北师大版新精选六年级小学数学下册期末复习应用题(40题)及解析答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版新精选六年级小学数学下册期末复习应用题(40题)及解析答案
一、北师大小学数学解决问题六年级下册应用题
1.把一根圆柱形钢材加工成一个圆锥形的零件,测得底面周长是9.42分米,高是2分米,如果每立方分米钢重7.8千克,这个零件约重多少千克?
2.计算下面图形的表面积和体积。
(单位:cm)
3.一张资料照片上显示一只恐龙的身长是5cm,这只恐龙的实际身长是8m,这张照片的比例尺是多少?
4.修建一个圆柱形的沼气池,底面直径是3m,深2m.在池的内壁与下底面抹上水泥,抹水泥部分的面积是多少平方米?
5.小明骑行去奶奶家,下表是他记录的已走路程和剩余路程情况。
已走路程/千米246810
剩余路程/千米1816141210
6.一个圆柱形粮囤,从里面量得底面半径是2m,高2.5m。
如果每立方米稻谷重500kg,这个粮囤能装多少吨稻谷?
7.沙漏又称沙钟,是我国古代一种计量时间的仪器,它是根据流沙从一个容器到另一个容器的数量来计算时间的。
图10展示了一个沙漏记录时间的情况。
(1)求出沙漏此时上部沙子的体积。
(2)现在沙漏下部沙子的体积是62.8cm,如果再过1分钟,沙漏上部的沙子可以全部漏到下部,那么现在下部的沙子已经计量了多少分钟?
8.一个近似圆锥形的小麦堆,量得底面直径4米,高1.5米,这堆小麦大约有多少立方米?
9.求下列立体图形的体积。
10.求圆锥的体积(单位:厘米)
11.做一个底面周长是18.84分米、高10分米的圆柱形无盖铁皮水桶,
(1)水桶的占地面积多大?
(2)水桶可以容纳多少升水?
12.想一想,画一画。
(1)把长方形①按2:1的比例进行缩小,画出新图形。
缩小前后的长方形面积比是________。
(2)请标出A(1,1)、B(3,1)、C(3,4)三个点,用线连起来,组成一个△ABC,再绕B点顺时针旋转90°,请画出旋转后的图形△B'C'A'。
(3)如果将△B'C'A'以B'A'为轴旋转一周,会形成________图形,在横线上列式求出该图
形的体积?(每格是边长1厘米的正方形)
________
13.在一幅比例尺是1:3000000地图上,量得甲、乙两地间的公路长10厘米,辆汽车从甲地出发,平均时速60千米,几小时能到达乙地?
14.已知三角形的三个顶点分別为A(2,3),B(2,6),C(5,3)。
(1)请在方格纸上画出这个三角形。
(2)将画出的三角形按2:1放大,在方格纸上画出放大后的图形。
15.想象上面一排图形旋转后会得到下面的哪个图形?连一连。
16.一个圆锥形麦堆,底面直径是6m,高1.2m。
(1)这堆小麦的体积是多少立方米?
(2)如果每立方米小麦的质量为800kg,这堆小麦的质量为多少千克?(得数保留整千克数)
17.下面是一个小区的平面图。
请根据图中信息完成以下问题(列比例式解答)。
(1)如果小区中设计一条480m长的公路,在图上应该画多长?
(2)一个长方形住宅区在图上长1cm,宽0.5cm,它的实际占地面积是多少平方米?18.用铁皮制作一个有盖的圆柱形油桶,底面半径是3dm,高与底面半径的比是2:1。
制作这个油桶至少需要多少平方分米的铁皮?
19.一个盛有水的圆柱形容器,水面距容器口6厘米,从里面量这个容器底面半径为5厘米,现把一个底面半径为3厘米的圆锥形金属铸件完全浸没在水中,这时水面距容器口4.8厘米,求这个圆锥形金属铸件的高是多少?
20.装订同样大小的练习本,如果每本装38页,可装订300本,如果每本多订2页,可以装订多少本?(用比例解)
21.三仓镇在建设文明城镇中,举全镇之力整治污水沟。
当政府投入140万元时,已整治工程量与所剩工程量之比是7∶3。
照这样计算,整个治污水工程需投入多少万元?余下的工程投入如果由全镇3万人分担,每人还应负担多少元?
22.(如图所示)一个棱长6cm的正方体,从正方体的底面向内挖去一个最大的圆锥体,这个圆锥的体积是多少cm3?
23.用如图的一张长方形的铁皮做成一个圆柱形的油桶,求这个油桶的容积是多少立方分米,做这个油桶至少需要多少平方分米铁皮?(接头处和厚度不计)
24.一个正方体玻璃容器内盛有水,水面高度为12厘米,从内测出玻璃容器的棱长为20厘米。
在这个容器中竖直放入一个底面积为80平方厘米、高30厘米的圆柱形铁块,这时水面高度是多少厘米?
25.下图中A、B、C表示三个城市的车站位置。
根据图中的比例尺,求下列问题。
(1)先测量图上有关长度(精确到整厘米),再分别求出A站到B站、B站到C站的实际距离。
(2)甲、乙两车分别同时从A、C两站开出,甲车从A到B再到C要行5小时;乙车从C 到B再到A要行4小时。
照这样的速度,
①两车开出几小时后可以在途中相遇?
②在相遇前当乙车到达B站时,甲车还离B站多少千米?
③如果两车要在B站相遇,则乙车可以从C站迟开出多少小时?
26.按要求在方格纸上画图形。
(1)在方格纸上,把圆O向右平移4格,画出平移后的图形。
(2)把六边形绕点A逆时针旋转90°,画出旋转后的图形,再以直线MN为对称轴画出原图形的轴对称图形。
27.计划修一条3600米的水渠,前6天完成了计划的,照这样计算修完水渠还需要多少天?(用比例解)
28.我们都知道:圆的周长与直径的比值就是圆周率。
它是一个无限不循环小数,用字母π表示。
但你未必知道“圆方率”,就让我们一起来探索吧!
【探索】把一个棱长a厘米的正方体削成一个最大的圆柱体。
求这个圆柱体与正方体体积和表面积比。
(计算涉及圆周率,直接用π表示)
29.小松爸爸身高是170m,在家庭合影照片上他的身高是6.8cm,小松在这张照片上的身高是5.4cm。
(1)这张照片的比例尺是多少?
(2)小松的实际身高是多少米?
30.一个圆柱形木桶,底面直径4分米,高6分米,这个木桶破损后(如图),最多能装多少升水?
31.一个底面直径是2dm的圆柱形玻璃杯内盛有一些水,恰好占杯子容量的。
现将一个铁块完全浸没在水中,水面上升了5cm,这时水面距杯口还有4cm。
这个铁块的体积是多少?这个杯子的容积是多少升?
32.一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积增加25.12平方厘米,求原来圆柱的表面积是多少平方厘米?
33.把一个圆柱的侧面展开后得到一个长18厘米,宽12厘米的长方形,这个圆柱的体积最大可能是多少立方厘米?(π取近似值3)
34.学校要修建一个圆柱形的水池,在比例尺是1:200的设计图纸上,水池的半径为3厘米,深为2厘米。
(1)按图施工,这个水池的实际应该挖多少米深?
(2)按图施工,这个水池的能装下多少立方米的水?
(3)为了加固和美观,施工时给水池底部和水池壁都铺了水泥,且平均厚度是10厘米,然后再用油漆将新铺水泥的表面粉刷一遍,请问粉刷部分的面积是多少平方米?(结果保留一位小数)
35.判断下面的两个量成正比例、反比例还是不成比例。
(1)圆的周长和半径。
()
(2)圆的面积和半径。
()
(3)正方形的周长和边长。
()
(4)圆柱的侧面积一定,圆柱的高和底面的半径。
()
(5)一个自然数和它的倒数。
()
(6)比例尺一定,图上距离和实际距离。
()
36.有一顶帽子,帽顶部分是圆柱形,用花布加工而成,帽檐部分是一个圆环,也是用同样的花布做的。
已知帽顶的半径、高和帽檐宽都是1dm,那么做这顶帽子至少要用多少平方分米的花布?
37.操作实践,动手动脑。
(1)画出三角形AOB关于直线MN对称的图形。
(2)若B点的位置可以用(x,y)表示,则A点的位置为________。
(3)画出三角形AOB绕点A逆时针旋转90°后的图形。
38.操作题
(1)在下面的方格图中画出一个三角形,3个顶点的位置分别A(3,3)、B(1,4)、C (1,3)。
(2)画出三角形按2:1放大后的图形。
(3)放大后的三角形与原三角形面积之比是________
39.向阳小学食堂买来1800千克面粉,5天吃了150千克。
照这样计算,这些面粉共能吃多少天?(用比例的知识解答)
40.某城市,医院在学校的正南方向500米处,电影院在医院的北偏东60°方向1000米处,请用1:20000的比例尺将医院和电影院的位置画在下面,并求出学校到电影院大约有多少米。
【参考答案】***试卷处理标记,请不要删除
一、北师大小学数学解决问题六年级下册应用题
1.解:体积:×π×(9.42÷2π)2×2
=×3.14×2.25×2
=4.71(立方分米)
重量:4.71×7.8=36.738(千克)
答:这个零件约重36.738千克。
【解析】【分析】零件重量=体积×每立方分米钢重量,体积=×π×底面半径2×高,底面半径=底面周长÷2π。
2.解:表面积=3.14×8×20÷2+3.14×(8÷2)2+8×20
=25.12×20÷2+3.14×16+160
=251.2+50.24+160
=461.44(cm2);
体积=3.14×(8÷2)2×20÷2
=3.14×16×20÷2
=50.24×20÷2
=502.4(cm3)。
【解析】【分析】图形的表面积=底面直径是8cm,高是20cm的圆柱的表面积的一半(圆柱的侧面积的一半即π×直径×圆柱的高÷2+一个底面面积即π×底面半径的平方)+一个长是20cm、宽是8cm的长方形的面积(长×宽);
图形的体积=底面直径是8cm,高是20cm的圆柱体积的一半(π×底面半径的平方×圆柱的高÷2),代入数值计算即可得出答案。
3.解:5cm:8m
=5cm:800cm
=1:160
答:这张照片的比例尺是1:160。
【解析】【分析】先把单位进行换算,即1m=100cm,那么比例尺=图上距离:实际距离。
4.解:3.14×3×2+3.14×
=9.42×2+3.14×2.25
=18.84+7.065
=25.905(平方米)
答:抹水泥部分的面积是25.905平方米。
【解析】【分析】抹水泥部分的面积=底面积+侧面积,其中底面积=(底面直径÷2)2×π,侧面积=底面直径×π×深度,据此代入数据作答即可。
5.解:已走路程+剩余路程=全程,所以已走路程和剩余路程不成比例关系。
【解析】【分析】若y=kx(k不为0,x,y≠0),那么x和y成正比例关系;
若y=(k不为0,x,y≠0),那么x和y成反比例关系。
6.解:22×3.14×2.5×500
=12.56×2.5×500
=31.4×500
=15700(千克)
=15.7(吨)
答:这个粮囤能装15.7吨稻谷。
【解析】【分析】这个粮囤能装稻谷的千克数=这个粮囤的容积×每立方米稻谷重的千克数,其中这个粮囤的容积=πr2h,据此代入数据作答即可。
7.(1)解:3.14×(2÷2)2×3×
=3.14×1
=3.14(cm3)
答:此时沙漏上部沙子的体积是3.14立方厘米。
(2)解:62.8÷3.14×1=20(分钟)
答:现在下部的沙子已经计量了20分钟。
【解析】【分析】(1)圆锥的体积=底面积×高×,根据圆锥的体积计算上部沙子的体积;
(2)用下部沙子的体积除以上部沙子的体积,得数是几,那么下部的沙子计量的时间就是几个1分钟。
8.解:3.14×()2×1.5×
=3.14×4×0.5
=6.28(立方米)
答:这堆小麦大约有6.28立方米。
【解析】【分析】圆锥的体积=底面积×高×,根据圆锥的体积公式直接计算即可。
9.解:3.14×(202-102)×100
=3.14×(400-100)×100
=3.14×30000
=94200(cm3)
【解析】【分析】用横截面的面积乘长即可求出立体图形的体积,横截面的面积是一个圆环,由此根据公式计算即可。
10.解:3.14×(6÷2)2 ×9÷3
=3.14×9×3
=3.14×27
=84.78(立方厘米)
答:圆锥的体积是84.78立方厘米。
【解析】【分析】圆锥体积=π×半径的平方×高÷3,据此解答。
11.(1)解:这个水桶的底面半径是:18.84÷3.14÷2=3(分米)
3.14×3²=28.26(平方分米)
答:水桶的占地面积是28.26平方分米。
(2)解:3.14×3²×10
=3.14×90
=282.6(立方分米)
=282.6(升)
答:水桶的容积是282.6升。
【解析】【分析】(1)根据圆周长公式,用底面周长除以3.14再除以2即可求出底面半径。
然后根据圆面积公式计算出占地面积即可;
(2)根据圆柱的体积公式,用底面积乘高即可求出水桶的容积。
12.(1)
缩小前后的长方形面积比是4:1。
(2)
(3)圆锥;3.14×32×2×=18.84(cm3)
【解析】【分析】(1)缩小前长方形的面积为:4×2=8,缩小后长方形的面积为:2×1=2,缩小前后长方形面积比是:8:2=4:1。
(2)用数对表示物体的位置,先列后行。
图形旋转时,旋转中心不变,注意旋转方向,90°是与原来的边垂直。
(3)以直角三角形的一条直角边旋转一周,形成圆锥,圆锥的底面半径是3厘米,高是2厘米,代入圆锥的体积计算公式:V=πr2h,即可计算圆锥的体积。
13.解:10÷
=30000000cm
=300km
300÷60=5(小时)
答:5小时能到达乙地。
【解析】【分析】时间=路程÷速度,路程=图上距离÷比例尺。
14.(1)
(2)
【解析】【分析】(1)数对中,第一个数表示这个点所在的列,第二个数表示这个点所在的行,据此作图即可;
(2)把一个数按照2:1放大,就是把这个图形的每条边都扩大2倍。
15.
【解析】【分析】直角三角形以一条直角边为轴,旋转一周,会得到一个圆锥;
长方形以一条边为轴,旋转一周,会得到一个圆柱;
半圆以半径为轴,旋转一周,会得到一个球。
16.(1)解:(6÷2)2×3.14×1.2×
=9×3.14×1.2×
=28.26×0.4
=11.304(立方米)
答:这堆小麦的体积是11.304立方米。
(2)解:11.304×800≈9043(千克)
答:这堆小麦的质量为9043千克。
【解析】【分析】(1)这堆小麦的体积=π×(底面直径÷2)2×h×,据此代入数据作答即可;
(2)这堆小麦的质量=这堆小麦的体积×每立方米小麦的质量,据此代入数据作答即可。
17.(1)解:480m=48000cm
48000×=8(厘米)
答:在图上应该画8厘米。
(2)解:1÷=6000(厘米)=60(米)
0.5÷=3000(厘米)=30(米)
60×30=1800(平方米)
答:它的实际占地面积是1800平方米。
【解析】【分析】1m=100cm
(1)图上距离=实际距离×比例尺,据此代入数据作答即可;
(2)实际距离=图上距离÷比例尺,所以住宅的实际占地面积=长×宽,据此代入数据作答
即可。
18.解:3÷1×2=6(dm)
32×3.14×2+3×2×3.14×6
=56.52+113.04
=169.56(平方分米)
答:制作这个油桶至少需要169.56平方分米的铁皮。
【解析】【分析】圆柱的高=圆柱的底面半径÷底面半径占的份数×高占的份数,那么制作这个油桶至少需要铁皮的表面积=底面积×2+侧面积,其中底面积=πr2,侧面积=2πrh。
19.解:3.14×52×(6-4.8)÷÷(3.14×32)
=3.14×25×1.2×3÷(3.14×9)
=3.14×90÷3.14÷9
=10(厘米)
答:这个圆锥形金属铸件的高是10厘米。
【解析】【分析】水面上升部分水的体积就是圆锥的体积,水面上升的高度是(6-4.8)厘米,根据圆柱的体积公式计算出水面上升部分水的体积,也就是圆锥的体积。
用圆锥的体
积除以,再除以圆锥的底面积即可求出圆锥的高度。
20.解:设可以装订x本。
(38+2)x=38×300
x=11400÷40
x=285
答:可以装订285本。
【解析】【分析】装订的本数×每本装的页数=总页数,总页数不变,装订的本数与每本装订的页数成反比例,先设出未知数,然后根据总页数不变列出比例解答即可。
21.解:7+3=10
140÷=140×=200(万元)
(200-140)÷3=20(元)
答:整个治污水工程需投入200万元;余下的工程投入如果由全镇3万人分担,每人还应负担20元。
【解析】【分析】当政府投入140万元时,已整治工程量与所剩工程量之比是7∶3。
可得
入140万元是政府总投入的,总投入=140万元÷对用占比;每人还应负担多少元=(总投入-已投入)÷人数。
22.解:底面半径:6÷2=3(厘米)
3.14×3×3×6÷3
=28.26×6÷3
=169.56÷3
=56.52(立方厘米)
答:这个圆锥的体积是56.52立方厘米。
【解析】【分析】圆锥体的底面直径是6厘米,高是6厘米,圆锥体积=π×半径的平方×高÷3,据此解答。
23.解:设圆的直径为d分米,则:
3.14d+d=2
4.84
4.14d=24.84
d=6
所以r=d÷2=3;h=2d=12
容积:3.14×32×12
=3.14×9×12
=339.12(立方分米)
表面积=3.14×32×2+3.14×6×12
=56.52+226.08
=282.6(平方分米)
答:油桶的容积为339.12立方分米,做这个油桶至少需要282.6平方分米铁皮。
【解析】【分析】设圆的直径是d,大长方形的长是24.84分米,等于小长方形的长加上圆的直径d,小长方形的宽等于两个等圆直径之和,也就是2d,也就是圆柱的高,小长方形是圆柱侧面展开图,所以长应等于圆周长πd=3.14d,根据“大长方形的长等于圆的周长与直径的和”求出圆的直径,进而求出圆柱的高,由于没说铁皮厚度,所以油桶的容积就是圆柱体积,根据“圆柱的体积=πr2h”和“圆柱的表面积=2πr2+2πrh”进行解答即可。
24.解:20×20×12÷(20×20-80)
=4800÷320
=15(厘米)
答:水面高度是15厘米。
【解析】【分析】放入圆柱形铁块后水的底面积就容器的底面积减去铁块的底面积,用水的体积除以放入铁块后水的底面积即可求出此时水面的高度。
25.(1)A站到B站的图上距离是3厘米,B站到C站的图上距离是2厘米。
3÷=15000000(厘米)=150(千米)
2÷=10000000(厘米)=100(千米)
答:A站到B站的实际距离是150千米,B站到C站的实际距离是100千米。
(2)解:甲车速度:250÷5=50(千米)
乙车速度:250÷4=62.5(千米)
①250÷(50+62.5)=250÷112.5=(时)
答:两车开出小时后可以在途中相遇。
②100÷62.5=1.6(时)
150-50×1.6=70(千米)
答:甲车还离B站70千米。
③150÷50=3(小时)
(62.5×3-100)÷62.5=1.4(小时)
答:乙车可以从C站迟开出1.4小时。
【解析】【分析】(1)实际距离=图上距离÷比例尺,然后进行单位换算,即1千米=100000厘米;
(2)甲车的速度=从A到B再到C的距离÷甲车从A到B再到C要行的时间,乙车的速度=从A到B再到C的距离÷乙车从C到B再到A要行的时间;
①两车相遇需要的时间=从A到B再到C的距离÷两车的速度和;
②当乙车到达B站用的时间=从C到B的距离÷乙车的速度,所以甲车还离B站的距离=从A到B的距离-甲车的速度×当乙车到达B站用的时间;
③甲车到达B站用的时间=从A到B的距离÷甲车的速度,那么乙车可以从C站迟开出的时间=(乙车的速度×甲车到达B站用的时间-从C到B的距离)÷乙车的速度。
26.(1)
(2)
【解析】【分析】(1)图形在平移前后,形状、大小不变,只是位置发生了改变。
(2)图形在旋转时,旋转中心不变,注意旋转方向是逆时针,旋转角度是90°,与原来的线段垂直;画轴对称图形时,对称的图形和原来的图形到对称轴的距离要相等。
27.解:3600×=2160(米)
设修完水渠还需要x天,则
2160x=1440×6
2160x=8640
x=4
答:照这样计算修完水渠还需要4天。
【解析】【分析】因为水渠的长度÷所修时间=每天修的水渠长度(一定),所以水渠的长
度和所修时间成正比例关系,根据,即可求得修完剩下的水渠还需要的时间。
28.解:体积:圆柱体的体积:π·()2·a=πa3;正方体的体积:a3;
圆柱体与正方体的体积比:πa3:a3=π:4。
表面积:圆柱体的表面积:2·π· ·a+π·()2×2=πa2,正方体的表面积:6a2
圆柱体与正方体的表面积比:πa2:6a2=π:4。
答:这个圆柱体和正方体体积和表面积的比都是π:4。
【解析】【分析】圆柱的底面直径与正方体的棱长相等。
圆柱的表面积=底面积×2+侧面积,圆柱的体积=底面积×高,正方体表面积=棱长×棱长×6,正方体体积=棱长×棱长×棱长,根据公式分别用字母表示,然后写出相应的比并化成最简整数比即可。
29.(1)解:6.8cm:170cm=1:25
答:这张照片的比例尺是1:25。
(2)解:5.4÷=135(cm)=1.35(m)
答:小松的实际身高是1.35米。
【解析】【分析】(1)写出小松爸爸照片上的身高与实际身高的比,并化成前项是1的比就是这张照片的比例尺;
(2)用小松照片上的身高除以比例尺即可求出实际身高。
30.解:水的高度为:6﹣1=5(dm)
底面积为:3.14×(4÷2)2=3.14×4=12.56(dm2)
水的体积为:12.56×5=62.8(dm3)
62.8dm3=62.8L
答:最多能装62.8升水。
【解析】【分析】用木桶的高度减去1分米即可求出能装水的高度,用木桶的底面积乘装水的高度即可求出最多能装水的体积,然后换算成升即可。
31.解:2dm=20cm
(20÷2)2×3.14×5=1570cm3
(5+4)÷(1-)=15cm
15÷5×1570=4710cm3=4.71升
答:这个铁块的体积是1570cm3,这个杯子的容积是4.71升。
【解析】【分析】先把单位进行换算,即2dm=20cm,那么这个铁块的体积=(玻璃杯的底面直径÷2)2×π×水面上升的高度;玻璃杯的高度=(水面上升的高度+水面上升后水面距杯口的距离)÷(1-原来水占杯子容量的几分之几),所以这个杯子的容积=玻璃杯的高度÷水面上升的高度×铁块的体积。
32.解:底面周长:25.12÷2=12.56(厘米)
底面半径:12.56÷3.14÷2
=4÷2
=2(厘米)
两个底面积和:3.14×22×2
=12.56×2
=25.12(平方厘米)
侧面积:12.56×8
=100.48(平方厘米)
表面积:25.12+100.48=125.6(平方厘米)
答:原来圆柱的表面积是125.6平方厘米。
【解析】【分析】底面周长=增加的表面积÷增加的高,底面半径=底面周长÷2π,底面积=π底面半径2,侧面积=底面周长×高,圆柱的表面积=两个底面面积和+侧面的面积,据此解答即可。
33.解:第一种情况:18÷3÷2
=6÷2
=3(厘米)
3×3²×12
=3×9×12
=27×12
=324(立方厘米)
第二种情况:12÷3÷2
=4÷2
=2(厘米)
3×2²×18
=3×4×18
=12×18
=216(立方厘米)
324立方厘米>216立方厘米
答:这个圆柱的体积最大可能是324立方厘米。
【解析】【分析】此题分两种情况,(1)当底面周长是18厘米时,高是12厘米,r=C÷π÷2,得出半径,然后底面积×高就可以计算出体积;(2)当底面周长是12厘米时,
高是18厘米,r=C÷π÷2,得出半径,然后底面积×高就可以计算出体积。
34.(1)解:2÷ =400(厘米)=4(米)
答:这个水池实际应该挖4米深。
(2)解:r=3÷ =600(厘米)=6(米)
V = 3.14×6²×4=452.16(立方米)
答:这个水池能装下452.16立方米的水。
(3)解:10cm=0.1m
r=6-0.1=5.9(米), h=4-0.1=3.9(米)
3.14×5.9×2×3.9+3.14×5.9×5.9
=3.14×46.02+3.14×34.81
=3.14×80.83
≈253.8(平方米)
答:粉刷部分的面积是253.8平方米。
【解析】【分析】(1)用图上距离除以比例尺即可求出实际距离,然后换算成米即可;(2)先求出实际的半径长度,然后用底面积乘高求出能装下水的体积即可;
(3)先把10cm换算成0.1m,则实际的半径长度减少了0.1m,实际高度减少了0.1米,先计算出实际半径和实际高度。
然后用底面积加上侧面积即可求出需要粉刷部分的面积。
35.(1)正比例
(2)不成比例
(3)正比例
(4)反比例
(5)反比例
(6)正比例
【解析】【解答】解:(1)圆的周长=2πr,圆的周长和半径。
(正比例)
(2)圆的面积=πr2,圆的面积和半径。
(不成比例)
(3)正方形的周长=4×边长,正方形的周长和边长。
(正比例)
(4)圆柱的侧面积=底面周长×高,圆柱的侧面积一定,圆柱的高和底面的半径。
(反比例)
(5)一个数×这个的倒数=1,一个自然数和它的倒数。
(反比例)
(6)图上距离÷实际距离=比例尺,所以比例尺一定,图上距离和实际距离。
(正比例)
【分析】如果xy=k(k为常数,x,y≠0),那么x和y成反比例;如果=k(k为常数,x,y≠0),那么x和y成正比例。
36.解:3.14×1×2×1=6.28(dm2)
(1+1)2×3.14=12.56(dm2)
6.28+12.56=18.84(dm2)
答:做这顶帽子至少要用18.84dm2的花布。
【解析】【分析】将这个帽顶的顶部圆平移到底部,与帽檐合起来是圆,所以做这顶帽子至少要花布的面积=帽顶的侧面积+帽檐和帽顶的顶部合起来的面积,其中帽顶的侧面积=帽顶的半径×2×π×h,帽檐和帽顶的顶部合起来的面积=(帽顶的半径+帽檐的宽度)2×π。
37.(1)解:如图所示:
(2)(x+3,y+2)
(3)解:如图所示:
【解析】【分析】(1)画轴对称图形的方法:①点出关键点,找出所有的关键点,即图形中所有线段的端点;②确定关键点到对称轴的距离,关键点离对称轴多远,对称点就离对称轴多远;③点出对称点;④连线,按照给出的一半图形将所有对称点连接成线段。
(2)用数对表示位置,先表示列,后表示行; A点的位置为(列数+3,行数+2)。
(3)旋转作图,把一个图形绕其上面一点逆时针旋转一定的度数,先把这个点连接的边逆时针旋转指定的度数,然后把剩下的边连接起来即。
38.(1)
(2)
(3)4∶1
【解析】【分析】(1)数对中第一个数表示列,第二个数表示行,根据数对确定每个点的位置,然后画出三角形;
(2)按2:1放大后的三角形的两条直角边分别是4格、2格,根据两条直角边的长度画出放大后的三角形;
(3)三角形面积=底×高÷2,三角形面积扩大的倍数是两条直角边扩大倍数的乘积,所以三角形面积扩大4倍,由此写出面积比即可。
39.解:设:这些面粉一共能吃x天。
=
150 x=1800×5
x=9000÷150
x=60
答:这些面粉一共能吃30天。
【解析】【分析】照这样计算的意思就是每天吃面粉的重量不变,这样吃面粉的重量与吃的天数成正比例。
先设出未知数,然后根据每天吃面粉的重量不变列出比例,解比例求出共能吃的天数即可。
40.解:500米=50000厘米,1000米=100000厘米,50000×=2.5(厘米),100000×=5(厘米),如图:
4.2÷=84000(厘米)=840(米)
答:学校到电影院大约有840米。
【解析】【分析】把实际距离都换算成厘米,然后用实际距离乘比例尺分别求出图上距离;图上的方向是上北下南、左西右东,根据图上的方向、夹角的度数和图上距离确定医院的位置,再确定电影院的位置。
测量出学校到电影院的图上距离,然后用图上距离除以比例尺求出学校到电影院的实际距离即可。