桥西区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桥西区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1.数列{a n}是等差数列,若a1+1,a3+2,a5+3构成公比为q的等比数列,则q=()
A.1 B.2 C.3 D.4
2.已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为()
A.24B.80C.64D.240
3.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a为无理数,则在过点P(a,﹣)的所有直线中()
A.有无穷多条直线,每条直线上至少存在两个有理点
B.恰有n(n≥2)条直线,每条直线上至少存在两个有理点
C.有且仅有一条直线至少过两个有理点
D.每条直线至多过一个有理点
4.若关于x的方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,且满足x1<x2<x3,则a的取值范围为()
A.a>B.﹣<a<1 C.a<﹣1 D.a>﹣1
5.已知函数f(x)=x3+(1﹣b)x2﹣a(b﹣3)x+b﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不
等式组所确定的平面区域在x2+y2=4内的面积为()
A.B.C.πD.2π
6.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0).若点M到该抛物线焦点的距离为3,则|OM|=()
A. B. C.4 D.
7.已知集合A={y|y=x2+2x﹣3},,则有()
A .A ⊆
B B .B ⊆A
C .A=B
D .A ∩B=φ
8. 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为
( )
A .
B .
C .
D .
9. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .
14 B .1
2
C .1
D .2
10.函数f (x )=
有且只有一个零点时,a 的取值范围是( )
A .a ≤0
B .0<a <
C .<a <1
D .a ≤0或a >1
11.i 是虚数单位,i 2015等于( )
A .1
B .﹣1
C .i
D .﹣i
12.在极坐标系中,圆的圆心的极坐标系是( )。

A
B
C D
二、填空题
13.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 . 14.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 .
15.曲线在点(3,3)处的切线与轴x 的交点的坐标为 .
16.在数列
中,则实数a= ,b= .
17.已知函数f (x )=恰有两个零点,则a 的取值范围是 .
18.设MP 和OM 分别是角
的正弦线和余弦线,则给出的以下不等式:
①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).
三、解答题
19.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试.(Ⅰ)若选出的4名同学是同一性别,求全为女生的概率;
(Ⅱ)若设选出男生的人数为X,求X的分布列和EX.
20.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周得到
如图所示的几何体σ.
(1)求几何体σ的表面积;
(2)点M时几何体σ的表面上的动点,当四面体MABD的体积为,试判断M点的轨迹是否为2个菱形.
21.已知二次函数f(x)=x2+bx+c,其中常数b,c∈R.
(Ⅰ)若任意的x∈[﹣1,1],f(x)≥0,f(2+x)≤0,试求实数c的取值范围;
(Ⅱ)若对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4,试求实数b的取值范围.
22.平面直角坐标系xOy中,圆C1的参数方程为(φ为参数),以坐标原点为极点,x轴正半
轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=4sinθ.
(1)写出圆C1的普通方程及圆C2的直角坐标方程;
(2)圆C1与圆C2是否相交,若相交,请求出公共弦的长;若不相交请说明理由.
23.【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO图案是多边形ABEFMN,其设计创意如下:在长4cm、宽1c m的长方形ABCD中,将四边形DFEC沿直线EF翻折到MFEN(点F是线段AD上异于D的一点、点E是线段BC上的一点),使得点N落在线段AD上.
∆面积;
(1)当点N与点A重合时,求NMF
-最小时,LOGO最美观,试求此时LOGO图案的面积.
(2)经观察测量,发现当2NF MF
24.(本小题满分10分)选修41-:几何证明选讲
如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;
(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.
【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.
桥西区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】A
【解析】解:设等差数列{a n }的公差为d , 由a 1+1,a 3+2,a 5+3构成等比数列,
得:(a 3+2)2
=(a 1+1)(a 5+3), 整理得:a 32
+4a 3+4=a 1a 5+3a 1+a 5+3
即(a 1+2d )2
+4(a 1+2d )+4=a 1(a 1+4d )+4a 1+4d+3.
化简得:(2d+1)2
=0,即d=﹣.
∴q===1.
故选:A .
【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.
2. 【答案】B 【解析】 试题分析:805863
1
=⨯⨯⨯=
V ,故选B. 考点:1.三视图;2.几何体的体积. 3. 【答案】C
【解析】解:设一条直线上存在两个有理点A (x 1,y 1),B (x 2,y 2),
由于
也在此直线上,
所以,当x 1=x 2时,有x 1=x 2=a 为无理数,与假设矛盾,此时该直线不存在有理点;
当x 1≠x 2时,直线的斜率存在,且有,
又x 2﹣a 为无理数,而为有理数,
所以只能是,且y 2﹣y 1=0,


所以满足条件的直线只有一条,且直线方程是; 所以,正确的选项为C .
故选:C.
【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.
4.【答案】B
【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,
设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,
由f′(x)>0得x>1或x<﹣,此时函数单调递增,
由f′(x)<0得﹣<x<1,此时函数单调递减,
即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,
在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,
要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,
则﹣1<﹣a<,
即﹣<a<1,
故选:B.
【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.
5.【答案】B
【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.
则f(x)=x3﹣x2+ax,
函数的导数f′(x)=x2﹣2x+a,
因为原点处的切线斜率是﹣3,
即f′(0)=﹣3,
所以f′(0)=a=﹣3,
故a=﹣3,b=2,
所以不等式组为
则不等式组确定的平面区域在圆x2+y2=4内的面积,
如图阴影部分表示,
所以圆内的阴影部分扇形即为所求.
∵k OB=﹣,k OA=,
∴tan∠BOA==1,
∴∠BOA=,
∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,
∴圆x2+y2=4在区域D内的面积为×4×π=,
故选:B
【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键.
6.【答案】B
【解析】解:由题意,抛物线关于x轴对称,开口向右,设方程为y2=2px(p>0)
∵点M(2,y0)到该抛物线焦点的距离为3,
∴2+=3
∴p=2
∴抛物线方程为y2=4x
∵M(2,y0)

∴|OM|=
故选B.
【点评】本题考查抛物线的性质,考查抛物线的定义,解题的关键是利用抛物线的定义求出抛物线方程.
7.【答案】B
【解析】解:∵y=x2+2x﹣3=(x+1)2﹣4,
∴y≥﹣4.
则A={y|y≥﹣4}.
∵x>0,
∴x+≥2=2(当x=,即x=1时取“=”),
∴B={y|y≥2},
∴B⊆A.
故选:B.
【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.
8.【答案】C
【解析】解:如图所示,△BCD是圆内接等边三角形,
过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,
显然当弦为CD时就是△BCD的边长,
要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,
记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内},
由几何概型概率公式得P(A)=,
即弦长超过圆内接等边三角形边长的概率是.
故选C.
【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答.
9.【答案】B
【解析】
试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以
()1
4160,2
λλ+-==
,故选B. 考点:1、向量的坐标运算;2、向量平行的性质. 10.【答案】D
【解析】解:∵f (1)=lg1=0, ∴当x ≤0时,函数f (x )没有零点,
故﹣2x +a >0或﹣2x
+a <0在(﹣∞,0]上恒成立, 即a >2x ,或a <2x
在(﹣∞,0]上恒成立,
故a >1或a ≤0; 故选D .
【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.
11.【答案】D
【解析】解:i 2015=i 503×4+3=i 3
=﹣i , 故选:D
【点评】本题主要考查复数的基本运算,比较基础.
12.【答案】B 【解析】
,圆心直角坐标为(0,-1),极坐标为,选B 。

二、填空题
13.【答案】 [,1] .
【解析】解:∵全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},N ⊆M ,
∴2a ﹣1≤1 且4a ≥2,解得 2≥a ≥,故实数a 的取值范围是[,1],
故答案为[,1].
14.【答案】 .
【解析】解:点(m ,0)到直线x ﹣y+n=0的距离为d=,
∵mn ﹣m ﹣n=3,
∴(m﹣1)(n﹣1)=4,(m﹣1>0,n﹣1>0),
∴(m﹣1)+(n﹣1)≥2,
∴m+n≥6,
则d=≥3.
故答案为:.
【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.
15.【答案】(,0).
【解析】解:y′=﹣,
∴斜率k=y′|x=3=﹣2,
∴切线方程是:y﹣3=﹣2(x﹣3),
整理得:y=﹣2x+9,
令y=0,解得:x=,
故答案为:.
【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.
16.【答案】a=,b=.
【解析】解:由5,10,17,a﹣b,37知,
a﹣b=26,
由3,8,a+b,24,35知,
a+b=15,
解得,a=,b=;
故答案为:,.
【点评】本题考查了数列的性质的判断与归纳法的应用.
17.【答案】(﹣3,0).
【解析】解:由题意,a≥0时,
x<0,y=2x3﹣ax2﹣1,y′=6x2﹣2ax>0恒成立,
f(x)在(0,+∞)上至多一个零点;
x≥0,函数y=|x﹣3|+a无零点,
∴a≥0,不符合题意;
﹣3<a<0时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,
函数y=2x3﹣ax2﹣1在(﹣∞,0)上无零点,符合题意;
a=﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,
函数y=2x3﹣ax2﹣1在(﹣∞,0)上有零点﹣1,不符合题意;
a<﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,
函数y=2x3﹣ax2﹣1在(﹣∞,0)上有两个零点,不符合题意;
综上所述,a的取值范围是(﹣3,0).
故答案为(﹣3,0).
18.【答案】

【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,
∵,
∴OM<0<MP.
故答案为:②.
【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.
三、解答题
19.【答案】
【解析】解:(Ⅰ)若4人全是女生,共有C74=35种情况;若4人全是男生,共有C84=70种情况;
故全为女生的概率为=.…
(Ⅱ)共15人,任意选出4名同学的方法总数是C154,选出男生的人数为X=0,1,2,3,4…
P(X=0)==;P(X=1)==;P(X=2)==;
P(X=3)==;P(X=4)==.…
0 1 2 3 4
EX=0×+1×+2×+3×+4×=.…
【点评】本题考查离散型随机变量的分布列、期望及古典概型的概率加法公式,正确理解题意是解决问题的基础.
20.【答案】
【解析】解:(1)根据题意,得;
该旋转体的下半部分是一个圆锥,
上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,
其表面积为S=×4π×2×2=8π,
或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;
(2)由已知S
=××2×sin135°=1,
△ABD
因而要使四面体MABD的体积为,只要M点到平面ABCD的距离为1,
因为在空间中有两个平面到平面ABCD的距离为1,
它们与几何体σ的表面的交线构成2个曲边四边形,不是2个菱形.
【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.
21.【答案】
【解析】解:(Ⅰ)因为x∈[﹣1,1],则2+x∈[1,3],
由已知,有对任意的x∈[﹣1,1],f(x)≥0恒成立,
任意的x∈[1,3],f(x)≤0恒成立,
故f(1)=0,即1为函数函数f(x)的一个零点.
由韦达定理,可得函数f(x)的另一个零点,
又由任意的x∈[1,3],f(x)≤0恒成立,
∴[1,3]⊆[1,c],
即c≥3
(Ⅱ)函数f(x)=x2+bx+c对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4恒成立,
即f(x)max﹣f(x)min≤4,
记f(x)max﹣f(x)min=M,则M≤4.
当||>1,即|b|>2时,M=|f(1)﹣f(﹣1)|=|2b|>4,与M≤4矛盾;
当||≤1,即|b|≤2时,M=max{f(1),f(﹣1)}﹣f()=
﹣f()=(1+)2≤4,
解得:|b|≤2,
即﹣2≤b≤2,
综上,b的取值范围为﹣2≤b≤2.
【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.22.【答案】
【解析】解:(1)由圆C1的参数方程为(φ为参数),可得普通方程:(x﹣2)2+y2=4,即x2﹣4x+y2=0.
由圆C2的极坐标方程为ρ=4sinθ,化为ρ2=4ρsinθ,∴直角坐标方程为x2+y2=4y.
(2)联立,解得,或.
∴圆C1与圆C2相交,交点(0,0),(2,2).
公共弦长=.
【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角方程、两圆的位置关系、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.
23.【答案】(1)
215cm 16;(2
)2
4. 【解析】试题分析:
(1)设MF x =
4x =,则15
8
x =
, 据此可得NMF ∆的面积是
211515
1cm 2816
⨯⨯=;
试题解析:
(1)设MF x =,则FD MF x ==
,NF =
∵4NF MF +=,
4x =,解之得15
8
x =
, ∴NMF ∆的面积是
211515
1cm 2816
⨯⨯=; (2)设NEC θ∠=,则2
NEF θ
∠=,NEB FNE πθ∠=∠=-,
∴()22
MNF π
π
πθθ∠=
--=-

∴1
1
2MN
NF cos MNF
sin cos πθ
θ==
=
∠⎛
⎫- ⎪

⎭, MF FD MN tan MNF ==⋅∠=2cos tan sin πθθθ⎛
⎫-=- ⎪⎝
⎭,
∴22cos NF MF sin θ
θ
+-=.
∵14NF FD <+≤,∴114cos sin θθ-<
≤,即142
tan θ
<≤, ∴42πθα<≤(4tan α=且,32ππα⎛⎫
∈ ⎪⎝⎭), ∴22πθα<≤(4tan α=且,32ππα⎛⎫
∈ ⎪⎝⎭
), 设()2cos f sin θθθ+=,则()212cos f sin θθθ--=',令()0f θ'=得23
π
θ=, 列表得
∴当23
π
θ=
时,2NF MF -取到最小值, 此时,NEF CEF NEB ∠=∠=∠3
FNE NFE NFM π
=∠=∠=∠=,6
MNF π
∠=

在Rt MNF ∆中,1MN =,MF =
,NF =,
在正NFE ∆中,NF EF NE ===,
在梯形ANEB 中,1AB =,4AN =43
BE =-,
∴MNF EFN ABEFMN ABEN S S S S ∆∆=++=六边形梯形144142⎛⨯⨯= ⎝⎭
.
答:当2NF MF -最小时,LOGO 图案面积为2
4. 点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点. 24.【答案】
【解析】(Ⅰ)∵EC EF DE ⋅=2,DEF DEF ∠=∠ ∴DEF ∆∽CED ∆,∴C EDF ∠=∠……………………2分 又∵AP CD //,∴C P ∠=∠, ∴P EDF ∠=∠.
(Ⅱ)由(Ⅰ)得P EDF ∠=∠,又PEA DEF ∠=∠,∴EDF ∆∽EPA ∆,
∴ED
EP
EF EA =,∴EP EF ED EA ⋅=⋅,又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅. ∵EC EF DE ⋅=2,2,3==EF DE ,∴ 2
9
=EC ,∵2:3:=BE CE ,∴3=BE ,解得427=EP .
∴4
15
=-=EB EP BP .∵PA 是⊙O 的切线,∴PC PB PA ⋅=2
∴)29427(4152
+⨯=PA ,解得4
315=PA .……………………10分。

相关文档
最新文档