侧岭乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
侧岭乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题
1、(2分)若为非负数,则x的取值范围是()
A.x≥1
B.x≥-
C.x>1
D.x>-
【答案】B
【考点】解一元一次不等式
【解析】【解答】解:由题意得
≥0,
2x+1≥0,
∴x≥- .
故答案为:B.
【分析】非负数即正数和0,由为非负数列出不等式,然后再解不等式即可求出x的取值范围。
2、(2分)下列各数:0.3333…,0,4,-1.5,,,-0.525225222中,无理数的个数是()
A. 0个
B. 1个
C. 2个
D. 3个
【答案】B
【考点】无理数的认识
【解析】【解答】解:是无理数,故答案为:B
【分析】根据无理数的定义,无限不循环的小数就是无理数,常见的无理数有三类:①开方开不尽的;②及含的式子;③象0.101001001…这类有规律的数;从而得出答案。
3、(2分)西峰城区出租车起步价为5元(行驶距离在3千米内),超过3千米按每千米加收1.2元付费,不足1千米按1千米计算,小明某次花费14.6元.若设他行驶的路为x千米,则x应满足的关系式为()
A. 14.6﹣1.2<5+1.2(x﹣3)≤14.6
B. 14.6﹣1.2≤5+1.2(x﹣3)<14.6
C. 5+1.2(x﹣3)=14.6﹣1.2
D. 5+1.2(x﹣3)=14.6
【答案】A
【考点】一元一次不等式组的应用
【解析】【解答】解:设行驶距离为x千米依题意,得
∵14.6>5,
∴行驶距离在3千米外.
则14.6﹣1.2<5+1.2(x﹣3)≤14.6.
故答案为:A
【分析】先根据付费可知行驶距离在3千米以上,再用行驶距离表示出付费费用,再根据收费情况列出关于x 的一元一次不等式组.
4、(2分)下列不等式组是一元一次不等式组的是()
A.
B.
C.
D.
【答案】C
【考点】一元一次不等式组的定义
【解析】【解答】根据一元一次不等式组的定义可知选项C正确,
故选:C.
【分析】根据一元一次不等式组的定义可判断.不等式组中只含有一个未知数并且未知数的次数是一次的.
5、(2分)下列四个方程组中,是二元一次方程组的有()个.
(1 ),(2)(3)(4).
A. 4
B. 3
C. 2
D. 1
【答案】D
【考点】二元一次方程组的定义
【解析】【解答】解:(1)是二元二次方程组;
(2 )是二元二次方程组;
(3 )是分式,不是二元一次方程组;
(4 )是二元一次方程组;故答案为:D.
【分析】根据二元一次方程组的定义,两个方程中,含有两个未知数,且含未知数项的次数都是1的整式方程。
判断即可。
6、(2分)若关于x的一元一次不等式组有解,则m的取值范围为()
A.
B.
C.
D.
【答案】C
【考点】解一元一次不等式组
【解析】【解答】解:,
解①得:x<2m,
解②得:x>2-m,
根据题意得:2m>2-m,
解得:.
故答案为:C.
【分析】先求出每个不等式的解集,再根据已知不等式组有解,即可得出关于m的不等式,即可得出答案.
7、(2分)实验课上,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()
A. 4种
B. 3种
C. 2种
D. 1种
【答案】C
【考点】二元一次方程的解,二元一次方程的应用
【解析】【解答】根据题意可得:5x+6y=40,根据x和y为非负整数可得:或,共两种,故选C.
【分析】根据总人数为40人,建立二元一次方程,再根据x和y为非负整数,,用含y的代数式表示出x,得到x=,求出y的取值范围为0<y<,得出满足条件的x、y的值即可。
8、(2分)下列不等式中,是一元一次不等式的是()
A.x+1>2
B.x2>9
C.2x+y≤5
D.>3
【答案】A
【考点】一元一次不等式的定义
【解析】【解答】解:A.该不等式符合一元一次不等式的定义,符合题意;
B.未知数的次数是2,不是一元一次不等式,不符合题意;
C.该不等式中含有2个未知数,属于二元一次不等式,不符合题意;
D.该不等式属于分式不等式,不符合题意;
故答案为:A.
【分析】根据一元一次不等式的定义判定.含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.
9、(2分)如图,有下列判定,其中正确的有()
①若∠1=∠3,则AD∥BC;②若AD∥BC,则∠1=∠2=∠3;③若∠1=∠3,AD∥BC,则∠1=∠2;④若∠C+∠3+
∠4=180°,则AD∥BC.
A. 1个
B. 2个
C. 3个
D. 4个
【答案】B
【考点】平行线的判定与性质
【解析】【解答】解:①若∠1=∠3,则AB=AD,故本小题不符合题意;
②若AD∥BC,则∠2=∠3,故本小题不符合题意
③,由AD∥BC,得出∠2=∠3,又∠1=∠3,故∠1=∠2,正确;故本小题符合题意
④若∠C+∠3+∠4=180∘,则AD∥BC 正确;故本小题符合题意
综上所述,正确的有③④共2个。
故选B.
【分析】根据平行线的判定定理及性质定理以及等量代换,等边对等角的性质即可一一作出判断。
10、(2分)如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是().
A. △ABC与△DEF能够重合
B. ∠DEF=90°
C. AC=DF
D. EC=CF
【答案】D
【考点】平移的性质
【解析】【解答】解:由平移的特征,平移前后的两个图形的形状与大小都没有发生变化,故A,B,C均成立,所以只有D符合题意.
故答案为:D
【分析】因为平移后的图形与原图形形状大小都不变,对应边相等,对应角相等,所以只有D不正确.
11、(2分)小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买()
A.3支笔
B.4支笔
C.5支笔
D.6支笔
【答案】C
【考点】一元一次不等式的应用
【解析】【解答】解:设他可以买x支笔。
则3×2+3x⩽22
解得x⩽,
∴x为整数,
∴最多可以买5支笔。
故答案为:C.
【分析】设他可以买x支笔,根据单价×数量=总价分别表示出买笔记本和笔的总价,再根据笔记本的总价+笔的总价≤22列出不等式,再求出不等式的最大整数解即可。
12、(2分)若一个数的平方根是±8,那么这个数的立方根是()
A. 4
B. ±4
C. 2
D. ±2
【答案】A
【考点】平方根,立方根及开立方
【解析】【解答】解:一个数的平方根是±8,则这个数是64,则它的立方根是4.
故答案为:A
【分析】根据平方根的定义,这个数应该是(±8)2=64,再根据立方根的定义求出64的立方根即可。
二、填空题
13、(1分)有人收集了某药厂生产的同一种感冒药在近十年的每箱出厂价,为了让人们知道这种药品的
价格在逐渐降低,使用________统计图来表示这些数据是最恰当的.
【答案】折线
【考点】折线统计图
【解析】【解答】解:根据题意,要求清楚地表示这种药品的价格在逐渐降低,结合统计图各自的特点,应选用折线统计图.故答案为:折线
【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.根据折线统计图的特征即可确定.
14、(7分)如图,AB∥DE,试问:∠B、∠E、∠BCE有什么关系?
解:∠B+∠E=∠BCE
理由:过点C作CF∥AB
则∠B=∠________(________)
∵AB∥DE,AB∥CF
∴ ________(________)
∴∠E=∠________(________)
∴∠B+∠E=∠1+∠2(________)
即∠B+∠E=∠BCE
【答案】1;两直线平行内错角相等;CF//DE;平行于同一条直线的两条直线互相平行;2;两直线平行内错角相等;等式的基本性质
【考点】等式的性质,平行线的判定与性质
【解析】【分析】第1个空和第2个空:因为CF∥AB,根据两直线平行,内错角相等,即可求出∠B=∠1;第3个空和第4个空:由题意CF∥AB,AB∥DE,根据平行于同一条直线的两条直线互相平行可求CF∥DE;第5个空和第6个空:根据平行线的性质,两直线平行,内错角相等,即可进行求证。
第7个空:根据等式的性质,等式两边同时加上相同的数或式子,两边依然相同。
15、(1分)如图1是运动员的领奖台,最高处的高为1m,底边宽为2m,为了美观要在上面铺上红地毯(如图1中的阴影处),则至少需要红地毯________ m.
【答案】4
【考点】平移的性质
【解析】【解答】解:如图2所示,
通过平移后,原来地毯的AB,CD的长之和就是ST的长;原来BC,DE,FG的长之和就是PQ的长;原来EF,GH的长之和就是XY的长,所以要在领奖台上铺上的红地毯的长就是ST,PQ和XY这三段的长之和.根据题意,领奖台的高为1m,底边宽为2m,那么ST与XY的长都是1m,PQ的长是2m,因此至少需要红地毯(1+1+2)m,即为4m.故答案为:4
【分析】通过平移可将BC、FG两线段向上平移到与DE在同一直线的位置,将线段DC、EF向两边平移至与AB、GH在同一直线的位置,这样领奖台就变成了矩形,再求出两宽加一长的长度,最后乘以台阶宽度即可.
16、(1分)小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买________瓶甲饮料.
【答案】3
【考点】一元一次不等式的应用
【解析】【解答】解:设买x瓶甲饮料,
则7x+4(10-x)≤50,
解得x≤,
x取最大正整数
∴x=3
所以最多能买3瓶甲饮料【分析】根据题意:甲种饮料的数量+乙种饮料的数量=10;甲种饮料的费用+乙种饮料的费用≤50,设未知数,列不等式,求出此不等式的最大正整数解即可。
17、(1分)对于实数x,我们规定[X)表示大于x的最小整数,如[4)═5,[ )=2,[-2.5)=-2,现对64进行如下操作:
64 [ )=9 [ )=4 [ )=3 [[ )=2,
这样对64只需进行4次操作后变为2,类似地,只需进行4次操作后变为2的所有正整数中,最大的是________.【答案】3968
【考点】估算无理数的大小
【解析】【解答】解:63 [ )=8 [ )=3 [ )=2,
设这个最大正整数为m,则m [ )=63,
∴<63.
∴m<3969.
∴m的最大正整数值为3968.
故答案为:3968
【分析】对64只需进行4次操作后变为2,求只需进行4次操作后变为2的所有正整数中,最大的数,我们只需找出进行3次操作后变为2的所有正整数中,最大的数,于是将63代入操作程序,只需进行三次操作就
是2,设这个最大正整数为m,则m [ )=63,由于<63.根据算数平方根的意义,m<3969.从而得出m的值。
18、(1分)如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.
【答案】53°
【考点】对顶角、邻补角
【解析】【解答】解:∵∠2和∠COE为对顶角
∴∠2=∠COE=32°
∵∠1+∠COE+∠BOE=180°
即95°+32°+∠BOE=180°
∴∠BOE=53°
故答案为:53°。
【分析】根据对顶角相同,可求∠COE的度数,因为∠AOB为平角,根据平角等于180度,即可求得∠1+∠COE+∠BOE的和为180°,从而得出∠BOE的度数。
三、解答题
19、(5分)如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.
【答案】解:∵AB∥EF,
∴∠FRG=∠APR,
∵∠FRG=110°,
∴∠APR=110°,
又∵PS⊥GH,
∴∠SPR=90°,
∴∠APS=∠APR-∠SPR=20°,
∵AB∥CD,
∴∠PSQ=∠APS=20°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得内错角∠FRG=∠APR=110°,再由垂直性质得∠SPR=90°,从而求得∠APS=20°;由平行线的性质得内错角∠PSQ=∠APS=20°.
20、(5分)如图,直线BE、CF相交于O,∠AOB=90°,∠COD=90°,∠EOF=30°,求∠AOD的度数.
【答案】解:∵∠EOF=30°
∴∠COB=∠EOF=30°
∵∠AOB=90°,∠AOB=∠AOC+∠COB
∴∠AOC=90°-30°=60°
∴∠AOD=∠COD+∠AOC=150°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等得出∠COB=∠EOF=30°,根据角的和差得出∠AOC=90°-30°=60°,∠AOD=∠COD+∠AOC=150°。
21、(15分)“节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的统计图表
节水量/立方米1 1.52.53
户数/户5080a70
(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.
(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.
(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?
【答案】(1)解:由题意可得,a=300﹣50﹣80﹣70=100,
扇形统计图中2.5立方米对应扇形的圆心角度数是:=120°
(2)解:补全的条形统计图如图所示:
(3)解:由题意可得,5月份平均每户节约用水量为:=2.1(立方米),
2.1×12×4=100.8(元),
即求该小区300户居民5月份平均每户节约用水量2.1立方米,若用每立方米水需4元水费,每户居民1年可节约100.8元钱的水费
【考点】扇形统计图,条形统计图
【解析】【分析】(1)根据总数减去节水量对应的数据和可得a的值,利用节水量是2.5立方米的百分比乘以360°可得对应的圆心角的度数;
(2)根据(1)中a的值即可补全统计图;
(3)利用加权平均数计算平均每户节约的用水量,然后乘以需要的水费乘以12个月可得结论.
22、(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
23、(5分)试将100分成两个正整数之和,其中一个为11的倍数,另一个为17的倍数.
【答案】解:依题可设:
100=11x+17y,
原题转换成求这个方程的正整数解,
∴x==9-2y+,
∵x是整数,
∴11|1+5y,
∴y=2,x=6,
∴x=6,y=2是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
∴k=0,
∴原方程正整数解为:.
∴100=66+34.
【考点】二元一次方程的解
【解析】【分析】根据题意可得:100=11x+17y,从而将原题转换成求这个方程的正整数解;求二元一次不定方程的正整数解时,可先求出它的通解。
然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
24、(15分)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2014年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:
每亩生产成本每亩产量油菜籽市场价格种植面积
310元130千克5元/千克500000亩
请根据以上信息解答下列问题:
(1)种植油菜每亩的种子成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2014年南县全县农民冬种油菜的总获利为多少元?(结果用科学记数法表示)
【答案】(1)解:根据题意得:1﹣10%﹣35%﹣45%=10%,310×10%=31(元),
答:种植油菜每亩的种子成本是31元
(2)解:根据题意得:130×5﹣310=340(元),答:农民冬种油菜每亩获利340元
(3)解:根据题意得:340×500 000=170 000 000=1.7×108(元),
答:2014年南县全县农民冬种油菜的总获利为1.7×108元
【考点】统计表,扇形统计图,科学记数法—表示绝对值较大的数
【解析】【分析】(1)先根据扇形统计图计算种子的百分比,然后乘以每亩的成本可得结果;(2)根据产量乘单价再减去生产成本可得获利;
(3)根据(2)中的利润乘以种植面积,最后用科学记数法表示即可.
25、(10分)近年来,由于乱砍滥伐,掠夺性使用森林资源,我国长江、黄河流域植被遭到破坏,土地沙化严重,洪涝灾害时有发生,沿黄某地区为积极响应和支持“保护母亲河”的倡议,建造了长100千米,宽0.5千米的防护林.有关部门为统计这一防护林共有多少棵树,从中选出10块防护林(每块长1km、宽0.5km)进行统计.
(1)在这个问题中,总体、个体、样本各是什么?
(2)请你谈谈要想了解整个防护林的树木棵数,采用哪种调查方式较好?说出你的理由.
【答案】(1)解:总体:建造的长100千米,宽0.5千米的防护林中每块长1km、宽0.5km的树的棵树;个体:一块(每块长1km、宽0.5km)防护林的树的棵树;
样本:抽查的10块防护林的树的棵树
(2)解:采用抽查的方式较好,因为数量较大,不容易调查
【考点】全面调查与抽样调查,总体、个体、样本、样本容量
【解析】【分析】(1)总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据总体、个体和样本的定义即可解答;
(2)一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于
精确度要求高的调查,事关重大的调查往往选用普查,根据抽样调查和普查的定义及特征进行选择即可.
26、(5分)一个三位数的各位数字的和等于18,百位数字与个位数字,的和比十位数字大14,如果把百位数字与个位数字对调,所得新数比原数大198,求原数!
【答案】解:设原数的个位数字为x,十位数字为y,百位数字为z根据题意得:
解这个方程组得:
所以原来的三位数是729
【考点】三元一次方程组解法及应用
【解析】【分析】此题的等量关系为:个位数字+十位数字+百位数字=18;百位数字+个位数字-十位数字=14;新的三位数-原三位数=198,设未知数,列方程组,解方程组求解,就可得出原来的三位数。
27、(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值.
【答案】解:由题意可知:
把代入,得,
,
,
把代入,得,
,
∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。