2020-2021全国中考数学圆的综合的综合中考模拟和真题汇总及详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021全国中考数学圆的综合的综合中考模拟和真题汇总及详细答案
一、圆的综合
1.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x
=上
时停止旋转,旋转过程中,AB边交直线y x
=于点M,BC边交x轴于点N(如图).
(1)求边OA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;
(3)设MBN
∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.
【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析
【解析】
试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;
(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;
(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.
试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,
∴OA旋转了45°.
∴OA在旋转过程中所扫过的面积为
2
452
3602ππ
⨯
=.
(2)∵MN∥AC,
∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.
∴∠BMN=∠BNM.∴BM=BN.
又∵BA=BC,∴AM=CN.
又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.
∴∠AOM=∠CON=1
2(∠AOC-∠MON)=
1
2
(90°-45°)=22.5°.
∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.
证明:延长BA交y轴于E点,
则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,
∴∠AOE=∠CON.
又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.
∴△OAE≌△OCN.
∴OE=ON,AE=CN.
又∵∠MOE=∠MON=45°,OM=OM,
∴△OME≌△OMN.∴MN=ME=AM+AE.
∴MN=AM+CN,
∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.
∴在旋转正方形OABC的过程中,p值无变化.
考点:旋转的性质.
2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.
(1)若∠G=48°,求∠ACB的度数;
(2)若AB=AE,求证:∠BAD=∠COF;
(3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若
tan∠CAF=
1
2
,求1
2
S
S的值.
【答案】(1)48°(2)证明见解析(3)3 4
【解析】
【分析】
(1)连接CD,根据圆周角定理和垂直的定义可得结论;
(2)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得
»»»
CD PB PD
==,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;
(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则
OA=OC=2x-a,根据勾股定理列方程得:(2x-a)2=x2+a2,则a=3
4
x,代入面积公式可得结
论.
【详解】
(1)连接CD,
∵AD是⊙O的直径,
∴∠ACD=90°,
∴∠ACB+∠BCD=90°,
∵AD⊥CG,
∴∠AFG=∠G+∠BAD=90°,
∵∠BAD=∠BCD,
∴∠ACB=∠G=48°;
(2)∵AB=AE,
∴∠ABE=∠AEB,
∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,
∴∠BCG=∠DAC,
∴»»
CD PB
=,
∵AD是⊙O的直径,AD⊥PC,
∴»»
CD PD
=,
∴»»»
CD PB PD
==,
∴∠BAD=2∠DAC,
∵∠COF=2∠DAC,
∴∠BAD=∠COF;
(3)过O作OG⊥AB于G,设CF=x,
∵tan∠CAF=1
2=
CF AF
,
∴AF=2x,
∵OC=OA,由(2)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,
∴△COF≌△OAG,
∴OG=CF=x,AG=OF,
设OF=a,则OA=OC=2x﹣a,
Rt△COF中,CO2=CF2+OF2,
∴(2x﹣a)2=x2+a2,
a=3
4 x,
∴OF=AG=3
4 x,
∵OA=OB,OG⊥AB,∴AB=2AG=3
2
x,
∴1
2
13
··3
2
2
1·24
·
2
AB OG x x
S
S x x
CF AF
===.
【点睛】
圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(2)根据外角的性质和圆的性质得:»»»
CD PB PD
==;(3)利用三角函数设未知数,根据勾股定理列方程解决问题.
3.已知AB,CD都是O
e的直径,连接DB,过点C的切线交DB的延长线于点E.()1如图1,求证:AOD2E180
∠∠
+=o;
()2如图2,过点A作AF EC
⊥交EC的延长线于点F,过点D作DG AB
⊥,垂足为点G,求证:DG CF
=;
()3如图3,在()2的条件下,当DG3
CE4
=时,在O
e外取一点H,连接CH、DH分别交O
e于点M、N,且HDE HCE
∠∠
=,点P在HD的延长线上,连接PO并延长交CM于点Q,若PD11
=,DN14
=,MQ OB
=,求线段HM的长.
【答案】(1)证明见解析(2)证明见解析(3)37
【解析】
【分析】
(1)由∠D+∠E=90°,可得2∠D+2∠E=180°,只要证明∠AOD=2∠D即可;
(2)如图2中,作OR⊥AF于R.只要证明△AOR≌△ODG即可;
(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可;
【详解】
()1证明:如图1中,
O Q e 与CE 相切于点C ,
OC CE ∴⊥,
OCE 90∠∴=o ,
D E 90∠∠∴+=o ,
2D 2E 180∠∠∴+=o ,
AOD COB ∠∠=Q ,BOC 2D ∠∠=,AOD 2D ∠∠=,
AOD 2E 180∠∠∴+=o .
()2证明:如图2中,作OR AF ⊥于R .
OCF F ORF 90∠∠∠===o Q ,
∴四边形OCFR 是矩形,
AF//CD ∴,CF OR =,
A AOD ∠∠∴=,
在AOR V 和ODG V 中,
A AOD ∠∠=Q ,ARO OGD 90∠∠==o ,OA DO =,
AOR ∴V ≌ODG V ,
OR DG ∴=,
DG CF ∴=,
()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .
设DG 3m =,则CF 3m =,CE 4m =,
OCF F BTE 90∠∠∠===o Q ,
AF//OC//BT ∴,
OA OB =Q ,
CT CF 3m ∴==,
ET m ∴=,
CD Q 为直径,
CBD CND 90CBE ∠∠∠∴===o ,
E 90EBT CBT ∠∠∠∴=-=o ,
tan E tan CBT ∠∠∴=,
BT CT ET BT
∴=, BT 3m m BT
∴=, BT 3m(∴=负根已经舍弃),
3m tan E 3∠∴== E 60∠∴=o ,
CWD HDE H ∠∠∠=+Q ,HDE HCE ∠∠=,
H E 60∠∠∴==o ,
MON 2HCN 60∠∠∴==o ,
OM ON =Q ,
OMN ∴V 是等边三角形,
MN ON ∴=,
QM OB OM ==Q ,
MOQ MQO ∠∠∴=,
MOQ PON 180MON 120∠∠∠+=-=o o Q ,MQO P 180H 120∠∠∠+=-=o o , PON P ∠∠∴=,
ON NP 141125∴==+=,
CD 2ON 50∴==,MN ON 25==,
在Rt CDN V 中,2222CN CD DN 501448=-=-=,
在Rt CHN V 中,CN 48tan H 3HN HN
∠===, HN 163∴=,
在Rt KNH V 中,1KH HN 832==,3NK HN 24==, 在Rt NMK V 中,2222MK MN NK 25247=-=-=,
HM HK MK 837∴=+=+.
【点睛】
本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.
4.如图,AB 为O e 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O e 的切线吗?请说明理由;
()2求证:2AC CD BE =⋅.
【答案】(1)结论:DE 是O e 的切线,理由见解析;(2)证明见解析.
【解析】
【分析】
(1)连接OD ,只要证明OD DE ⊥即可;
(2)只要证明:AC BD =,CDB DBE V V ∽即可解决问题.
【详解】
()1解:结论:DE 是O e 的切线.
理由:连接OD .
CDB ADE ∠=∠Q ,
ADC EDB ∴∠=∠,
//CD AB Q ,
CDA DAB ∴∠=∠,
OA OD =Q ,
OAD ODA ∴∠=∠,
ADO EDB ∴∠=∠,
AB Q 是直径,
90ADB ∴∠=o ,
90ADB ODE ∴∠=∠=o ,
DE OD ∴⊥,
DE ∴是O e 的切线.
()2//CD AB Q ,
ADC DAB ∴∠=∠,CDB DBE ∠=∠,
AC BD ∴=n n
, AC BD ∴=,
DCB DAB ∠=∠Q ,EDB DAB ∠=∠,
EDB DCB ∴∠=∠,
CDB ∴V ∽DBE V , CD DB BD BE
∴=, 2BD CD BE ∴=⋅,
2AC CD BE ∴=⋅.
【点睛】
本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.
5.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F .
(1)求证:OE ∥BD ;
(2)当⊙O 的半径为5,2sin 5
DBA ∠=时,求EF 的长.
【答案】(1)证明见解析;(2)EF 的长为212 【解析】 试题分析:(1)连接OB ,利用已知条件和切线的性质证明;
(2)根据锐角三角函数和相似三角形的性质,直接求解即可.
试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=︒. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=︒. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠.
∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD .
(2)由(1)可得sin ∠C = ∠DBA= 25,在Rt △OBE 中, sin ∠C =25
BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=︒
∵E C ∠=∠,∴△CBD ∽△EBO .
∴
BD CD BO EO
= ∴252EO =. ∵OE ∥BD ,CO =OD ,
∴CF =FB .
∴122
OF BD ==. ∴212EF OE OF =-=
6.已知:如图,在矩形ABCD 中,点O 在对角线BD 上,以OD 的长为半径的⊙O 与AD ,BD 分别交于点E 、点F ,且∠ABE=∠DBC .
(1)判断直线BE 与⊙O 的位置关系,并证明你的结论;
(2)若sin ∠ABE=3,CD=2,求⊙O 的半径.
【答案】(1)直线BE 与⊙O 相切,证明见解析;(2)⊙O 3 【解析】 分析:(1)连接OE ,根据矩形的性质,可证∠BEO =90°,即可得出直线BE 与⊙O 相切; (2)连接EF ,先根据已知条件得出BD 的值,再在△BEO 中,利用勾股定理推知BE 的
长,设出⊙O 的半径为r ,利用切线的性质,用勾股定理列出等式解之即可得出r 的值. 详解:(1)直线BE 与⊙O 相切.理由如下:
连接OE ,在矩形ABCD 中,AD ∥BC ,∴∠ADB =∠DBC .
∵OD =OE ,∴∠OED =∠ODE .
又∵∠ABE =∠DBC ,∴∠ABE =∠OED ,
∵矩形ABDC ,∠A =90°,∴∠ABE +∠AEB =90°,
∴∠OED +∠AEB =90°,∴∠BEO =90°,∴直线BE 与⊙O 相切;
(2)连接EF ,方法1:
∵四边形ABCD 是矩形,CD =2,∴∠A =∠C =90°,AB =CD =2.
∵∠ABE =∠DBC ,∴sin ∠CBD =3sin ABE ∠=
∴23DC BD sin CBD
∠== 在Rt △AEB 中,∵CD =2,∴22BC =.
∵tan ∠CBD =tan ∠ABE ,∴
2222DC AE AE AE BC AB ,,==∴=, 由勾股定理求得6BE =
在Rt △BEO 中,∠BEO =90°,EO 2+EB 2=OB 2. 设⊙O 的半径为r ,则222623r r +=()()
,∴r 3, 方法2:∵DF 是⊙O 的直径,∴∠DEF =90°.
∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =2.
∵∠ABE =∠DBC ,∴sin ∠CBD =3sin ABE ∠=
. 设3DC x BD x ==,,则2BC x =.
∵CD =2,∴22BC =.
∵tan ∠CBD =tan ∠ABE ,∴
2222DC AE AE AE BC AB ,,==∴=, ∴E 为AD 中点.
∵DF 为直径,∠FED =90°,∴EF ∥AB ,∴132DF BD ==∴⊙O 3
点睛:本题综合考查了切线的性质、勾股定理以及三角函数的应用等知识点,具有较强的综合性,有一定的难度.
7.在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且
x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.
(1)已知点A(2,0),B(0,23),则以AB为边的“坐标菱形”的最小内角
为;
(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;
(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.
【答案】(1)60°;(2)y=x+1或y=﹣x+3;(3)1≤m≤5或﹣5≤m≤﹣1
【解析】
分析:(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;
(2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(﹣2,5),易得直线CD的表达式为:y=x+1或y=﹣x+3;
(3)分两种情况:
①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;
②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,同理可得结论.详解:(1)∵点A(2,0),B(0,3∴OA=2,OB3.在Rt△AOB中,由勾
股定理得:AB=22
()=4,∴∠ABO=30°.
223
∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°.
∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°.故答案为:60°;
(2)如图2.
∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.
过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),∴直线CD的表达式为:y=x+1或y=﹣x+3;
(3)分两种情况:
①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3.
∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴P'D=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,
∴AB=3+2=5.
∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;
②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4.
∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴BD=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,
∴AB=3+2=5.
∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;
综上所述:m的取值范围是1≤m≤5或﹣5≤m≤﹣1.
点睛:本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P ,Q 的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目.
8.如图,Rt ABC ∆内接于⊙O ,AC BC =,BAC ∠的平分线AD 与⊙O 交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连接CD ,G 是CD 的中点,连接OG .
(1)判断OG 与CD 的位置关系,写出你的结论并证明;
(2)求证:AE BF =;
(3)若3(22)OG DE =-g ,求⊙O 的面积.
【答案】(1)OG ⊥CD (2)证明见解析(3)6π
【解析】
试题分析:(1)根据G 是CD 的中点,利用垂径定理证明即可;
(2)先证明△ACE 与△BCF 全等,再利用全等三角形的性质即可证明;
(3)构造等弦的弦心距,运用相似三角形以及勾股定理进行求解.
试题解析:(1)解:猜想OG ⊥CD .证明如下:
如图1,连接OC 、OD .∵OC =OD ,G 是CD 的中点,∴由等腰三角形的性质,有OG ⊥CD .
(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,而∠CAE =∠CBF (同弧所对的圆周角相等).在Rt △ACE 和Rt △BCF 中,∵∠ACE =∠BCF =90°,AC =BC ,∠CAE =∠CBF ,∴Rt △ACE ≌Rt △BCF (ASA ),∴AE =BF .
(3)解:如图2,过点O 作BD 的垂线,垂足为H ,则H 为BD 的中点,∴OH =12AD ,即AD =2OH ,又∠CAD =∠BAD ⇒CD =BD ,∴OH =OG .在Rt △BDE 和Rt △ADB 中,
∵∠DBE =∠DAC =∠BAD ,∴Rt △BDE ∽Rt △ADB ,∴BD DE AD DB
=,即BD 2=AD •DE ,∴22622BD AD DE OG DE =⋅=⋅=-()
.又BD =FD ,∴BF =2BD ,∴2242422BF BD ==-()
①,设AC =x ,则BC =x ,AB =2x .∵AD 是∠BAC 的平分线,∴∠FAD =∠BAD .在Rt △ABD 和Rt △AFD 中,∵∠ADB =∠ADF =90°,AD =AD ,∠FAD =∠BAD ,∴Rt △ABD ≌Rt △AFD (ASA ),∴AF =AB =2x ,BD =FD ,∴CF =AF ﹣AC =221x x x -=-().在Rt △BCF 中,由勾股定理,得:
222222[21]222BF BC CF x x x =+=+-=-()()②,由①、②,得
22222422x -=-()()
,∴x 2=12,解得:23x =或23-(舍去),∴222326AB x ==⋅=,∴⊙O 的半径长为6,∴S ⊙O =π•(6)2=6π.
点睛:本题是圆的综合题.解题的关键是熟练运用垂径定理、勾股定理、相似三角形的判定与性质.
9.如图1,延长⊙O 的直径AB 至点C ,使得BC=
12
AB ,点P 是⊙O 上半部分的一个动点(点P 不与A 、B 重合),连结OP ,CP .
(1)∠C 的最大度数为 ;
(2)当⊙O 的半径为3时,△OPC 的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;
(3)如图2,延长PO 交⊙O 于点D ,连结DB ,当CP=DB 时,求证:CP 是⊙O 的切线.
【答案】(1)30°;(2)有最大值为9,理由见解析;(3)证明见解析.
【解析】
试题分析:(1)当PC与⊙O相切时,∠OCP的度数最大,根据切线的性质即可求得;(2)由△OPC的边OC是定值,得到当OC边上的高为最大值时,△OPC的面积最大,当PO⊥OC时,取得最大值,即此时OC边上的高最大,于是得到结论;
(3)根据全等三角形的性质得到AP=DB,根据等腰三角形的性质得到∠A=∠C,得到
CO=OB+OB=AB,推出△APB≌△CPO,根据全等三角形的性质得到∠CPO=∠APB,根据圆周角定理得到∠APB=90°,即可得到结论.
试题解析:(1)当PC与⊙O相切时,∠OCP最大.如图1,所示:
∵sin∠OCP=OP
OC = 2
4
=
1
2
,∴∠OCP=30°
∴∠OCP的最大度数为30°,
故答案为:30°;
(2)有最大值,理由:
∵△OPC的边OC是定值,∴当OC边上的高为最大值时,△OPC的面积最大,
而点P在⊙O上半圆上运动,当PO⊥OC时,取得最大值,即此时OC边上的高最大,也就是高为半径长,∴最大值S△OPC=
1
2
OC•OP=
1
2
×6×3=9;
(3)连结AP,BP,如图2,
在△OAP与△OBD中,
OA OD
AOP BOD
OP OB
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△OAP≌△OBD,∴AP=DB,
∵PC=DB,∴AP=PC,
∵PA=PC,∴∠A=∠C,
∵BC=1
2
AB=OB,∴CO=OB+OB=AB,
在△APB和△CPO中,
AP CP
A C
AB CO
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△APB≌△CPO,∴∠CPO=∠APB,
∵AB为直径,∴∠APB=90°,∴∠CPO=90°,
∴PC切⊙O于点P,即CP是⊙O的切线.
10.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .
(1)求证:BC 是⊙O 的切线;
(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)
【答案】(1)证明见解析 (2)233
π- 【解析】
【分析】 (1)连接OD ,只要证明OD ∥AC 即可解决问题;
(2)连接OE ,OE 交AD 于K .只要证明△AOE 是等边三角形即可解决问题.
【详解】
(1)连接OD .
∵OA =OD ,∴∠OAD =∠ODA .
∵∠OAD =∠DAC ,∴∠ODA =∠DAC ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∴BC 是⊙O 的切线.
(2)连接OE ,OE 交AD 于K .
∵¶¶AE DE
=,∴OE ⊥AD . ∵∠OAK =∠EAK ,AK =AK ,∠AKO =∠AKE =90°,∴△AKO ≌△AKE ,∴AO =AE =OE ,∴△AOE
是等边三角形,∴∠AOE =60°,∴S 阴=S 扇形OAE ﹣S △AOE 26023360π⋅⋅=-22233π=. 【点睛】
本题考查了切线的判定、扇形的面积、等边三角形的判定和性质、平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.
11.如图1,是用量角器一个角的操作示意图,量角器的读数从M 点开始(即M 点的读数为0),如图2,把这个量角器与一块30°(∠CAB =30°)角的三角板拼在一起,三角板的斜边AB 与量角器所在圆的直径MN 重合,现有射线C 绕点C 从CA 开始沿顺时针方向以每
秒2°的速度旋转到与CB,在旋转过程中,射线CP与量角器的半圆弧交于E.连接BE.(1)当射线CP经过AB的中点时,点E处的读数是,此时△BCE的形状是;(2)设旋转x秒后,点E处的读数为y,求y与x的函数关系式;
(3)当CP旋转多少秒时,△BCE是等腰三角形?
【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒
【解析】
【分析】
(1)根据圆周角定理即可解决问题;
(2)如图2﹣2中,由题意∠ACE=2x,∠AOE=y,根据圆周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);
(3)分两种情形分别讨论求解即可;
【详解】
解:(1)如图2﹣1中,
∵∠ACB=90°,OA=OB,
∴OA=OB=OC,
∴∠OCA=∠OAC=30°,
∴∠AOE=60°,
∴点E处的读数是60°,
∵∠E=∠BAC=30°,OE=OB,
∴∠OBE=∠E=30°,
∴∠EBC=∠OBE+∠ABC=90°,
∴△EBC是直角三角形;
故答案为60°,直角三角形;
(2)如图2﹣2中,
∵∠ACE=2x,∠AOE=y,
∵∠AOE=2∠ACE,
∴y=4x(0≤x≤45).
(3)①如图2﹣3中,当EB=EC时,EO垂直平分线段BC,
∵AC⊥BC,
∵EO∥AC,
∴∠AOE=∠BAC=30°,
∠AOE=15°,
∴∠ECA=1
2
∴x=7.5.
②若2﹣4中,当BE=BC时,
易知∠BEC=∠BAC=∠BCE=30°,
∴∠OBE=∠OBC=60°,
∵OE=OB,
∴△OBE是等边三角形,
∴∠BOE=60°,
∴∠AOB=120°,
∴∠ACE=1
∠ACB=60°,
2
∴x=30,
综上所述,当CP旋转7.5秒或30秒时,△BCE是等腰三角形;
【点睛】
本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.
12.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE
(1)求证:直线CG为⊙O的切线;
(2)若点H为线段OB上一点,连接CH,满足CB=CH,
①△CBH∽△OBC
②求OH+HC的最大值
【答案】(1)证明见解析;(2)①证明见解析;②5.
【解析】
分析:(1)由题意可知:∠CAB=∠GAF,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;
(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明
△CBH∽△OBC;
②由△CBH∽△OBC可知:BC HB
OC BC
=,所以HB=
2
4
BC
,由于BC=HC,所以
OH+HC=4−
2
4
BC
+BC,利用二次函数的性质即可求出OH+HC的最大值.
详解:(1)由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,
∴∠ACB=90°
∵OA=OC,
∴∠CAB=∠OCA,
∴∠OCA+∠OCB=90°,
∵∠GAF=∠GCE,
∴∠GCE+∠OCB=∠OCA+∠OCB=90°,
∵OC是⊙O的半径,
∴直线CG是⊙O的切线;
(2)①∵CB=CH,
∴∠CBH=∠CHB,
∵OB=OC,
∴∠CBH=∠OCB,
∴△CBH∽△OBC
②由△CBH∽△OBC可知:BC HB OC BC
=
∵AB=8,
∴BC2=HB•OC=4HB,
∴HB=
2
4 BC
,
∴OH=OB-HB=4-
2 4 BC
∵CB=CH,
∴OH+HC=4−
2
4
BC
+BC,
当∠BOC=90°,
此时
∵∠BOC<90°,∴0<BC<
,
令BC=x 则CH=x ,BH=24x ()221142544
OH HC x x x ∴+=-++=--+ 当x=2时,
∴OH+HC 可取得最大值,最大值为5
点睛:本题考查圆的综合问题,涉及二次函数的性质,相似三角形的性质与判定,切线的判定等知识,综合程度较高,需要学生灵活运用所知识.
13.对于平面直角坐标系xoy 中的图形P ,Q ,给出如下定义:M 为图形P 上任意一点,N 为图形Q 上任意一点,如果M ,N 两点间的距离有最小值,那么称这个最小值为图形P ,Q 间的“非常距离”,记作d (P ,Q ).已知点A (4,0),B (0,4),连接AB . (1)d (点O ,AB )= ;
(2)⊙O 半径为r ,若d (⊙O ,AB )=0,求r 的取值范围;
(3)点C (-3,-2),连接AC ,BC ,⊙T 的圆心为T (t ,0),半径为2,d (⊙T ,△ABC ),且0<d <2,求t 的取值范围.
【答案】(1)222)224r ≤≤;(3)25252t -<<-或6<r <8.
【解析】
【分析】
(1)如下图所示,由题意得:过点O 作AB 的垂线,则垂线段即为所求;
(2)如下图所示,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB ,交AB 于点E ,则:OB=2,2,即可求解;
(3)分⊙T 在△ABC 左侧、⊙T 在△ABC 右侧两种情况,求解即可.
【详解】
(1)过点O 作OD ⊥AB 交AB 于点D ,
根据“非常距离”的定义可知,
d (点O ,AB )=OD=2AB =22442
+=22; (2)如图,
当d (⊙O ,AB )=0时,
过点O 作OE ⊥AB,则OE=22,OB=OA=4,
∵⊙O 与线段AB 的“非常距离”为0,
∴224r ≤≤;
(3)当⊙T 在△ABC 左侧时,
如图,
当⊙T 与BC 相切时,d=0,
2236+35,
过点C 作CE ⊥y 轴,过点T 作TF ⊥BC,则△TFH ∽△BEC,
∴
TF TH BE BC
=, 即2635,
∴TH=5, ∵HO ∥CE,
∴△BHO ∽△BEC,
∴HO=2,
此时T(-5-2,0);
当d=2时,如图,
同理可得,此时T (252--);
∵0<d <2,
∴25252t --<<--;
当⊙T 在△ABC 右侧时,如图,
当p=0时,t=6,
当p=2时,t=8.
∵0<d <2,
∴6<r <8;
综上,25252t -<<或6<r <8.
【点睛】
本题主要考查圆的综合问题,解题的关键是理解并掌握“非常距离”的定义与直线与圆的位
置关系和分类讨论思想的运用.
14.如图,已知AB 是⊙O 的直径,BC 是弦,弦BD 平分∠ABC 交AC 于F ,弦DE ⊥AB 于H ,交AC 于G .
①求证:AG =GD ;
②当∠ABC 满足什么条件时,△DFG 是等边三角形?
③若AB =10,sin ∠ABD =35
,求BC 的长.
【答案】(1)证明见解析;(2)当∠ABC =60°时,△DFG 是等边三角形.理由见解析;(3)BC 的长为
145. 【解析】
【分析】
(1)首先连接AD ,由DE ⊥AB ,AB 是O e 的直径,根据垂径定理,即可得到¶¶AD AE =,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,证得∠ADE =∠ABD ,又由弦BD 平分∠ABC ,可得∠DBC =∠ABD ,根据等角对等边的性质,即可证得AG=GD ;
(2)当∠ABC=60°时,△DFG 是等边三角形,根据半圆(或直径)所对的圆周角是直角与三角形的外角的性质,易求得∠DGF=∠DFG=60°,即可证得结论;
(3)利用三角函数先求出tan ∠ABD 34=
,cos ∠ABD =45
,再求出DF 、BF ,然后即可求出BC.
【详解】
(1)证明:连接AD ,
∵DE ⊥AB ,AB 是⊙O 的直径,
∴¶¶AD AE =,
∴∠ADE =∠ABD ,
∵弦BD 平分∠ABC ,
∴∠DBC =∠ABD ,
∵∠DBC =∠DAC ,
∴∠ADE =∠DAC ,
∴AG =GD ;
(2)解:当∠ABC =60°时,△DFG 是等边三角形.
理由:∵弦BD 平分∠ABC ,
∴∠DBC =∠ABD =30°,
∵AB 是⊙O 的直径,
∴∠ACB =90°,
∴∠CAB =90°﹣∠ABC =30°,
∴∠DFG =∠FAB+∠DBA =60°,
∵DE ⊥AB ,
∴∠DGF =∠AGH =90°﹣∠CAB =60°,
∴△DGF 是等边三角形;
(3)解:∵AB 是⊙O 的直径,
∴∠ADB =∠ACB =90°,
∵∠DAC =∠DBC =∠ABD ,
∵AB =10,sin ∠ABD =35, ∴在Rt △ABD 中,AD =AB•sin ∠ABD =6,
∴BD =22AB BD -=8,
∴tan ∠ABD =34AD BD =,cos ∠ABD =4=5
BD AB , 在Rt △ADF 中,DF =AD•tan ∠DAF =AD•tan ∠ABD =6×
34=92, ∴BF =BD ﹣DF =8﹣92=72
, ∴在Rt △BCF 中,BC =BF•cos ∠DBC =BF•cos ∠ABD =
72×45=145. ∴BC 的长为:145
.
【点睛】
此题考查了圆周角定理、垂径定理、直角三角形的性质、三角函数的性质以及勾股定理等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想与转化思想的应用,注意辅助线的作法.
15.如图,AB 是⊙O 的直径,∠ACB 的平分线交AB 于点D ,交⊙O 于点E ,过点C 作⊙O 的切线CP 交BA 的延长线于点P ,连接AE .
(1)求证:PC=PD ;
(2)若AC=5cm ,BC=12cm ,求线段AE ,CE 的长.
【答案】(1)见解析 (2) EC=172
AE=
132
【解析】
试题分析:(1)如图1中,连接OC、OE.利用等角的余角相等,证明∠PCD=∠PDC即可;
(2)如图2中.作EH⊥BC于H,EF⊥CA于F.首先证明Rt△AEF≌Rt△BEH,推出
AF=BH,设AF=BH=x,再证明四边形CFEH是正方形,推出CF=CH,可得5+x=12﹣x,推出
x=7
2
,延长即可解决问题;
试题解析:(1)证明:如图1中,连接OC、OE.
∵AB直径,∴∠ACB=90°,∴CE平分∠ACB,∴∠ECA=∠ECB=45°,∴¶AE=¶BE,
∴OE⊥AB,∴∠DOE=90°.∵PC是切线,∴OC⊥PC,∴∠PCO=90°.∵OC=OE,
∴∠OCE=∠OEC.∵∠PCD+∠OCE=90°,∠ODE+∠OEC=90°,∠PDC=∠ODE,
∴∠PCD=∠PDC,∴PC=PD.
(2)如图2中.作EH⊥BC于H,EF⊥CA于F.
∵CE平分∠ACB,EH⊥BC于H,EF⊥CA于F,∴EH=EF,∠EFA=∠EHB=90°.∵¶AE=¶BE,∴AE=BE,∴Rt△AEF≌Rt△BEH,∴AF=BH,设AF=BH=x.∵∠F=∠FCH=∠CHE=90°,∴四边形CFEH是矩形.∵EH=EF,∴四边形CFEH是正方形,∴CF=CH,∴5+x=12﹣x,
∴x =7
2,∴CF =FE =172,∴EC CF =2
,
AE 点睛:本题考查了切线的性质、圆周角定理、勾股定理、垂径定理、正方形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。