《指数与指数幂的运算》教学设计(精品)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数与指数幂的运算(一)
(一)教学目标
1.知识与技能
(1)理解n次方根与根式的概念;
(2)正确运用根式运算性质化简、求值;
(3)了解分类讨论思想在解题中的应用.
2.过程与方法
通过与初中所学的知识(平方根、立方根)进行类比,得出n次方根的概念,进而学习根式的性质.
3.情感、态度与价值观
(1)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;
(2)培养学生认识、接受新事物的能力.
(二)教学重点、难点
1.教学重点:(1)根式概念的理解;
(2)掌握并运用根式的运算性质.
2.教学难点:根式概念的理解.
(三)教学方法
本节概念性较强,为突破根式概念的理解这一难点,使学生易于接受,故可以从初中已经熟悉的平方根、立方根的概念入手,由特殊逐渐地过渡到一般的n次方根的概念,在得出根式概念后,要引导学生注意它与n次方根的关系,并强调说明根式是n次方根的一种表示形式,加强学生对概念的理解,并引导学生主动参与了教学活动.故本节课可以采用类比发现,学生合作交流,自主探索的教学方法.
(四)教学过程
备选例题
例1 计算下列各式的值. (1)33)(a ;
(2
) (1n >,且n N *∈) (3)(1n >,且n N *∈) 【解析】(1)a a =33)(.
(2)当n =3π-; 当n =3π-. (3)=||x y -, 当x y ≥时,x y -; 当x y <时,y x -.
【小结】(1)当n 为奇数时,a a n n =;
当n 为偶数时,⎩
⎨⎧<-≥==)0()0(||a a a a a a n n
(2)不注意n 的奇偶性对式子n n a 值的影响,是导致错误出现的一个重要原因.故要在
理解的基础上,记准、记熟、会用、活用.
例2 求值:
【分析】需把各项被开方数变为完全平方形式,然后再利用根式运算性质;
【解析】
=
=||2|2
=+--
=--
2(2
=
【小结】开方后带上绝对值,然后根据正负去掉绝对值.
2.1.1 指数与指数幂的运算(二)
(一)教学目标
1.知识与技能
(1)理解分数指数幂的概念;
(2)掌握分数指数幂和根式之间的互化;
(3)掌握分数指数幂的运算性质;
(4)培养学生观察分析、抽象等的能力.
2.过程与方法
通过与初中所学的知识进行类比,得出分数指数幂的概念,和指数幂的性质.
3.情感、态度与价值观
(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;
(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;
(3)让学生体验数学的简洁美和统一美.
(二)教学重点、难点
1.教学重点:(1)分数指数幂的理解;
(2)掌握并运用分数指数幂的运算性质;
2.教学难点:分数指数幂概念的理解
(三)教学方法
发现教学法
1.经历由利用根式的运算性质对根式的化简,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.
2.在学生掌握了有理指数幂的运算性质后,进一步推广到实数范围内.由此让学生体会发现规律,并由特殊推广到一般的研究方法.
(四)教学过程
例1计算
(1).)01.0(41225325.02
1
20
-⎪
⎭
⎫ ⎝⎛⋅+⎪⎭⎫ ⎝⎛--
(1)5.121
3
2
4
1)9
1
()6449()27()0001.0(---
+-+; 【解析】
(1)原式1122
141149100⎛⎫⎛⎫
=+⨯- ⎪ ⎪⎝⎭⎝⎭
11111.61015
=+-=
(2)原式=23
22123234
14
])2
1[(])87[()
3()
1.0(---
+-+ =3121)3
1()8
7(31.0---+-+ =7
314
277
8
910=
+-+. 【小结】一般地,进行指数幂运算时,化负
指数为正指数,化小数为分数进行运算,便于进行乘除、乘方、开方运算,可以达到化繁为简的目的.
例2 化简下列各式: (1)3
133153
83327----÷
÷
a a a a a a ;
(2)
33
3
233
23134)21(248a a
b a ab
b b
a a ⨯-÷++-.
【解析】 (1)原式=32
1
233
15
383
2
3
27--
-
-÷÷a a
a a
a a
=323
73
2
-÷÷a a a =3
1
2213732)()(-÷÷a a a
=
3
26
7323
26
732---
÷=
÷÷a
a a
a a
=
6
3
2a a =
;
(2)原式=
3
13
131
313
23
1313
231224)
8(a a b a a b a b b a a ⨯⋅-÷
++-
3
13
1313
13
23
1313
23
23
1313
2313
13
12424)
42)(2(a b a a b a b b b a a b a a ⋅-⋅
++++-=
a a a a =⋅⋅=
3
13131.
【小结】(1)指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算. 负指数幂化为正指数幂的倒数. 底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.
(2)根据一般先转化成分数指数幂,然后再利用有理指数幂的运算性质进行运算. 在将根式化为分数指数幂的过程中,一般采用由内到外逐层变换为指数的方法,然后运用运算性质准确求解. 如
8)
2(]
)2[()
2(2162
1
66
==
-=-.
(3)利用分数指数幂进行根式计算时,结果可化为根式形式或保留分数指数幂的形式,但不能既有根式又有分数指数幂.
2.1.1 指数与指数幂的运算(三)
(一)教学目标 1.知识与技能:
能熟练地运用有理指数幂运算性质进行化简,求值. 2.过程与方法:
通过训练点评,让学生更能熟练指数幂运算性质. 3.情感、态度、价值观
(1)培养学生观察、分析问题的能力;
(2)培养学生严谨的思维和科学正确的计算能力. (二)教学重点、难点
1.重点:运用有理指数幂性质进行化简,求值.
2.难点:有理指数幂性质的灵活应用.
(三)教学方法
1.启发学生认识根式与分数指数幂实质是相同的.并能熟练应用有理指数幂的运算性质对根式与分数指数幂进行互化.
2.引导学生在化简求值的过程中,注意将根式转化为分数指数幂的形式和积累一些常用技巧.如凑完全平方、分解因式、化小数为分数等等.另外,在运用有理指数幂的运算性质化简变形时,应注意根据底数进行分类,以精简解题的过程.
(四)教学过程
备选例题 例1 已知32
12
1=+-a
a ,求下列各式的值.
;+-1)1(a a
;)2(22-+a a
332
2112
2
(3)
.a a a a
--
--
【分析】从已知条件中解出a 的值,然后再代入求值,这种方法是不可取的,而应设法从整体寻求结果与条件32
12
1=+-a
a 的联系,进而整体代入求值.
【解析】(1)将3212
1
=+-a a 两边平方,
得.921=++-a a 即.71=+-a a
(2)将上式平方,有.49222=++-a a
.4722=+∴-a a
(3)由于3
213
212
32
3)()(-
-
-=-a a a
a
∴
332
2112
2
a a a a
--
--
11111
2
2
2
2
112
2
()()
a a a a a a a a
-
-
---++⋅=
-
118.a a -=++=
【小结】对“条件求值”问题一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值.
例2 化简.1
1
11
13
13
13
13
13
2---
+++
++-x x
x x x x x x
【分析】根据本题的特点,须注意到
)1()1(1)(13
13
23
13
3
31++⋅-=-=-x x x x x ,
=+1x 11213
3
3333
()1(1)(1),x x x x +=+-+
1111112333333
[()1](1)(1)x x x x x x x -=-=-+,
应对原式进行因式分解. 【解析】原式
1
1
1)(1
)(1
)(3
13
132313
13
3
313
12
313
3
31---
+++
++-=
x x x x x x x x x
1213
3
3
2133
(1)(1)()1
x x x x x -++=
++
1213
3
3
13
(1)(1)
1x x x x +-+++
1
)
1)(1(3
1313
13
1-+--x x x x
1212133333
11x x x x x =-+-+-- 13
.x =-
【小结】解这类题,要注意运用下列公式:
1111
2222,a b a b a b ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭ 2
11112222
2,a b a a b b ⎛⎫±=±+ ⎪⎝⎭
112112333333
.a b a a b b a b ⎛⎫⎛⎫
±+=± ⎪⎪⎝⎭⎝⎭。