多伦县高级中学2018-2019学年高二上学期第一次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多伦县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 设集合M={x|x 2﹣2x ﹣3<0},N={x|log 2x <0},则M ∩N 等于( ) A .(﹣1,0) B .(﹣1,1)
C .(0,1)
D .(1,3)
2. 设函数
,则有( )
A .f (x )是奇函数,
B .f (x )是奇函数, y=b x
C .f (x )是偶函数
D .f (x )是偶函数,
3. 棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )
A .=
B .0S =
C .0122S S S =+
D .20122S S S =
4. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为
( )
A .π1492+
B .π1482+
C .π2492+
D .π2482+
【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.
5. O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )
A .1
B .
C .
D .2
6. 已知点F 是抛物线y 2=4x 的焦点,点P 在该抛物线上,且点P 的横坐标是2,则|PF|=( ) A .2 B .3 C .4 D .5
7. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )
A .
B .
C .
D .
8. 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;
丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( ) A .2日和5日 B .5日和6日
C .6日和11日
D .2日和11日
9. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717
100201717
S S -=,则d 的值为( ) A .
120 B .110
C .10
D .20 10.在中,、、分别为角


所对的边,若
,则此三角形的形状一定是
( ) A .等腰直角 B .等腰或直角 C .等腰
D .直角
11.如图,圆O 与x 轴的正半轴的交点为A ,点C 、B 在圆O 上,且点C 位于第一象限,点B 的坐标为(,

),∠AOC=α,若|BC|=1,则
cos 2
﹣sin
cos

的值为( )
A .
B .
C .﹣
D .﹣
12.下列各组函数中,表示同一函数的是( )
A 、()f x =x 与()f x =2x x
B 、()1f x x =- 与()f x =
C 、()f x x =与
()f x = D 、()f x x =与2()f x =
二、填空题
13.已知函数2
1()sin cos sin 2f x a x x x =-+的一条对称轴方程为6
x π
=,则函数()f x 的最大值为___________.
【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.
14.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB|的最小值为 .
15.曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为 .
16.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.
17.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .
18.抛物线
的准线与双曲线
的两条渐近线所围成的三角形面积为__________
三、解答题
19.设A=2
{x|2x
+ax+2=0},2A ∈,集合2{x |x 1}B ==
(1)求a 的值,并写出集合A 的所有子集;
(2)若集合{x |bx 1}C ==,且C B ⊆,求实数b 的值。

20.已知函数f (x )=sinx ﹣2sin 2
(1)求f (x )的最小正周期;
(2)求f (x )在区间[0,]上的最小值.
21.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ;
(2)设(){}
1n
n n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .
【命题意图】本题考查等差数列与等比数列的通项与前n 项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.
22.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 是棱DD 1的中点. (Ⅰ)求直线BE 与平面ABB 1A 1所成的角的正弦值;
(Ⅱ)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.
23.如图,在Rt△ABC中,∠ACB=,AC=3,BC=2,P是△ABC内一点.
(1)若P是等腰三角形PBC的直角顶角,求PA的长;
(2)若∠BPC=,设∠PCB=θ,求△PBC的面积S(θ)的解析式,并求S(θ)的最大值.
24.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.
(1)求椭圆C的方程;
(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM 的斜率与l的斜率的乘积为定值.
多伦县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)
一、选择题
1. 【答案】C
【解析】解:∵集合M={x|x 2
﹣2x ﹣3<0}={x|﹣1<x <3}, N={x|log 2x <0}={x|0<x <1}, ∴M ∩N={x|0<x <1}=(0,1). 故选:C .
【点评】本题考查集合的交集及其运算,是基础题,解题时要注意一元二次不等式和对数函数等知识点的合理运用.
2. 【答案】C
【解析】解:函数f (x )的定义域为R ,关于原点对称. 又f (﹣x )
=
=
=f (x ),所以f (x )为偶函数.
而f
()=
==
﹣=﹣f (x ),
故选C .
【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.
3. 【答案】A 【解析】
试题分析:不妨设棱台为三棱台,设棱台的高为2h 上部三棱锥的高为,根据相似比的性质可得:
220()2()a S a h
S a S a h
S '⎧=⎪+⎪⎨'⎪=+⎪⎩
,解得=A . 考点:棱台的结构特征. 4. 【答案】A
5.【答案】C
【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1),
又P为C上一点,|PF|=4,
可得y P=3,
代入抛物线方程得:|x
|=2,
P
∴S△POF=|0F|•|x P|=.
故选:C.
6.【答案】B
【解析】解:抛物线y2=4x的准线方程为:x=﹣1,
∵P到焦点F的距离等于P到准线的距离,P的横坐标是2,
∴|PF|=2+1=3.
故选:B.
【点评】本题考查抛物线的性质,利用抛物线定义是解题的关键,属于基础题.7.【答案】B
【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),
=(﹣2,0,1),=(2,2,0),
设异面直线BE与AC所成角为θ,
则cosθ===.
故选:B.
8. 【答案】C
【解析】解:由题意,1至12的和为78, 因为三人各自值班的日期之和相等, 所以三人各自值班的日期之和为26,
根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,
据此可判断丙必定值班的日期是6日和11日, 故选:C .
【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.
9. 【答案】B 【解析】
试题分析:若{}n a 为等差数列,
()
()111212n
n n na S d a n n
n -+
==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭
为等差数列公差为2d ,
2017171
100,2000100,201717210
S S d d ∴
-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 10.【答案】B
【解析】 因为
,所以由余弦定理得

即,所以或,即此三角形为等腰三角形或直角三角形,故选B
答案:B
11.【答案】A
【解析】解:∵|BC|=1,点B的坐标为(,﹣),故|OB|=1,∴△BOC为等边三角形,∴∠BOC=,
又∠AOC=α,∴∠AOB=﹣α,∴cos(﹣α)=,﹣sin(﹣α)=﹣,
∴sin(﹣α)=.
∴cosα=cos[﹣(﹣α)]=cos cos(﹣α)+sin sin(﹣α)
=+=,
∴sinα=sin[﹣(﹣α)]=sin cos(﹣α)﹣cos sin(﹣α)
=﹣=.
∴cos2﹣sin cos﹣=(2cos2﹣1)﹣sinα=cosα﹣sinα
=﹣=,
故选:A.
【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.
12.【答案】C
【解析】
试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。

选项A中两个函数定义域不同,选项B中两个函数对应法则不同,选项D中两个函数定义域不同。

故选C。

考点:同一函数的判定。

二、填空题
13.【答案】1
【解析】
14.【答案】2
【解析】解:∵x2+y2=4的圆心O(0,0),半径r=2,
∴点(0,1)到圆心O(0,0)的距离d=1,
∴点(0,1)在圆内.
如图,|AB|最小时,弦心距最大为1,
∴|AB|min=2=2.
故答案为:2.
15.【答案】.
【解析】解:∵曲线y=x2和直线:x=1的交点为(1,1),和直线y=的一个交点为(,)
∴曲线y=x2和直线x=0,x=1,y=所围成的图形的面积为S=()dx+dx=(x
﹣x3)+(x3﹣x)=.
故答案为:.
16.【答案】75
【解析】计数原理的应用.
【专题】应用题;排列组合.
【分析】由题意分两类,可以从A 、B 、C 三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.
【解答】解:由题意知本题需要分类来解,
第一类,若从A 、B 、C 三门选一门,再从其它6门选3门,有C 31C 63
=60,
第二类,若从其他六门中选4门有C 64
=15,
∴根据分类计数加法得到共有60+15=75种不同的方法.
故答案为:75.
【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.
17.【答案】 (﹣4,) .
【解析】解:∵抛物线方程为y 2
=﹣8x ,可得2p=8, =2.
∴抛物线的焦点为F (﹣2,0),准线为x=2. 设抛物线上点P (m ,n )到焦点F 的距离等于6,
根据抛物线的定义,得点P 到F 的距离等于P 到准线的距离,
即|PF|=﹣m+2=6,解得m=﹣4,
∴n 2
=8m=32,可得n=±4

因此,点P 的坐标为(﹣4,).
故答案为:(﹣4,
).
【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.
18.【答案】
【解析】【知识点】抛物线双曲线 【试题解析】抛物线的准线方程为:x=2;
双曲线的两条渐近线方程为:
所以
故答案为:
三、解答题
19.【答案】(1)5a =-,A 的子集为:φ,12⎧⎫
⎨⎬⎩⎭,{}2,1,22⎧⎫⎨⎬⎩⎭
;(2)0或1或1-。

【解析】
试题分析:(1)由2A ∈有:2
22220a ⨯++=,解得:5a =-,此时集合{}
21
2520,22A x x x ⎧⎫=-+==⎨⎬⎩⎭

所以集合A 的子集共有4个,分别为:φ,12⎧⎫⎨⎬⎩⎭,{}2,1,22⎧⎫⎨⎬⎩⎭
;(2)由题{}1,1B =-若C B ⊆,当C φ=时,0b =,当C φ≠时,{}1B =或{}1B =-,当{}1C =时,1b =,当{}1C =-时,1b =-,所以实数b
的值为1或1-。

本题考查子集的定义,求一个集合的子集时,注意不要漏掉空集。

当集合A B ⊆时,要分类讨论,分A φ=和A φ≠两类进行讨论。

考查学生分类讨论思想方法的应用。

试题解析:(1)由2A ∈有:222220a ⨯++=,解得:5a =-,
{}212520,22A x x x ⎧⎫
=-+==⎨⎬⎩⎭
所以集合A 的子集为:φ,12⎧⎫⎨⎬⎩⎭,{}2,1,22⎧⎫⎨⎬⎩⎭
(2){}1,1B =-,由C B ⊆:当C φ=时,0b =
当C φ≠时,1b =或1b =-, 所以实数b 的值为:0或1或1- 考点:1.子集的定义;2.集合间的关系。

20.【答案】
【解析】解:(1)∵f (x )=sinx ﹣2sin 2
=sinx ﹣2×
=sinx+
cosx ﹣
=2sin (x+
)﹣
∴f (x )的最小正周期T==2π;
(2)∵x ∈[0,],
∴x+
∈[
,π],
∴sin (x+)∈[0,1],即有:f (x )=2sin (x+
)﹣∈[﹣
,2﹣],
∴可解得f (x )在区间[0,
]上的最小值为:﹣

【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.
21.【答案】
【解析】(1)设等差数列{}n a 的首项为1a ,公差为d , 则由990S =,15240S =,得1193690
15105240
a d a d +=⎧⎨
+=⎩,解得12a d ==,……………3分
所以2(n 1)22n a n =+-⨯=,即2n a n =,
(1)
22(1)2
n n n S n n n -=+
⨯=+,即1n S n n =+().……………5分
22.【答案】
【解析】解:(I )如图(a ),取AA 1的中点M ,连接EM ,BM ,因为E 是DD 1的中点,四边形ADD 1A 1为正方形,所以EM ∥AD .
又在正方体ABCD ﹣A 1B 1C 1D 1中.AD ⊥平面ABB 1A 1,所以EM ⊥面ABB 1A 1,从而BM 为直线BE 在平面ABB 1A 1上的射影,
∠EBM 直线BE 与平面ABB 1A 1所成的角. 设正方体的棱长为2,则EM=AD=2,
BE=

于是在Rt△BEM中,
即直线BE与平面ABB1A1所成的角的正弦值为.
(Ⅱ)在棱C1D1上存在点F,使B1F平面A1BE,
事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,
因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,
因此D1C∥A1B,又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B,这说明A1,B,G,E 共面,所以BG⊂平面A1BE
因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且
FG=C1C=B1B,因此四边形B1BGF为平行四边形,所以B1F∥BG,而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.
【点评】本题考查直线与平面所成的角,直线与平面平行,考查考生探究能力、空间想象能力.
23.【答案】
【解析】解:(1)∵P为等腰直角三角形PBC的直角顶点,且BC=2,
∴∠PCB=,PC=,
∵∠ACB=,∴∠ACP=,
在△PAC中,由余弦定理得:PA2=AC2+PC2﹣2AC•PC•cos=5,
整理得:PA=;
(2)在△PBC中,∠BPC=,∠PCB=θ,
∴∠PBC=﹣θ,
由正弦定理得:==,
∴PB=sinθ,PC=sin(﹣θ),
∴△PBC的面积S(θ)=PB•PCsin=sin(﹣θ)sinθ=sin(2θ+)﹣,θ∈(0,),
则当θ=时,△PBC面积的最大值为.
【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.24.【答案】
【解析】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,
,解得a2=8,b2=4,所求椭圆C方程为:.
(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),
把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,
故x M==,y M=kx M+b=,
于是在OM的斜率为:K OM==,即K OM k=.
∴直线OM的斜率与l的斜率的乘积为定值.
【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.。

相关文档
最新文档