.【详解】由,可知,则球心在过中点与面垂直的直线上,因为面积为定值,所以高最大时体积最大,根据球的几何性质可得,当过球心时体积最大,因为四面体的最大体积为10,所以,可得,在中,,,得,球的表面积为,故选B.【点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②可以转化为长方体的外接球;③特殊几何体可以直接找出球心和半径;④设球心(在过底面多边形外接圆圆心与底面垂直的直线上),利用待定系数法求半径.12.已知函数,则函数的零点个数为A. B. C. D.【答案】B【解析】【分析】首先研究函数的性质,然后结合函数的图像整理计算即可求得最终结果.【详解】当时,,据此可得函数在区间上单调递增,在区间上单调递减,在区间上单调递增,由函数的解析式易知函数在区间上单调递减,绘制函数图像如图所示,注意到,故方程的解:,则原问题转化为求方程时解的个数之和,由函数图像易知满足题意的零点个数为7个.本题选择B选项.【点睛】本题主要考查分段函数的性质,分类讨论的数学思想,函数的零点问题等知识,意在考查学生的转化能力和计算求解能力.二、填空题:(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上.)13.已知椭圆与双曲线有共同的焦点,且双曲线的离心率为2,则该双曲线的方程为_______.【答案】【解析】【分析】由椭圆与双曲线有共同的焦点,利用双曲线的离心率为2,可得到的关系式,求解,即可得到双曲线方程.【详解】因为椭圆与双曲线有共同的焦点,由,可得,即,因为双曲线的离心率为,,则,所以双曲线的方程为,故答案为.【点睛】用待定系数法求双曲线方程的一般步骤;①作判断:根据条件判断双曲线的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程或;③找关系:根据已知条件,建立关于、、的方程组;④得方程:解方程组,将解代入所设方程,即为所求.14.已知函数在区间上单调递减,且为偶函数,则满足的的取值范围是_______.【答案】【解析】【分析】根据函数在区间上单调递减,结合奇偶性可得等价于,从而可得结果.【详解】根据题意,函数在区间上单调递减,且为偶函数,则,,解可得或或,即的取值范围为,故答案为.【点睛】本题主要考查抽象函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据函数单调性列不等式求解.15.过点作直线,与圆交于两点, 若,则直线的方程为______________.【答案】或【解析】【分析】将圆的方程化为标准方程,确定圆心与半径,当斜率存在时,设斜率为,方程,利用垂径定理,结合勾股定理, 可求得的值,再验证当斜率不存在时是否满足题意即可得结果. 【详解】圆化为,圆心,半径,点在圆内,当斜率存在时,设斜率为,方程,即,圆心到直线距离为,,的方程当斜率不存在时,直线也满足,的方程或,故答案为或.【点睛】本题主要考查圆的方程与性质,以及点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.16.设数列的前项和为,, 2,且,则的最大值为___________ .【答案】63【解析】【分析】先证明数列是以为公比,以为首项的等比数列可得的通项公式,求得,当为偶数时,不合题意,当为奇数时,由,可得,利用 2,得,从而可得关于的不等式,进而可得结果.【详解】数列是以为公比,以为首项的等比数列,数列的前项和为,,当为偶数时,,无解;当为奇数时,由,可得,由可得,,因为 2,所以,即,结合,可得,所以,使得的的最大值为,故答案为 .【点睛】本题主要考查等比数列的定义、等差数列的求和公式以及已知数列的递推公式求通项,属于综合题.由数列的递推公式求通项常用的方法有:(1)等差数列、等比数列(先根据条件判定出数列是等差、等比数列);(2)累加法,相邻两项的差成等求和的数列可利用累加求通项公式;(3)累乘法,相邻两项的商是能求出积的特殊数列时用累乘法求通项;(4)构造法,形如的递推数列求通项往往用构造法,利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得出的通项公式.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.在中,三个内角所对的边分别为,满足.(1)求角的大小;(2)若,求,的值.(其中)【答案】(1);(2)4,6【解析】【分析】(1)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,求出的值,即可确定出的度数;(2)根据平面向量数量积的运算法则计算得到一个等式,记作①,把的度数代入求出的值,记作②,然后利用余弦定理表示出,把及的值代入求出的值,利用完全平方公式表示出,把相应的值代入,开方求出的值,由②③可知与为一个一元二次方程的两个解,求出方程的解,根据大于,可得出,的值.【详解】(1)已知等式,利用正弦定理化简得,整理得,即,,则.(2)由,得,①又由(1),②由余弦定理得,将及①代入得,,,③由②③可知与为一个一元二次方程的两个根,解此方程,并由大于,可得.【点睛】以三角形和平面向量为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.18.数列的前项和为, 且, ().(1)证明:数列为等比数列,并求;(2)若, 求数列的前项和.【答案】(1);(2)【解析】【分析】(1)两式相减,可得,从而可求得,结合等比数列求和公式可得结果;(2)结合(1),,利用等差数列求和公式可得结果.【详解】(1),①-②将,,故此数列为,,时,因为也适合,故,,所以数列为等比数列.(2).【点睛】本题主要考查数列的通项公式与前项和公式之间的关系,以及等差数列与等比数列的求和公式,属于中档题. 已知数列前项和,求数列通项公式,常用公式,将所给条件化为关于前项和的递推关系或是关于第项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式. 在利用与通项的关系求的过程中,一定要注意的情况.19.如图,在四棱锥中,底面为菱形,,为的中点.(1)若,求证:;(2)若平面平面,且,点在线段上,试确定点的位置,使二面角大小为,并求出的值.【答案】(1)见解析;(2)【解析】【分析】(1)连结PQ,QB,由几何关系可证得,,利用线面垂直的判定定理可得平面,然后利用线面垂直的定义证明题中的结论即可.(2)设,建立空间直角坐标系,由题意可得平面MBQ的法向量为,平面BQC的一个法向量为,据此得到关于的方程,解方程即可确定的值.【详解】(1)如图所示,连结PQ,QB,由可得,由可得,,由线面垂直的判定定理可知平面,在平面内,故.(2)建立如图所示的空间直角坐标系则,设,则,即,据此可得点M的坐标为,而,设平面MBQ的法向量为,则:,据此可得平面MBQ的一个法向量为,易知平面BQC的一个法向量为,由题意可得:,即:,解得:.即的值为.【点睛】本题主要考查线面垂直的判定定理,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.20.在圆上取一点,过点作轴的垂线段,为垂足,当点在圆上运动时,设线段中点的轨迹为.(1)求的方程;(2)试问在上是否存在两点关于直线对称,且以为直径的圆恰好经过坐标原点?若存在,求出直线的方程;若不存在,请说明理由.【答案】(1);(2)存在,.【解析】【分析】(1)设,则点,将代入圆,可得的方程;(2)可判断直线存在斜率,设直线的方程为,联立,消去并整理得,设,利用根与系数可得,依题意,可得,即,化为,由的中点在直线上,可得,代入化简解出即可.【详解】(1)设,则点,将代入圆,可得的方程为.(2)显然,直线存在斜率,设直线的方程为,联立,消去并整理得,,化为,设,则,依题意,可得,,又,,,解得,由的中点在直线上,,,化为,把代入化为,解得(舍去)或,,解得,满足,即满足,在上存在两点关于直线对称,且以为直径的圆恰好经过坐标原点,直线的方程为.【点睛】本题主要考查的轨迹方程的求解方法、直线与椭圆的位置关系、向量垂直与数量积的关系,化归与转化思想方法的应用,属于难题. 求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.21.已知函数.(1)当时,求的最大值;(2)若对,都有恒成立,求的取值范围;(3)证明:对任意正整数均成立,其中为自然对数的底数.【答案】(1);(2);(3)见解析【解析】【分析】(1)首先求得导函数,然后结合导函数求解函数的最大值即可;(2)首先求得导函数,然后分类讨论确定a的取值范围即可;(3)所给的不等式两侧取对数,结合(2)中的结论和不等式的性质即可证得题中的不等式. 【详解】(1),据此可得:单调递增;单调递减,函数的最大值为.(2)由题意可得:,若,则单调递减,而,不合题意,舍去;当时:①.单调递减,而,不合题意,舍去;②.单调递增,,符合题意;③.单调递增,,符合题意;综上可得,的取值范围是;(3)题中所给的表达式两侧取对数即证:,即:,结合(2)中的结论,函数的解析式取,则,即:,(*)由于,将代入(*)式可得:,则:,故题中的不等式成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22.在直角坐标系中,曲线的方程为,.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有四个公共点,求的取值范围.【答案】(1);(2)【解析】【分析】(1)由,代入曲线的极坐标方程可求出曲线的直角坐标方程;(2)将曲线的方程表示为分段函数的形式,可得得直线与直线与曲线都相交,然后利用圆心到直线的距离小于半径,列不等式即可求出的值.【详解】(1)由,代入曲线的极坐标方程可得,因此,曲线的普通方程为.(2)将曲线的方程可化为,由于曲线与曲线有四个公共点,由圆的方程可知,所以,直线与曲线相交且直线与曲线相交,则有,化简得,,,化简得,,综上所述,实数的取值范围是.【点睛】本题考查曲线的极坐标方程,考查极坐标方程与普通方程之间的转化,同时考查了直线与圆的位置关系,属于中等题. 解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系(求弦长问题需要考虑点到直线距离、半径,弦长的一半之间的等量关系);二是直线方程与圆的方程联立,考虑运用韦达定理以及判别式来解答.23.已知关于的不等式.(1)当时,求不等式的解集;(2)若不等式有实数解,求实数的取值范围.【答案】(1);(2)【解析】【分析】(1)代入的值,对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2 )根据绝对值三角不等式求得的最小值为,得到,解不等式即可得结果.【详解】(1)时,故或或,解得,故不等式的解集是.(2)因为,所以,要使不等式有实数解,则,即解得,即的范围是.【点睛】本题考查了解绝对值不等式问题,考查绝对值不等式的性质以及分类讨论思想,属于中档题. 绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。

2023届河南省驻马店市高三上学期期末统一考试数学(理)试题(解析版)

2023届河南省驻马店市高三上学期期末统一考试数学(理)试题(解析版)

2023届河南省驻马店市高三上学期期末统一考试数学(理)试题一、单选题1.设集合{}{}22|120,Z |450A x x x B x x x =--<=∈+-<,则A B =( )A .{}|31x x -<<B .{}|13x x -<<C .{}2,1,0--D .{}0,1,2【答案】C【分析】由题知{}|34A x x =-<<,{}4,3,2,1,0B =----,再求交集即可.【详解】解:{}()(){}{}2|120|430|34A x x x x x x x x =--<=-+<=-<<,{}()(){}{}2Z |450Z |5104,3,2,1,0B x x x x x x =∈+-<=∈+-<=----, 所以,{2,1,0}A B =-- 故选:C2.已知a ,b 为实数,复数2i z a =+,若2i z ba z+=,则||a b -=( ) A .2- B .1-C .1D .2【答案】A【分析】由已知利用复数相等列出方程组,求出||,||a b 即可得答案. 【详解】因为2i z a =+,所以2i z a =-, 则2i2i 2i z b a b a a z+++==-,即22i 2i(2i)42i a b a a a a ++=-=+,从而2422a a ba =+⎧⎨=⎩,即231b a a =⎧⎨=⎩,解得||1,||3==a b ,故|||| 2.a b -=-故选:A.3.已知函数()22123x f x x +=--,则()3f =( )A .4-B .2-C .2D .4【答案】B【分析】整体代换,令213x +=求得x 后代入已知式可求值. 【详解】令213x +=,得1x =,则(3)f 2132=--=- 故选:B .4.蒙古包是蒙古族牧民居住的一种房子,建设和搬迁很方便,适用于牧业生产和游牧生活.小明对蒙古包非常感兴趣,于是做了一个蒙古包的模型,其三视图如图所示,现在他需要买一些油毡纸铺上去(底面不铺),则至少要买油毡纸( )A .0.99π2mB .0.9π2mC .0.66π2mD .0.81π2m【答案】D【分析】根据题意可知:该蒙古包的模型是一个圆锥与圆柱的组合体.要求该几何体的表面积(除去底面面积),利用圆锥和圆柱的侧面积公式即可求解.【详解】由题三视图可知该蒙古包的模型是一个圆锥与圆柱的组合体. 其中圆锥的母线长为220.3(1.5 1.1)0.5m l +-, 则圆锥的侧面积2110.52π0.3=0.15πm 2S =⨯⨯⨯,圆柱的侧面积22 1.12π0.3=0.66πm S =⨯⨯,故总面积为2120.15π0.66π0.81πm S S S =+=+=,所以至少要买油毡纸20.81πm , 故选:D .5.在正项等比数列{n a }中,若3a ,7a 是关于x 的方程240x mx -+=的两实根,则21222329log log log log a a a a ++++=( )A .8B .9C .16D .18【答案】B【分析】由韦达定理可得374a a =,由等比数列性质可得912392a a a a =,由对数运算性质可得答案.【详解】由韦达定理可得374a a =,由等比数列性质可得254a =,则52a =,由等比数列性质可知31922874654a a a a a a a a a =====,则912392a a a a =,故212223292192392log log log log log ()log 92a a a a a a a a ++++===.故选:B.6.如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,CD ⊥平面 PAD .6AB =,60BAD ∠=︒,224PC AD PD BC ====,则异面直线PA 与BC 所成角的余弦值为( )A .155B .105C .255D .55【答案】D【分析】根据线面垂直以及面面垂直可建立空间直角坐标系,利用空间向量的夹角即可求解. 【详解】由CD ⊥平面PAD ,,PD AD ⊂平面PAD ,故CD AD ⊥,CD PD ⊥,又平面PCD ⊥平面ABCD ,其交线为CD , AD ⊂平面ABCD ,因此AD ⊥平面PCD ,PD ⊂平面PCD ,故AD PD ⊥,故DA DC DP 、,两两垂直,则以D 为原点,.DA DC DP ⋅的方向分别为x y z ,,轴的正方向,建立如图所示的空间直角坐标系,400002A P ,,,,,13300230B ,,,C ,,,则(4,0,2),(1,3,0).PA BC =-=--.设异面直线PA 与BC 所成的角为θ,则||45cos |cos ,|.5||||252PA BC PA BC PA BC θ⋅=<>===⨯故选:D7.为了让学生了解环保知识,增强环保意识,某班举行了一次环保知识有奖竞答活动,有20名学生参加活动.已知这20名学生得分的平均数为m ,方差为n .若将m 当成一个学生的分数与原来的20名学生的分数一起,算出这21个分数的平均数为m ',方差为n ',则( ) A .2021m m '=,2120n n '= B .m m '=,2021n n '= C .2021m m '=,2021n n '= D .m m '=,2120n n '=【答案】B【分析】设这20名学生得分分别是1x 、2x 、3x 、、20x ,利用平均数和方差公式可得合适的选项. 【详解】设这20名学生得分分别是1x 、2x 、3x 、、20x ,则122020m x x x =+++,12202121m x x x m m =++++=',故m m '=,因为()()()()22221232020n x m x m x m x m =-+-+-++-,()()()()()222221232021n x m x m x m x m m m ''=-+-+-++-+-,因为m m '=,故2021n n '=. 故选:B.8.在三棱柱111ABC A B C 中,ABC 是等边三角形,12AA AB =,在该三棱柱的外接球内随机取一点P ,则点P 在三棱柱111ABC A B C 内的概率为( ) A .2732B .2732πC .2764D .2764π【答案】D【分析】利用几何概型,设三棱柱的外接球体积为V ,可知P 在三棱柱111ABC A B C 内的概率111ABC A B CV P V-=.【详解】设等边三角形ABC 边长为2a ,124AA AB a ==,()222a ⋅=,则111234ABC A B C V a -=⋅=.如图,因ABC 是等边三角形,则三角形外心O ,也为三角形重心,由重心性质可得:13OD AD a ==.则三角形外接圆半径r OC a ====如图,又设三棱柱的外接球圆心为1O ,则1O 为2OO 中点,则外接球半径222224434233O O a R r a a ⎛⎫=+=+= ⎪⎝⎭.设外接球体积为V ,则3334443256333327πππV R a a ⎛⎫=== ⎪ ⎪⎝⎭.由几何概型,则P 在三棱柱111ABC A B C 内的概率11133432764256327ππABC A B CV a P Va -===.故选:D.9.设0.7 1.2 1.42e e e 1a b c ===-,,,则( ) A .a b c << B .b<c<a C .b a c << D .c b a <<【答案】D【分析】根据不等式的性质可得0.70.7 1.22e e e e >=,令()x f x e =可得曲线()y f x =在 1.4x =处的切线方程为 1.4 1.4e ( 1.4)e y x =-+.根据指数函数的图象可得: 1.4(0.4)(0)e e x x x -≥>,进而得到 1.2 1.4e 0.8e >,然后再利用不等式的性质即可求解.【详解】因为0.70.7 1.22e e e e >=,所以a b >.令()x f x e =,则曲线()y f x =在 1.4x =处的切线方程为1.4 1.4e ( 1.4)e y x =-+.易证 1.4 1.4 1.4(0.4)(0)e e ( 1.4)e e x x x x ≥-+=->,当且仅当 1.4x =时,等号成立,故 1.2 1.4e 0.8e >, 即 1.2 1.4 1.4e 1e 10.2e .+->-因为32e 5<,所以 1.5e 5<,所以 1.4e 5<,则 1.410.2e 0->,即 1.2 1.4e 1e 0+->, 从而b c >.故c b a <<. 故选:D .10.已知函数()sin 2cos2(0f x x a x ωωω=+>)在π12x =处取得最大值,且()f x 图象的两条相邻的对称轴之间的距离小于π2,若π6f ⎛⎫= ⎪⎝⎭ω的取值可能是( ) A .2 B .3C .5D .7【答案】C【分析】由两条相邻的对称轴之间的距离小于π2得1ω>,利用辅助角公式(引入辅助角ϕ)变形后,由最大值点得,ωϕ的关系,再由(π)6f =a ,从而得ϕ的表达式,代入可得ω的表达式,得正确选项.【详解】因为()f x 图象的两条相邻的对称轴之间的距离小于π2,所以12ππ222ω⨯<,所以1ω>.由辅助角公式可得())f x x ωϕ+,其中sin ϕ=cos ϕ=,因为()f x 在π12x =处取得最大值,所以Z πππ2,62k k ωϕ+=+∈,所以6312,Z πk k ϕω=-+∈, Z π4π,3k k ωϕϕπ+=-+∈,()1sin()4)6ππππ3f k a ωϕϕϕ=+=-+===所以sin ϕ=1cos 2ϕ=,则11Z π,π23k k ϕ=-∈,1226312312212125,Z πk k k k k ϕω=-+=-++=+∈,只有C 满足. 故选:C .11.已知抛物线28y x =的焦点为F ,直线l 与抛物线交于,A B 两点,O 为坐标原点,直线,OA OB 的斜率之积为1-,则4||AF BF +|的最小值是( ) A .32 B .36C .42D .46【答案】C【分析】设直线1122:,(,),(,)l x my t A x y B x y =+,进而与抛物线联立方程,结合韦达定理得12121y y x x =-,再根据121212646418y y x x y y t ===--得8t =,1264x x =,最后根据基本不等式和焦半径公式求解即可.【详解】解:设直线1122:,(,),(,)l x my t A x y B x y =+,联立28x my t y x=+⎧⎨=⎩整理得2880y my t --=,所以,264320m t ∆=+>,12128,8y y m y y t +==-. 因为直线,OA OB 的斜率之积为1-,所以12121y y x x =-, 因为2211228,8y x y x ==,所以()2121264y y x x =,所以121212646418y y x x y y t ===--,解得8t =,即()212126464y y x x ==, 所以,1264x x =. 因为1222AF x BF x =+=+,, 所以()12226442424101042AF BF x x x x +=+++=++≥=,当且仅当22644x x =时,等号成立.所以,4||AF BF +|的最小值是42. 故选:C12.已知函数()2,0()ln ,0x x f x x x ⎧≥⎪=⎨-<⎪⎩,若函数()()()()1g x f f x af x =-+恰有两个零点,则a 的取值范围是( ) A .[){}0,21⋃ B .()2,+∞ C .()1,0- D .(),1-∞-【答案】C【分析】设()t f x =,进而考虑()y f t =与1y at =-的交点,分02a ≤<,2a =,2a >,10a -<<,1a <-五种情况讨论求解即可.【详解】设()t f x =,则()()1y h t f t at ==-+,令()0h t =,得()1f t at =-, 我们先来考虑()y f t =与1y at =-的交点, 令224,1at t a -=∆=-,当02a ≤<时,1y at =-与()y f t =只有1个交点,交点横坐标()11,0t ∈-,此时()g x 有1个零点; 当2a =时,1y at =-与()y f t =只有2个交点,交点横坐标()121,0,1t t ∈-=,此时()g x 有3个零点.当2a >时,1y at =-与()y f t =只有3个交点,交点横坐标()()()1231,0,0,1,1,t t t ∞∈-∈∈+,此时()g x 有5个零点.若1y at =-与()()0y f t t =<相切时,设切点()()00,ln P t t -, 所以,切线斜率()000ln 11t a t t -+==,解得01,1t a =-=-, 故当1a <-时,1y at =-与()y f t =没有交点,()g x 没有零点.当10a -<<时,1y at =-与()y f t =有2个交点,交点横坐标()120,,t t ∈-∞,此时()g x 有2个零点. 故选:C【点睛】关键点点睛:本题解题的关键在于通过换元()t f x =,将问题转化为直线1y at =-与()y f t =的交点个数,进而数形结合,分类讨论求解即可.二、填空题13.已知非零向量,a b 满足||2||b a =,且()a a b ⊥+,则向量,a b 的夹角是_______. 【答案】23π【分析】由向量垂直得到()0a a b ⋅+=,即可得到2a b a ⋅=-,再根据cos ,||||a ba b a b ⋅〈〉=及||2||b a =计算可得;【详解】解:因为()a a b ⊥+,所以()0a a b ⋅+=,即20a a b +⋅=,所以2a b a ⋅=-. 因为||2||b a =,所以21cos ,2||||||||a b a a b a b a b ⋅-〈〉===-,因为[],0,a b π〈〉∈,所以2,3a b π〈〉=. 故答案为:23π14.已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,上、下顶点分别为1B ,2B ,左、右焦点分别为1F ,2F ,若22210B A F B ⋅=,则椭圆C 的离心率为________.【分析】写出点2221,,,B A F B 的坐标,根据22210B A F B ⋅=列出,,a b c 的关系,求解.【详解】因为()()22212221,,,,0B A a b F B c b B A F B =-=--⋅=,所以20ac b -+=,即220a c ac --=,则2e e 10+-=,解得e =e =因为0e 1<<,所以e =15.若()()()()()102910701291021111x x a a x a x a x a x +-=+-+-++-+-,则5a =_________.【答案】231-【分析】将()1072x x +-化为()()7101111x x ⎡⎤⎡⎤-++--⎣⎦⎣⎦,后由二项式定理可得答案.【详解】()1072x x =+-()()7101111x x ⎡⎤⎡⎤-++--⎣⎦⎣⎦,设()711x ⎡⎤-+⎣⎦展开式通项为()7171C rrr T x -+=-,令752r r -=⇒=,则()()552371211C T x x =-=-. 设()1011x ⎡⎤--⎣⎦展开式通项为()()1011011C rrrr T x -+=--,令1055r r -=⇒=,则()()()5555610112521C T x x =--=--.则521252231a =-=-. 故答案为:231-16.对于正整数n 的正整数设为n a ,如131,2a a ==,记n n b n a =+,从全体正整数中除去所有n b ,余下的正整数按从小到大的顺序排列得到数列{}n c ,则数列{}n c 的前8项和为_________. 【答案】204【分析】对于正整数k ,就2214k n k k ≤<++、221214k k n k k ++≤<++分类讨论后可求n b ,从而可求{}n c ,故可求前8项和.【详解】对于正整数n ,必存在正整数k ,使得()221k n k ≤<+.如果2214k n k k ≤<++,则12k k ≤+,故n a k =,故n b n k =+,此时22k n k k ≤≤+,故222k k n k k k +≤+≤+故此时n b 取值为区间22,2k k k k ⎡⎤++⎣⎦中的所有正整数.如果221214k k n k k ++≤<++即22121k k n k k ++≤<++,则112k k +<+, 故1n a k =+,故1n b n k =++,此时2222132k k n k k k ++≤++<++,故此时n b 取值为区间())2211,32k k k ⎡++++⎣中的所有正整数. 所以当2221k n k k ≤<++时,n b 取值为区间())2222,211,32k k k k k k k ⎡⎡⎤++++++⎣⎦⎣中所有的正整数,而()223211k k k k ++=+++,()221122k k k ++=++,故())2222,211,32k k k k k k k ⎡⎡⎤++++++⎣⎦⎣表示())22,11k k k k ⎡++++⎣中除()21k +以外的所有正整数, 取1k =,则14n ≤<,n b 取值为区间[)2,6中除4以外的所有正整数. 取2k =,则49n ≤<,n b 取值为区间[)6,12中除9以外的所有正整数.依次取k m =,则()221m n m ≤<+,n b 取值为区间())22,11m m m m ⎡++++⎣中除()21m +以外的所有正整数. 故1234567891,4,9,16,25,36,49,64,81c c c c c c c c c =========, 故前8项和为:1491625364964204+++++++=, 故答案为:204.【点睛】思路点睛:对于数列的新定义问题,首先要弄清楚数列的形成过程,特别是与数论有关的新数列构建问题,要能根据整数的形式做合理的分类.三、解答题17.在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且2sin cos b A a B c +=. (1)求sin A 的值;(2)若点M 在边AC 上,且BCM 是边长为ABC 的面积.【答案】(1)5sin 5A = (2)33182+【分析】(1)由正弦定理进行边角转换可得1tan 2A =,再结合22sin cos 1A A +=即可求解; (2)在ABC 中,由正弦定理可得35c =,然后利用πA C ABC ++∠=求出5215sin 10ABC +∠=,最后用面积公式求解即可【详解】(1)因为2sin cos b A a B c +=,所以结合正弦定理得2sin sin sin cos sin .B A A B C += 因为πA B C ++=,所以()sin sin sin cos cos sin C A B A B A B =+=+, 所以2sin sin cos sin .B A A B =因为0πB <<,所以sin 0B ≠,所以2sin cos A A =,所以sin 1tan cos 2A A A ==. 因为22sin cos 1A A +=,且0πA <<,所以25cos 5A =,5sin 5A =. (2)因为BCM 是边长为23的等边三角形,所以π233BC C ==,. 在ABC 中,由正弦定理可得sin sin a cA C =,则sin 35sin a C c A==. 因为πA C ABC ++∠=,所以()5215sin sin sin cos cos sin 10ABC A C A C A C +∠=+=+=, 则ABC 的面积为15215331835232102++⨯⨯⨯=. 18.某工厂为了检验某产品的质量,随机抽取100件产品,测量其某一质量指数,根据所得数据,按[)10,12,[)12,14,[)14,16,[)16,18,[]18,20分成5组,得到如图所示的频率分布直方图.(1)估计该产品这一质量指数的中位数;(2)若采用分层抽样的方法从这一质量指数在[)16,18和[]18,20内的该产品中抽取12件,再从这12件产品中随机抽取4件,记抽取到这一质量指数在[]18,20内的该产品的数量为X ,求X 的分布列与期望.【答案】(1)15; (2)分布列见解析,()43E X =.【分析】(1)利用中位数的求解方法列方程即可求解.(2)由题意分析出X 的所有可能取值为0,1,2,3,4.分别求出对应的概率,得到分布列,求出数学期望.【详解】(1)因为()0.0250.12520.30.5+⨯=<,0.30.20020.70.5+⨯=>,所以该产品这一质量指数的中位数在[)14,16内.设该产品这一质量指数的中位数为m ,则()140.20.30.5m -⨯+=,解得15m =.(2)由题意可知抽取的12件产品中这一质量指数在[)16,18内的有8件,这一质量指数在[]18,20内的有4件.由题意可知X 的所有可能取值为0,1,2,3,4.()48412C 70140C 49599P X ====,()3184412C C 2241C 495P X ===,()2284412C C 168562C 495165P X ====,()1384412C C 323C 495P X ===,()44412C 14C 495P X ===,X 的分布列为 X 0 1 2 3 4 P 1499 22449556165324951495()1422456321401234994951654954953E X =⨯+⨯+⨯+⨯+⨯=. 19.如图,在多面体ABCDEF 中,四边形ABCD 是平行四边形,四边形ACEF 是矩形,22BC AB AF ==,60ABC ∠=︒,AF BC ⊥,H 是棱AD 的中点,P 是棱EF 上的动点.(1)证明:AB ⊥平面ACEF ;(2)求平面PBH 与平面CDE 所成锐二面角的余弦值的最大值. 【答案】(1)证明见解析 (2)32【分析】(1)根据线线垂直可证明线面垂直,进而可得线线垂直即可证明, (2)根据空间向量的坐标运算可利用法向量的夹角与平面角的关系,即可求解. 【详解】(1)证明:因为四边形ACEF 是矩形,所以AF AC ⊥. 因为AF BC ⊥,且AC BC ⊂,平面ABCD ,AC BC C =,所以AF ⊥平面ABCD .因为AB ⊂平面ABCD ,所以AF AB ⊥ ,因为2BC AB =,且60ABC ∠=,所以3AC AE =, 所以222AB AC BC +=,所以AB AC ⊥. 因为AF AC ,⊂平面ACEF ,且AFAC A =,所以AB ⊥平面ACEF .(2)由(1)可知AB AC AF ,,两两垂直,则以A 为原点,分别以AB ,AC ,AF 的方向为x y z ,,轴的正方向,建立如图所示的空间直角坐标系.设1AB PF a ,,则10001B P ,a ,,,,,123H ⎛⎫- ⎪ ⎪⎝⎭,故11BP ,a,, 33022BH,,, 设平面PBH 的法向量为(),,m x y z =,则03302m BP x ay z m BH x y ⎧⋅=-++=⎪⎨⋅=-=⎪⎩,令1x =,得1313m ,,a .因为ACCD ACCE ,,CD CE ,⊂平面CDE ,且CD CE C =,所以AC ⊥平面CDE ,则平面CDE 的一个法向量为()0,1,0n =.设平面PBH 与平面CDE 所成的锐角为θ, 则22333cos θcos 21313413m n m nm naa,,即平面PBH 与平面CDE 所成20.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别是1F ,2F ,点()2,1P 在双曲线C 上,且12PF PF -=(1)求双曲线C 的标准方程;(2)直线l 与双曲线C 的左支交于A ,B 两点,直线AP ,BP 分别与y 轴交于M ,N 两点,且OM ON =-,试问直线l 是否过定点?若是,求出该定点坐标;若不是,请说明理由. 【答案】(1)2212x y -=(2)过定点,定点坐标为()0,1【分析】(1)由双曲线定义可知2a =()2,1P 在双曲线C 上,求出,a b ,得到双曲线的标准方程;(2)设直线l :x my t =+,与双曲线的方程联立,由韦达定理得1212,y y y y +,写出直线AP ,BP 的方程,求得M ,N 两点的坐标,结合OM ON =-,可求得,m t的关系式,从而得出定点坐标. 【详解】(1)由题意可得224112a b a ⎧-=⎪⎨⎪=⎩,解得1a b ==故双曲线C 的标准方程为2212x y -=.(2)由题意可知直线l 的斜率不为0,设直线l :x my t =+,1122(,),(,)A x y B x y 联立2212x my t x y =+⎧⎪⎨-=⎪⎩,整理得()2222220m y mty t -++-= 则212122222,22mt t y y y y m m -+=-=-- 直线AP 的方程为()111212y y x x -=-+-,令0x =,得11122x y y x -=-,则11120,2x y M x ⎛⎫- ⎪-⎝⎭直线BP 的方程为()221212y y x x -=-+-,令0x =,得22222x y y x -=-,则22220,2x y N x ⎛⎫- ⎪-⎝⎭因为OM ON =-,所以11221222022x y x y x x --+=--, 整理得1212122112()()2()0x x x x x y x y y y -+-+++= 又11x my t =+,22x my t =+,所以()()()2212122220m m y y mt m t y y t t -+--+++-=,则()()2222222222022t mt m m mt m t t t m m -⎛⎫-⋅+--+-+-= ⎪--⎝⎭即222220m t mt m t ++--=,即2()2()0m t m t +-+= 得()()20m t m t +-+=,解得20m t +-=或0m t += 当20m t +-=时,直线l 经过点P ,与题意不符; 当0m t +=时,直线l :x my m =-,则直线l 过定点()0,1. 故直线l 过定点()0,1.21.已知函数()21ln 12f x x x x x =---.(1)求()f x 的单调区间; (2)若函数()()()2121ln 12g x x a x a x =+-+--恰有两个不同的零点,求a 的取值范围. 【答案】(1)单调递减区间是()0,∞+,无递增区间 (2)51,2⎛⎫ ⎪⎝⎭【分析】(1)求出导函数()f x ',再利用导数确定()f x '的正负,从而得单调区间;(2)求出导函数()g x ',在()g x 定义域内分类讨论()0g x '=的根的情况,得函数单调性、极值,然后结合零点存在定理确定参数范围. 【详解】(1)由题意可得()ln f x x x '=-, 设()()ln h x f x x x '==-,则()111xh x x x-'=-=由()0h x '>,得01x <<,由()0h x '<,得1x >则()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,即()f x '在(0,1)单调递增,在(1,)+∞上单调递减,从而()(1)10f x f ''≤=-<,故()f x 的单调递减区间是(0,)+∞,无递增区间(2)由题意可得21(2)1(1)(1)()2a x a x a x a x g x x a x x x-+-+-+--'=+-+==, ()g x 的定义域是(0,)+∞,①当10a -<,即1a >时,1x >时()0g x '>,01x <<时()0g x '<, 则()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 因为0x →时,()g x →+∞,x →+∞时,()g x ∞→+, 所以()g x 要有两个零点,则1(1)2102g a =+--<,解得52a <,故152a <<;②当10a -=,即1a =时,由21()102g x x x =--=,解得x 1=±因为0x >,所以1x =+()g x 有且仅有1个零点,故1a =不符合题意; ③当011a <-<,即01a <<时,由()0g x '>,得01x a <<-或1x >, 由()0g x '<,得11a x -<<,则()g x 在(0,1)a -和(1,)+∞上单调递增,在(1,1)a -上单调递减. 因为0x →时,()0,g x x <→+∞时,()g x ∞→+, 所以()g x 要有两个零点,则1(1)2102g a =+--=或21(1)(1)(2)(1)(1)ln(1)102g a a a a a a -=-+--+---=,若(1)0g =,解得52a =,不符合题意, 若(1)0g a -=,设1(0,1)t a =-∈,则(1)0g a -=化为2211(1)ln 1ln 1022t t t t t t t t t +--+-=--+-=,01t <<时,ln 0t t <,221111(1)0222t t t ---=-+-<,所以21ln 102t t t t --+-<,21ln 102t t t t --+-=无解,即(1)0g a -=无解,故01a <<不符合题意;④当11a -=,即0a =时,()0g x '≥恒成立,则()g x 在(0,)+∞上单调递增,从而()g x 最多有1个零点,则0a =不符合题意;⑤当11a ->,即a<0时,由()0g x '>,得01x <<或1x a >-,由()0g x '<,得11x a <<-, 则()g x 在(0,1)和(1),a -+∞上单调递增,在(1,1)a -上单调递减. 因为0x →时,()0g x x <→+∞,时,()g x ∞→+ 所以()g x 要有两个零点,则(1)0g =或(1)0g a -=,若1(1)2102g a =+--=,解得52a =,不符合题意,若21(1)(1)(2)(1)(1)ln(1)102g a a a a a a -=-+--+---=.设1(1,)t a =-∈+∞,则(1)0g a -=化为2211(1)ln 1ln 1022t t t t t t t t t +--+-=--+-=,由(1)知21ln 12y t t t t =---在(1,)+∞上单调递减,所以21ln 102t t t t --+-<,21ln 102t t t t --+-=无解,即(1)0g a -=无解,故a<0不符合题意. 综上,a 的取值范围是51,2⎛⎫⎪⎝⎭.【点睛】难点与易错点点睛:本题考查用导数研究函数的单调性,函数零点个数问题,难点在于函数定义域是(0,)+∞,因此()0g x '=的根需要根据定义域分类讨论,在定义域内有一个根,还是两个根,有两个根时还需要比较两根的大小,从而得出函数单调性、极值,由于含有参数还需结合函数变化趋势确定零点的存在性,从而得出结论.分类不清易出错.22.在直角坐标系xOy 中,曲线C 的参数方程为1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程是cos 2sin 20ρθρθ-+=. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)若直线l 与曲线C 交于A ,B 两点,点(0,1)P ,求11||||PA PB +的值. 【答案】(1)22144x y -=;220x y【分析】(1)消去参数可得C 的普通方程,根据极坐标与直角坐标转化公式可求直线直角坐标方程; (2)将直线的参数方程代入普通方程,消元后根据参数的几何意义求解. 【详解】(1)由1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),得224x y -=,故曲线C 的普通方程为22144x y -=. 由cos 2sin 20ρθρθ-+=,得220x y , 故直线l 的直角坐标方程为220x y .(2)由题意可知直线l的参数方程为,1x y ⎧⎪⎪⎨⎪=⎪⎩(t 为参数).将直线l 的参数方程代入曲线C的普通方程并整理得23250t --=, 设A ,B 对应的参数分别是12,t t ,则1212253t t t t +==-, 从而12t t -===故1212121211||||t t t t PA PB t t t t +-+===. 23.已知函数()233f x x x =-++. (1)求不等式()9f x ≤的解集;(2)若()||f x a x ≥恒成立,求a 的取值范围. 【答案】(1)[]3,3- (2)(],3-∞【分析】(1)将函数表示为分段函数形式,分三类情况讨论求解; (2)将不等式等价转化为|23||3|33|2||1|||x x a x x x -++=-++≥,利用绝对值不等式可求33|2||1|x x-++的最小值,即可求解.【详解】(1)因为3,33()2336,3233,2x x f x x x x x x x ⎧⎪-≤-⎪⎪=-++=-+-<≤⎨⎪⎪>⎪⎩,所以()9f x ≤等价于339x x ≤-⎧⎨-≤⎩,或33269x x ⎧-<≤⎪⎨⎪-+≤⎩或3239x x ⎧>⎪⎨⎪≤⎩, 解得3x =-或332-<≤x 或332x <≤,即33x -≤≤,即不等式()9f x ≤的解集为[]3,3- (2)当0x =时,60≥恒成立,所以a ∈R ;当0x ≠时,|23||3|33|2||1|||x x a x x x-++=-++≥恒成立,因为3333|2||1||21|3x x x x-++≥-++=,当且仅当33(2)(1)0x x -+≤即-<3≤0x 或302x <≤时取得等号,所以3a ≤,综上,a 的取值范围是(],3-∞.。

高三上学期期末统考试题(数学理)

高三上学期期末统考试题(数学理)

第I 卷(共50分)一、选择题:本大题共l0小题,每小题5分,共50分。

把正确答案涂在答题卡上。

1.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,2,3},B={2|,y y x x A =∈},则()U A B ð=A .{4}B .{9}C .{0,1}D .{4,9}2.已知复数1z i =-,则221z zz --=A .2i B .2i - C .2i D .2i -3.某产品的广告费用x (万元)与销售额y(万元)的统计数据如下表:根据上表可得回归直线方程y bx a =+中的b 为7,据此模型,若广告费用为l0万元,则预计销售额为 万元. A .72.5 B .73.5 C .74.5 D .75.54.已知()f x x sinx =-,命题p :(0,)2x π∃∈,()f x <0;则A .p 是假命题,p ⌝:(0,)2x π∀∈,()0f x ≥B .p 是假命题,p ⌝:(0,)2x π∃∈,()0f x ≥ C .p 是真命题,p ⌝:(0,)2x π∀∈,()0f x ≥D .p 是真命题,p ⌝:(0,)2x π∃∈,()0f x ≥5.已知双曲线22221x y a b-= (a >0,b >0)的一个顶点与抛物线24y x =的焦点重合,且双曲线的A .2214x y -=B .2214y x -= C .22154y x -= D .225514y x -= 6.32()32f x ax x =++,若'(1)3f -=,则函数在1x =-处的切线方程为A .35y x =+B .35y x =-C .35y x =-+D .35y x =--7.已知向量(2,2)OC =,(2,)CA a a =,则向量OA 的模的最小值是A .3B .C .28.若函数()x x f x a ka -=+ (a >0且a ≠1)在R 上既是奇函数又是增函数,则()log ||a g x x k =+的图象是9.已知1021001210(1)(1)(1)...(1)x a a x a x a x -=+++++++,则a 7= A .-l20 B .120 C .-960 D .96010.已知函数1,0()(1)1,0x a x f x f x x ⎧-≤=⎨-+>⎩ (a >0,a ≠1),把函数的零点按照从小到大的顺序排成一个数列{a n },则a 2016的值为 A .1008 B .2015 C .2016 D .4032第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

高三上学期期末统考暨毕业考试数学(理)试题

高三上学期期末统考暨毕业考试数学(理)试题

高三上学期期末统考暨毕业考试数学(理)试题说明:1、 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分;满分150分;考试时间120分钟.2、 将第I 卷的答案填在第II 卷卷首的答题表内;考试结束只交第II 卷.第I 卷(选择题 共50分)一、选择题:本大题共10小题;每小题5分;共50分;在每小题给出的四个选项中;只有一项是符合题目要求的。

1、复数2)i i 的虚部为( )A 、-1B 、1C 、i -D 、i2、设P 、Q 为两个非空数集;定义集合P ⨯ Q=}{,ab a p b Q ∈∈;若P={}0,1,2;Q=}{2,3,4;则P ⨯ Q 的元素个数为( )A 、6B 、7C 、8D 、93、已知数列{}n a 的前n 项和 213(,),26n S an bn a b R S =+∈=;则59a a +等于( )A 、16B 、4C 、8D 、不能确定4、已知1()ln1x f x x+=-;若()f a b =;则()f a -等于( ) A 、1b B 、1b - C 、b D 、b - 5、已知不等式11()()9x ay x y++≥对任意正实数,x y 恒成立;则正实数a 的最小值为( )A 、1 B 、2 C 、3 D 、46、已知非零向量a 和b 满足 a b a b ==+;则向量a 与a b -的夹角为( )A 、030B 、60oC 、90D 、01200x ≥;7、设,x y 满足约束条件 x y ≥ ; 则32z x y =+的最大值是( )21x y -≤ A 、4 B 、5 C 、6 D 、78、若()f x =)()111x ax x >⎨⎪+≤⎩在1x =处连续;则a 的值为 A 、12 B 、1 C 、12- D 、1-9、有5个大小相同的球;上面分别标上序号1、2、3、4、5;现任取二个球;则二个球序号不相邻的概率是( )A 、35B 、25C 、310D 、1210、6名志愿者到4所学校支教;每所学校至少1人;则不同的分配方案有( )A 、5760种B 、1920种C 、1560种D 、1080种第II 卷(非选择题共100分)二、填空题(本大题共5小题;每小题 5分;共25分;把答案直接填在题中的横线上)11、设集合{}211,log 0A x B x x x ⎫⎧=<=<⎨⎬⎩⎭;则A B =__________12、31(44)x x -+ 的展开式中;常数项为 __________13、直线:0l ax by +=与圆22:2210C x y x y +--+=交于A 、B 两点;O 为坐标原点;则OA ⋅OB =__________14、若()sin())f x x x ϕϕ=++为偶函数;则ϕ=__________ 15、若数列{}n a 满足1n a +=12(0)2121(1)2n n n n a a a a ⎧≤≤⎪⎪⎨⎪-<<⎪⎩若167a =;则2007a =________ {}n a 的前2007项和等于__________三、解答题(本大题6小题;共75分;解答应写出文字说明、证明过程或演算步骤)16、(本小题满分12分)已知22:125,:4490p x q x x m -≤-+-≤;若p ⌝是q ⌝的充分而不必要条件;求实数m 的取值范围。

高三上册数学理科期末试题及答案

高三上册数学理科期末试题及答案

高三上册数学理科期末试题及答案第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中有且只有一项是符合题目要求的,把答案填在答题卡的相应位置。

1.已知平面向量,,且,则实数的值为A.B.C.D.2.设集合,,若,则实数的值为A.B.C.D.3.已知直线平面,直线,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.定义:.若复数满足,则等于A.B.C.D.5.函数在处的切线方程是A.B.C.D.6.某程序框图如右图所示,现输入如下四个函数,则可以输出的函数是A.B.C.D.7.若函数的图象(部分)如图所示,则和的取值是A.B.C.D.8.若函数的零点与的零点之差的绝对值不超过,则可以是A.B.C.D.9.已知,若方程存在三个不等的实根,则的取值范围是A.B.C.D.10.已知集合,。

若存在实数使得成立,称点为“£”点,则“£”点在平面区域内的个数是A.0B.1C.2D.无数个第二卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡上.11.已知随机变量,若,则等于******.12.某几何体的三视图如下右图所示,则这个几何体的体积是******.13.已知抛物线的准线与双曲线相切,则双曲线的离心率******.14.在平面直角坐标系中,不等式组所表示的平面区域的面积是9,则实数的值为******.15.已知不等式,若对任意且,该不等式恒成立,则实数的取值范围是******.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.16.(本小题满分13分)在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且,.(Ⅰ)求与;(Ⅱ)证明:.17.(本小题满分13分)已知向量(Ⅰ)求的解析式;(Ⅱ)求由的图象、轴的正半轴及轴的正半轴三者围成图形的面积。

高三数学上学期期末试卷理试题

高三数学上学期期末试卷理试题

2021-2021学年第一学期高三数学〔理〕期末试卷〔扫描版,有答案〕制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日2021学年第一学期高三期末考试理科数学样卷参考答案一、选择题〔本大题一一共10小题,每一小题5分,一共50分.〕二、填空题〔本大题一一共7小题,每一小题4分,一共28分.〕11.1 12.15 13.4 14.48150x y --=15.2526 16.2+ 17.440三、解答题〔本大题一一共5小题,一共72分,解容许写出文字说明,证明过程或者演算步骤.〕18.(Ⅰ)解:()22sin cos f x x x x =-+1+cos2cos x x x =-+2+cos21x x -()2sin 2+16x π=- ………………………3分由22+2262k x k πππππ-≤≤+,得36k x k ππππ-≤≤+. ……………………………………………5分 所以()f x 的单调增区间是36k k ππππ⎡⎤-+⎢⎥⎣⎦,(k ∈Z ). …………6分 (Ⅱ)解:由于()()=2sin 2+1=16f C C π-,所以()sin 216C π+=,因为C 是三角形的内角,所以262C ππ+=,即6C π=. …………8分所以222cos 2a b c C ab+-==即227a b +=. ………………10分将ab =代入可得:22127a a+=,解之得23a =或者4.所以a =或者2,所以2b =. …………………………13分因为a b >,所以23a b ==,. …………………………14分19.(Ⅰ)解:因为x 、y 可能的取值为1,2,3,所以12≤-x ,2≤-x y ,所以3≤ξ,且当3,1==y x 或者1,3==y x 时,3=ξ. …………4分 因此,随机变量ξ的最大值为3. …………5分 因为有放回抽两张卡片的所有情况有933=⨯种, 所以92)3(==ξP . ………………………7分 (Ⅱ)ξ的所有取值为0,1,2,3. …………………………………8分因为0=ξ时,只有2,2==y x 这一种情况,1=ξ时,有1x =,1y =或者2x =,1y =或者2x =,3y =或者3y =,3x =四种情况,2=ξ时,有1x =,2y =或者3x =,2y =两种情况.所以91)0(==ξP ,94)1(==ξP ,92)2(==ξP . …………11分 那么随机变量ξ的分布列为:ξ 0123P91 94 92 92 ……12分因此,数学期望914923922941910=⨯+⨯+⨯+⨯=ξE . …………14分 20.(Ⅰ)证明:由题知1A D ⊥平面ABC ,而1A D ⊂平面11A ACC ,所以平面11A ACC ⊥平面ABC , …………2分 又BC AC BC ⊥⊂,平面ABC , 平面11A ACC 平面ABC AC =,所以11BC A ACC ⊥平面,故1BC AC ⊥,…4分 又111AC A B BC A B ⊥⊂,、平面1A BC ,1BCA B B =,所以1AC ⊥平面1A BC . …………6分 (Ⅱ)方法一:取AB 中点E ,连DE ,那么由1DE DC DA 、、两两垂直,可如图建立空间直角坐标系,由〔Ⅰ〕可知1AC ⊥平面1A BC ,故11AC A C ⊥,所以1A AC ∆为等边三角形,所以1A D =,故可得各点坐标分别为()()(101021000A B A -,,,,,,,()()(101010002C E C ,,,,,, …9分 所以()220AB =,,, ()(1101303A A AC =--=,,, 设()n x y z =,,为平面1A AB 的法向量, 那么由1nAB n A A⎧⊥⎪⎨⊥⎪⎩,得2200x y y +=⎧⎪⎨-=⎪⎩,令3x =,那么得(33n =-,,………10分又由(Ⅰ)知平面1A BC 的法向量为(103AC =, ……11分 设所求二面角的大小为θ,那么111cos cos 21n AC n AC n AC θ⋅===⋅, ………13分因为该二面角为锐角,所以二面角1A A B C --………14分1第20题图(Ⅱ)方法二:设11A CAC O =,作1OF A B ⊥于F , 连AF ,那么由AO ⊥平面1A BC , 知1AF A B ⊥,所以AFO ∠即是二面角1A A B C --的平 面角, ……10分易得AO =1112A C BC OF A B ⋅=== ……11分所以tan AO AFO OF∠=== ……13分 从而二面角1A A B C --……14分21.(Ⅰ)解:〔Ⅰ〕因为DP DM 2=,0=⋅DM NP ,所以NP 为DM 的垂直平分线,所以||||ND NM =,又因为22||||=+NM CN ,所以||||2CN ND +=> ……4分 所以动点N 的轨迹是以点(1,0),(1,0)C D -为焦点的长轴为所以轨迹E 的方程为1222=+y x . …………7分 (Ⅱ)方法一:因为线段AB 的长等于椭圆短轴的长,要使三点A O B 、、能构成三角形, 那么弦AB 不能与x 轴垂直,故可设直线AB 的方程为y kx m =+,由22,1.2y kx m x y =+⎧⎪⎨+=⎪⎩,消去y ,并整理,得 222(12)4220k x kmx m +++-=. …………9分设),(11y x A ,),(22y x B ,又2222164(12)(22)0k m k m ∆=-+->,第20题图1A 1B 1C ABCDOF所以122412kmx x k+=-+,21222(1)12m x x k -=+ …………10分 因为2||=AB ,所以2))(1(2122=-+x x k ,即4]4))[(1(212122=-++x x x x k所以2222248(1)(1)41212km m k k k ⎡⎤-⎛⎫+--=⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦,即2212(1)1m k =-+, 因为211k +≥,所以2112m ≤<. …………12分 又点O 到直线AB 的间隔h =因为1||2S AB h =⋅h =, 所以22S h =222(1)m m =-22112()22m =--+…………14分 所以2102S <≤,即S的最大值为2. …………15分(Ⅱ)方法二:因为线段AB 的长等于椭圆短轴的长,要使三点A O B 、、能构成三角形, 那么弦AB 不能与x 垂直,故可设直线AB 的方程为y kx m =+,由2212y kx mx y =+⎧⎪⎨+=⎪⎩,消去y ,并整理,得222(12)4220k x kmx m +++-=.设1(A x ,1)y ,2(B x ,2)y ,又2222164(12)(22)0k m k m ∆=-+->,所以122412kmx x k +=-+,21222(1)12m x x k -=+. …………10分因为||2AB =2=. 因为221212(1)()44k x x x x ⎡⎤++-=⎣⎦,所以2222248(1)(1)41212km m k k k ⎡⎤-⎛⎫+--=⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦, 所以222212(1)k m k +=+, …………12分 又点O 到直线AB 的间隔h =1||2S AB h =⋅h =. 所以22S h =221m k =+222212(1)k k +=+2221112(1)k k =-++. 设211t k =+,那么221(01)2S t t t =-+<≤, …………14分所以2102S <≤,即S 的最大值为2. …………15分 22.(Ⅰ)解:当0a =时,()ln x f x x =,2ln 1()ln x f x x-'= , ………2分 因为当x e >时,()0f x '>,所以()f x 在(,)e +∞上是增函数. ………4分 而3221e e e e e =+>+>,所以(3)(21)f e f e >+. ………6分 (Ⅱ) 函数()f x 的图象总在函数()F x 的图象的上方等价于()()f x F x >恒成立,即ln x a x->在(0,1)(1,)+∞上恒成立. ………7分 ① 当01x <<时,0ln <x ,那么x x a x >-ln x x x a ln ->⇔, 令x x x x g ln )(-=,x xx x g 2ln 22)(--=',再令x x x h ln 22)(--=,11()h xx x '==.……………8分 当10<<x 时,0)(<'x h ,所以)(x h 在)1,0(上递减,所以,当10<<x 时,0)1()(=>h x h ,故02)()(>='x x h x g . …………9分所以)(x g 在)1,0(上递增,1)1()(=<g x g ,故1≥a . ……………10分② 当1>x 时,0ln >x ,那么x xa x >-ln x x x a ln -<⇔)(x g a <⇔, 由①知,当1>x 时,0)(>'x h ,)(x h 在),1(+∞上递增.所以,当1>x 时,0)1()(=>h x h ,02)()(>='x x h x g .……………12分所以 )(x g 在),1(+∞上递增, 故1)1()(=>g x g .所以, 1≤a . ……………14分 由①及②得:1=a ,故所求a 值的集合为{1}. ……………15分制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。

高三数学上学期期末考试试卷 理 试题

高三数学上学期期末考试试卷 理 试题

武邑中学2021-2021学年上学期期末联考制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日数学〔理〕试题说明:本套试卷分为第一卷〔选择题〕和第二卷〔非选择题〕两局部,一共4页。

考试时间是是120分钟,分值150分。

第一卷一、 选择题 〔本大题一一共12小题,每一小题5分,一共60分〕 1. 集合(){}{}214,,1,0,1,2,3A x x x R B =-<∈=-,那么AB =〔 〕A.{}0,1,2B.{}1,0,1,2-C.{}1,0,2,3-D.{}0,1,2,3 2.复数z 满足(13)10i z +=,那么(z = )A .13i --B .13i +C .13i -+D .13i -3.ABC ∆中,3a =,60b A =∠=︒,那么B ∠等于( )A .30︒B .60︒C .30︒或者150︒D .60︒或者120︒4.随机变量ξ服从正态分布(4N ,26),(5)0.89P ξ=,那么(3)(P ξ= )A .0.89B .0.78C .0.22D .5. 函数()221cos cos 2sin 2f x x x x x =+-的最小正周期为〔 〕 A.2πB. πC. 2πD. 4π6.向量()2,1=a ,(),1x =b ,假设+a b 与-a b 一共线,那么实数x 的值是〔 〕 A. -2 B. 2 C.-4 D. 47.某几何体的三视图如下图,那么该几何体的最大边长为〔 〕 A. 5 B. 6 C. 7 D. 22 8.执行如图的程序框图,那么输出的值是S 〔 〕 A. 1 B.32 C. 12- D. 09. 假设双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2224x y -+=所截得的弦长为2,那么C 的离心率为 ( )A. 3B. 2C. 2D.23310. 直三棱柱111ABC A B C -中,1120,2,1ABC AB BC CC ∠=︒===,那么异面直线1AB 与1BC 所成角的余弦值为〔 〕A.32 B. 155 C. 105D.33 ()2()ln xf x ef e x e'=-,那么()f x 的极大值为 A. 21e - B. 1e - C. 1 D. 2ln 212. 双曲线22221x y C a b-=:〔0,0a b >>〕的左、右焦点分别为12,F F ,A,B 是双曲线C 上的两点,且113AF F B =,23cos 5AF B ∠=,那么该双曲线的离心率为 A.10 B.102C.52D.5第II 卷二、 填空题〔本大题一一共4小题,每一小题5分 ,一共20分〕 13. 曲线()log 33a y x =-+()01a a >≠且恒过定点_______. 14. ()f x 是定义在R 上的奇函数,那么311[(2)]f x dx x -+=⎰_ _ ; 15. 点(1,1)M -和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,假设2AMB π∠=,那么k =_ _ ;16. 当时,不等式恒成立,那么实数a 的取值范围是______.三、 解答题〔本大题一一共6小题,一共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三上学期期末统考
数学 (理) 试题
(时间:120分钟 分值:1150分)
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,并认真核准条形码上的考场
座位号、姓名及科目。

2.选择题部分必须使用2B 铅笔真涂,非选择题必须使用0 .5毫米黑色签字笔书写,字
体工整,字迹清楚;
3.请按照题号顺序在各题目的答题区域内答,超出答题区域书写的答案无效,在草稿
纸、试题卷上答题无效;
4.保持卡在清洁,不折叠、不破损。

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有
一项是符合题目要求的。

) 1.I 是虚数单位,复数i
i
z +=1对应的点在
( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.已知P 、Q 是两个集合,且满足Q P Q P = ,则P 与Q 的关系为 ( )
A .
B .
C .P=Q
D .不确定
3.已知21,θθ是两个单位向量,1θ与2θ的夹角为60o ,212θθ+=,则α等于 ( )
A .7
B .7
C .3
D .3
4.已知P 是圆12
2=+y x 上的动点,则P 点到直线022:=-+y x l 的距离的最小值为
( )
A .1
B .2
C .2
D .22
5.曲线nx x y 12
+=在点(1,1)处的切线方程为
( ) A .3x -y -2=0 B .x -3y+2=0 C .3x+y -4=0 D .x+3y -4=0 6.已知{a n }为等差数列,a 4+a 7+a 10=30,则a 3-2a 5的值为
( ) A .10
B .-10
C .15
D .-15
7.已知θ是三角形中的最小角,则)3
sin(π
θ+的取值范围是
( )
A .⎥⎦

⎝⎛1,23 B .⎥⎦


⎣⎡1,23 C .⎥⎦

⎝⎛1,21
D .⎥⎦
⎤⎢⎣⎡1,2
1
8.一个几何体的三视图均为直角三角形,尺寸如图所示,则这个几何体的体积是 ( ) A .20cm 3
B .40 cm 3
C .60 cm 3
D .80 cm 3
9.已知,0
.,10
6
13sin )(⎪⎩⎪⎨⎧
≤≤-=x gx x xx x f 若函数k x f x g --)()(有三个不同的 零点,则k 的取值范围是
( ) A .1->k
B .211<
<-k
C .2
1
1-
≤<-k 或10<<k D .2
1
1-<<-k 或10<<k
10.2012年10月18日全国第二届绿色运动会在池洲隆垦开幕。

本次大会的主
题是“绿色、低碳、环保”,为大力宣传这一主题,主办方将这6个字做成灯笼悬挂在主会场(如图所示),大会结束后,要将这6个灯笼撤下来,每次撤其中一列最下面的一个,则不同的撤法种数为( ) A .36 B .54 C .72 D .90
二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的横线上。

11.命题“01,2
>++∈∀x x R x ”的否定是 。

12.执行右边的程序框图,则输出的结果是 。

13.已知x ,y 满足⎪⎩

⎨⎧≤--≥+≤-010302y x x y ,

4
2
--x y 的取值范围是 。

14.已知a >0,椭圆112
2
2=++y a x 的离心率为1θ,双曲线1222=-y a
x 的 离心率为2θ,则41θ+2θ的最小值为 。

15.若对于定义在R 上的连续函数f (x ),存在常数)(R a a ∈,使得0)()(=++x af a x f 对
任意实数x 均成立,则称f (x )是回旋函数,且阶数为a ,现给出四个命题:
①f (x )=1是-1阶回旋函数; ②f (x )=x 2是a 阶回旋函数; ③f (x )=4x 是2
1
-
阶回旋函数; ④f (x )=sin (x π)是1阶回旋函数。

其中真命题的序号是 。

(写出所有正确命题的序号)
三、解答题:本大题共6小题,共75分。

解答应写出文学说明,证明过程或演算步骤。

解答应写答题卡指定的区域内。

16.(本小题满分12分) 已知α
α
απβαsin 42cos 23)(),,0(,-=
∈f 。

(Ⅰ)用αsin 表示)(αf ;
(Ⅱ)若βαsin )(=f ,求α及β的值。

17.(本小题满分12分) 某数学兴趣小组由甲、乙、丙三人组成,一次老师给这个兴趣小组布置一道探究题,假
定甲、乙、丙三人各自独立地正确解答此题的概率分别为
.2
1
,21,43 (Ⅰ)求此道题被此兴趣小组正确解答的概率; (Ⅱ)设此兴趣小组中能正确解答此题的人数为X ,求X 的分布列和数学期望。

18.(本小题满分12分)
如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD, ABCD 为等腰梯形,AD ∥BC ,AD=AB=PA=1,BC=2,E 为AB 中点,F 为PC 中点。

(Ⅰ)求证:EF ∥平面PAD ; (Ⅱ)求证:AC ⊥平面PAB ;
(Ⅲ)求二面角E -PC -A 的大小。

19.(本小题满分12分)已知抛物线C 的顶点在坐标原点,对称轴为y 轴,点A (m ,2)
在抛物线上,A 点到抛物线焦点的距离为
8
17。

(Ⅰ)求抛物线C 的方程及m 的值;
(Ⅱ)若过点M )2
5
,1(-的直线l 与抛物线C 相交于A 、B 两点,P 点坐标为(1,2),
求证:,为定值。

20.(本小题满分13分)
已知数列{a n }满足n n a n
a a 2
11)11(2,1+==+。

(Ⅰ)设2n
a b n
n =
,求证:数列{b n }是等比数列; (Ⅱ)求数列{a n }的通项公式;
(Ⅲ)设n n n a a c 21-=+,求数列{c n }的前n 项和S n 。

21.(本小题满分14分) 已知x
x ax x f θ)22()(2
++=(θ为自然对数的底数)。

(Ⅰ)求f (x )的递增区间;
(Ⅱ)当a=0时,是否存在实数k ,使不等式141)(2
++-≥+≥x x kx x f 对任意R
x ∈
恒成立?若存在,求出k的值,若不存在,请说明理由。

相关文档
最新文档