高考必备物理曲线运动技巧全解及练习题(含答案)含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考必备物理曲线运动技巧全解及练习题(含答案)含解析
一、高中物理精讲专题测试曲线运动
1.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD
水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:
(1)若小球初速度v 0=4gR ,则小球运动到半圆上B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;
(3)若小球初速度v=4gR ,初始位置变为x=4R ,则小球在杆上静止时通过的路程为多大.
【答案】(1)5.5mg (2)04v gR >(3)()44R π+ 【解析】 【分析】 【详解】
(1)加速到B 点:221011-22
mgx qEx mv mv μ-=
- 在B 点:2
v N mg m R
-=
解得N=5.5mg
(2)在物理最高点F :tan qE mg
α=
解得α=370;过F 点的临界条件:v F =0
从开始到F 点:2101-(sin )(cos )02
mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =
可见要过C 点的条件为:04v gR >
(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:
2
121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-
1s x R x π=++
解得:(44)s R π=+
2.如图所示,带有
1
4
光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?
(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?
【答案】(1)023v gR =(2)123gR
v =253gR v =【解析】
本题考查动量守恒与机械能相结合的问题.
(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由
02mv mu =,解得0
2
v u =
C 滑到最高点的过程: 023mv mu mu +='
2220111
23222
mv mu mu mgR +⋅=+'⋅ 解得023v gR =
(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+
22220121111222222
mv mu mv mv +⋅=+⋅ 解得:123gR
v =
253gR v =
3.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为
,一质量
的滑块以水平速度
从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平
距离。
不计空气阻力,重力加速度
求:
滑块刚滑离平板车时,车和滑块的速度大小; 滑块与平板车间的动摩擦因数。
【答案】(1),
(2)
【解析】 【详解】
设滑块刚滑到平板车右端时,滑块的速度大小为,平板车的速度大小为, 由动量守恒可知:
滑块滑离平板车后做平抛运动,则有:
解得:
,
;
由功能关系可知:
解得:
【点睛】
本题主要是考查了动量守恒定律;对于动量守恒定律,其守恒条件是:系统不受外力作用或某一方向不受外力作用;解答时要首先确定一个正方向,利用碰撞前系统的动量和碰撞后系统的动量相等列方程进行解答。
4.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,
E 点是半径为0.32R m =的竖直圆轨道的最高点,D
F 部分水平,末端F 点与其右侧的水
平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取2
10/g m s =.求:
(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;
(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.
【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()
221521k k W k +-=+
【解析】
(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20
A A v m g m R
=①,
设碰撞前A 的速度为1v .由机械能守恒定律得:220111222
A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;
设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得
()122A A m v m m v =+④;
解得:211
41/13
A A
B m v v m s m m =
=⨯=++⑤;
由能量转化与守恒定律可得:()22
121122
A A
B Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,
由动能定理得:()()221
2
A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214
/1A A B m v v m s m m k
=
=++⑩;
(i )如果A 、B 能从传送带右侧离开,必须满足()()2
21
2
A B A B m m v m m gL μ+>+,
解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,
(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()22211
22
A B A B W m m v m m v =
+-+, 解得()
2215
21k k W k +-=
+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律
求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A、B速度与传送带速度间的关系分析AB的运动过程,根据运动过程应用动能定理求出传送带所做的功.
5.如图所示,将一小球从倾角θ=60°斜面顶端,以初速度v0水平抛出,小球落在斜面上的某点P,过P点放置一垂直于斜面的直杆(P点和直杆均未画出)。
已知重力加速度大小为g,斜面、直杆处在小球运动的同一竖直平面内,求:
(1)斜面顶端与P点间的距离;
(2)若将小球以另一初速度v从斜面顶端水平抛出,小球正好垂直打在直杆上,求v的大小。
【答案】(1);(2);
【解析】本题考查平抛与斜面相结合的问题,涉及位移和速度的分解。
(1)小球从抛出到P点,做平抛运动,设抛出点到P点的距离为L
小球在水平方向上做匀速直线运动,有:
在竖直方向上做自由落体运动,有:
联立以上各式,代入数据解得:
(2)设小球垂直打在直杆上时竖直方向的分速度为v y,有:
在水平方向上,有:
在竖直方向上,有:,
由几何关系,可得:
联系以上各式,得:
另解:小球沿斜面方向的分运动为匀加速直线运动,
初速度为:
,加速度为
小球垂直打在直杆上,速度为,有:
在斜面方向上,由匀变速运动规律得:
联立以上各式,得:
点睛:物体平抛运动可分解成水平方向的匀速直线运动和竖直方向的自由落体;也可分解为沿斜面方向的匀变速直线运动和垂直斜面的匀变速直线运动。
6.光滑水平轨道与半径为R 的光滑半圆形轨道在B 处连接,一质量为m 2的小球静止在B 处,而质量为m 1的小球则以初速度v 0向右运动,当地重力加速度为g ,当m 1与m 2发生弹性碰撞后,m 2将沿光滑圆形轨道上升,问:
(1)当m 1与m 2发生弹性碰撞后,m 2的速度大小是多少?
(2)当m 1与m 2满足21(0)m km k =>,半圆的半径R 取何值时,小球m 2通过最高点C 后,落地点距离B 点最远。
【答案】(1) 2m 1v 0/(m 1+m 2) (2) R =v 02/2g (1+k )2 【解析】 【详解】
(1)以两球组成的系统为研究对象, 由动量守恒定律得:m 1v 0=m 1v 1+m 2v 2, 由机械能守恒定律得:12m 1v 02=12m 1v 12+1
2
m 2v 22, 解得:10
212
2m v v m m =
+;
(2)小球m 2从B 点到达C 点的过程中, 由动能定理可得:-m 2g ×2R =12m 2v 2′2-1
2
m 2v 22, 解得:2
221002212224(
)4()41m v v
v v gR gR gR m m k
'=-=
-=-++
小球m 2通过最高点C 后,做平抛运动,
竖直方向:2R =12
gt 2, 水平方向:s =v 2′t ,
解得:22024(
)161v R
s R k g
=-+, 由一元二次函数规律可知,当20
2
2(1)v R g k =+时小m 2落地点距B 最远.
7.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:
(1)滑块滑到B 点时对半圆轨道的压力大小;
(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】
(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】
(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间
01v t s a =
= 运动的距离:21
1.52
x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2
v F mg m R
-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.
(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2D
v R
解得v D 5; 由B 到D ,由动能定理:22
11222
B D mv mv mg R =+⋅ 解得v B =5m/s>v 0
可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s
8.如图,AB 为倾角37θ=︒的光滑斜面轨道,BP 为竖直光滑圆弧轨道,圆心角为
143︒、半径0.4m R =,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹资一端固
定在A 点另一自由端在斜面上C 点处,现有一质量0.2kg m =的小物块(可视为质点)在外力作用下将弹簧缓慢压缩到D 点后(不栓接)静止释放,恰能沿轨道到达P 点,已知
0.2m CD =、sin370.6︒=、cos370.8︒=,g 取210m/s .求:
(1)物块经过P 点时的速度大小p v ;
(2)若 1.0m BC =,弹簧在D 点时的弹性势能P E ; (3)为保证物块沿原轨道返回,BC 的长度至少多大. 【答案】(1)2m/s (2)32.8J (3)2.0m 【解析】 【详解】
(1)物块恰好能到达最高点P ,由重力提供圆周运动的向心力,由牛顿第二定律得:
mg=m 2
p v R
解得:
100.42m/s P v gR =⨯=
(2)物块从D 到P 的过程,由机械能守恒定律得:
E p =mg (s DC +s CB )sin37°+mgR (1+cos37°)+
1
2
mv P 2. 代入数据解得:
E p =32.8J
(3)为保证物块沿原轨道返回,物块滑到与圆弧轨道圆心等高处时速度刚好为零,根据能量守恒定律得:
E p =mg (s DC +s ′CB )sin37°+mgR (1+cos37°)
解得:
s ′CB =2.0m
点睛:本题综合考查了牛顿第二定律、机械能守恒定律的综合,关键是搞清物体运动的物理过程;知道圆周运动向心力的来源,即径向的合力提供向心力.
9.如图所示,倾角θ=30°的光滑斜面上,一轻质弹簧一端固定在挡板上,另一端连接质量m B =0.5kg 的物块B ,B 通过轻质细绳跨过光滑定滑轮与质量m A =4kg 的物块A 连接,细绳平行于斜面,A 在外力作用下静止在圆心角为α=60°、半径R=lm 的光滑圆弧轨道的顶端a 处,此时绳子恰好拉直且无张力;圆弧轨道最低端b 与粗糙水平轨道bc 相切,bc 与一个半径r=0.12m 的光滑圆轨道平滑连接,静止释放A ,当A 滑至b 时,弹簧的弹力与物块A 在顶端d 处时相等,此时绳子断裂,已知bc 长度为d=0.8m ,求:(g 取l0m/s 2) (1)轻质弹簧的劲度系数k ;
(2)物块A 滑至b 处,绳子断后瞬间,圆轨道对物块A 的支持力大小;
(3)为了让物块A 能进入圆轨道且不脱轨,则物体与水平轨道bc 间的动摩擦因数μ应满足什么条件?
【答案】(1)5/k N m = (2)72N (3)0.350.5μ≤≤或0.125μ≤ 【解析】
(1)A 位于a 处时,绳无张力弹簧处于压缩状态,设压缩量为x 对B 由平衡条件可以得到:sin B kx m g θ=
当A 滑至b 时,弹簧处于拉伸状态,弹力与物块A 在顶端a 处时相等,则伸长量也为x ,由几何关系可知:2R x =,代入数据解得:5/k N m =; (2)物块A 在a 处和在b 处时,弹簧的形变量相同,弹性势能相同 由机械能守恒有:()22111sin 22
A B A A B B m gR cos m gR m v m v αθ-=++ 将A 在b 处,由速度分解关系有:sin B A v v α= 代入数据解得:22/A v m s =
在b 处,对A 由牛顿定律有:2A
b A A v N m g m R
-= 代入数据解得支持力:72b N N =. (3)物块A 不脱离圆形轨道有两种情况: ①不超过圆轨道上与圆心的等高点
由动能定理,恰能进入圆轨道时需要满足:2
1102
A A A m gd m v μ-=-
恰能到圆心等高处时需要满足条件:22102
A A A A m gr m gd m v μ--=- 代入数据解得:10.5μ=,20.35μ=
②过圆轨道最高点,则恰好过最高点时:2
A A v m g m r
= 由动能定理有:22311222
A A A A A m gr m gd m v m v μ--=- 代入数据解得:30.125μ=
为使物块A 能进入圆轨道且不脱轨,有:0.350.5μ≤≤或0.125μ≤.
10.如图所示,在竖直平面内有一“∞”管道装置,它是由两个完全相同的圆弧管道和两直管道组成。
直管道和圆弧管道分别相切于1A 、2A 、1B 、2B ,1D 、2D 分别是两圆弧管道的最高点,1C 、2C 分别是两圆弧管道的最低点,1C 、2C 固定在同一水平地面上。
两直管道略微错开,其中圆弧管道光滑,直管道粗糙,管道的粗细可忽略。
圆弧管道的半径均为R ,111111222222B O D AO C B O D A O C α∠=∠=∠=∠=。
一质量为m 的小物块以水平向左的速度0v 从1C 点出发沿管道运动,小物块与直管道间的动摩擦因数为μ。
设
012/v m s =,m=1kg ,R=1.5m ,0.5μ=,37α=︒(sin37°=0.6,cos37°=0.8)。
求:
(1)小物块从1C 点出发时对管道的作用力; (2)小物块第一次经过2C 点时的速度大小; (3)小物块在直管道12B A 上经过的总路程。
【答案】(1)106N ,方向向下(2)7(3)534
m 【解析】 【详解】
(1)物块在C 1点做圆周运动,由牛顿第二定律有:
2
v N mg m R
-=
可得:20106N v N mg m R
=+= 由牛顿第三定律可知,小物块对管道的作用力大小为106N ,方向向下
(2)由几何知识易有:21122cos 4m sin R l A B A B αα
==== 从C 1到C 2由动能定理可得:222011cos 22mgl mv mv μα-=
-
可得:2/s v ==
(3)以C 1C 2水平线作为重力势能的参考平面,则小物块越过D 1、D 2点时的机械能需满足: 0230J E E mgR >==
由于直管道的摩擦,物块每完整经历直管道一次,机械能的减少量满足: cos 16J f E W mgl μα∆===
设n 为从第一次经过D 1后,翻越D 1和D 2的总次数,则有:
20012
mv n E E -∆>, ()2001-12
mv n E E +∆< 可得:n =2,表明小物块在第二次经过D 1后就到不了D 2,之后在D 1B 1A 2C 2D 2之间往复运动直至稳定,最后在A 2及C 2右侧与A 2等高处之间往复稳定运动。
由开始到稳定运动到达A 2点,由动能定理有:
()201cos 1cos 02
mgs mgR mv μαα---=- 可得:s=694
m 故在B 1A 2直管道上经过的路程为s'=s -l =
534m。