七年级上册成都市列五中学(双桥校区)数学期末试卷复习练习(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册成都市列五中学(双桥校区)数学期末试卷复习练习
(Word版含答案)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图,在数轴上有三个点A、B、C,完成下列问题:
(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.
(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.
(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.
【答案】(1)解:如图所示,
(2)解:如图所示,点E表示的数为:﹣3.5,
∵点C表示的数为:4,
∴CE=4﹣(﹣3.5)=7.5
(3)解:∵第一次操作:有3=(21+1)个点,
第二次操作,有5=(22+1)个点,
第三次操作,有9=(23+1)个点,
∴第六次操作后,OC之间共有(26+1)=65个点;
∵65个点除去0有64个数,
∴这些点所表示的数的和=4×()=130.
【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;
(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.
2.已知线段AB=6.
(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;
(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线
段长度的和。

【答案】(1)解:如图:点C、D为线段AB的三等分点,
可以组成的线段为:3+2+1=6(条),
∵AB=6,点C、D为线段AB的三等分点,
∴AC=CD=DB=2,AD=BC=4,
∴这些线段长度的和为:2+2+2+4+4+6=20.
(2)解:再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2,
∴这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段共有1+2+3+…+8=36(条);
根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:
A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;
∴①以A、B为端点的线段有7+7+1=15(条),长度和为:6×8=48;
②不以A、B为端点,以E1、E2为端点的线段有5+5+1=11(条),长度和为:4×6=24;
③不以A、B、E1、E2为端点,以D1、D3为端点的线段有3+3+1=7(条),长度和为:3×4=12;
④不以A、B、E1、E2、D1、D3为端点,以C、D为端点的线段有1+1+1=3(条),长度和为:2×2=4;
∴这些线段长度的和为:48+24+12+4=88.
【解析】【分析】(1)如图,根据线段的三等分点可分别求得每条线段的长度,再由线段的概念先找出所有线段,从而求得它们的和.
(2)再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2;根据线段定义和数线段的规律求得线段条数;根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;再分情况讨论,从而求得所有线段条数和这些线段的长度.
3.已知点O是直线AB上的一点,∠COE=120°,射线OF是∠AOE的一条三等分线,且∠AOF= ∠AOE.(本题所涉及的角指小于平角的角)
(1)如图,当射线OC、OE、OF在直线AB的同侧,∠BOE=15°,求∠COF的度数;
(2)如图,当射线OC、OE、OF在直线AB的同侧,∠FOE比∠BOE的余角大40°,求
∠COF的度数;
(3)当射线OE、OF在直线AB上方,射线OC在直线AB下方,∠AOF<30°,其余条件不变,请同学们自己画出符合题意的图形,探究∠FOC与∠BOE确定的数量关系式,请直接给出你的结论.
【答案】(1)解:∵∠AOE+∠BOE=180°,∠BOE=15°,
∴∠AOE=180°-15°=165°
∴∠AOF= ∠AOE=×165°=55°
∵∠AOC=∠AOE-∠COE=165°-120°=45°
∴∠COF=∠AOF-∠AOC=55°-45°=10°
答:∠COF的度数为10°.
(2)解:设∠BOE=x,则∠BOE的余角为90°-x.
∵∠FOE比∠BOE的余角大40°,
∴∠FOE=130°-x
∵∠COE=120°,则∠COF=x-10°,∠AOC=60°-x,
∴∠AOF=∠AOC+∠COF=50°
∵∠AOF= ∠AOE
∴∠AOE=150°
∴∠BOE=x=180°-150°=30°
∴∠COF=x-10°=30°-10°=20°
答:∠COF的度数为20°
(3)解:∠FOC=∠BOE
如图,
设∠AOF=x
∵∠AOF=∠AOE
∴∠AOE=3x
∴∠EOF=2x,∠BOE=180°-3x=3(60°-x)
∵∠COE=120°
∴∠AOC=120°-3x
∴∠COF=∠AOC+∠AOF=120°-3x+x=2(60°-x)

∴∠FOC=∠BOE
【解析】【分析】(1)利用邻补角的定义及已知求出∠AOE、∠AOF的度数,再利用∠AOC=∠AOE-∠COE,求出∠AOC的度数,然后根据∠COF=∠AOF-∠AOC,可求得结果。

(2)设∠BOE=x,利用余角的定义及∠FOE比∠BOE的余角大40°,用含x代数式表示出∠FOE、∠COF、∠AOC,再求出∠AOF的度数,即可得出∠AOE的度数,然后求出x的值,即可得出答案。

(3)根据题意画出图形,设∠AOF=x,利用已知分别用含x代数式表示出∠AOE、∠EOF、∠BOE,再用含x的代数式表示出∠FOC,然后就可得出∠FOC与∠BOE确定的数量关系式。

4.如图,线段AB=20cm.
(1)点P沿线段AB自A点向B点以2cm/秒运动,同时点Q沿线段BA自B点向A点以3cm/秒运动,几秒后,点P、Q两点相遇?
(2)如图,AO=PO=2cm,∠POQ=60°,现点P绕着点O以30°/秒的速度顺时针旋转一周后停止,同时点Q沿直线BA自B点向A点运动,若P、Q两点也能相遇,求点Q运动的速度.
【答案】(1)解:设x秒点P、Q两点相遇根据题意得:
2x+3x=20,
解得x=4
答:4秒后,点P、Q两点相遇。

(2)解:①当点P.Q在OB与圆的交点处相遇时:P点运动所用的时间为:① (秒),P点的运动速度为:(20-4)÷2=8cm/秒
②当点P,Q在A点处相遇时:P点运动所用的时间为:②(60+180)÷30=8(秒),P点运动的速度为:20÷8-2.5cm/秒
【解析】【分析】(1)此题是一道相遇问题,根据相遇的时候,P点所走的路程+Q点运动的路程等于AB两地之间的距离,列出方程,求解即可;
(2)分①当点P.Q在OB与圆的交点处相遇时,②当点P,Q在A点处相遇时两类讨论,分别根据路程除以速度等于时间算出P点运动的时间,即Q点运动的时间,再根据路程除以时间等于速度即可算出Q点的运动速度。

5.如图,将一长方形纸片沿着折叠,已知,,交于点,过点作,交线段于点 .
(1)判断与是否相等,并说明理由.
(2)①判断是否平分,并说明理由.
②若,求的度数.
【答案】(1)解:∵DF∥CE,
∴∠CGA=∠DFG,
∵GH∥EF,
∴∠AGH=∠GFE,
∴∠CGA+∠AGH=∠DFG+∠GFE,
即∠CGH=∠DFE;
(2)解:① GH平分∠AGE,
证明:∵HG∥FE,
∴∠AGH=∠GFE,∠HGE=∠GEF,
∵AF∥BE,
∴∠GFE+∠BEF=180°,
由折叠的特点知,∠BEF+∠GEF=180°,
∴∠GFE=∠GEF,
∴∠AGH=∠HGE,即GH平分∠AGE;
②∵DF∥CE,
∴∠AGC=∠DFA=52°,
∴∠AGE=180°-∠AGC=180°-52°=128°,
∴∠HGE=∠AGE=×128°=64°.
【解析】【分析】(1)由∵DF∥CE,两直线平行同位角相等,得∠CGA=∠DFG,由GH∥EF,两直线平行同位角相等,得∠AGH=∠GFE,因此根据等式的性质得∠CGA+∠AGH=∠DFG+∠GFE,即∠CGH=∠DFE;
(2)①由于HG∥FE,分别由两直线平行同位角相等和内错角相等,得∠AGH=∠GFE,∠HGE=∠GEF,再由AF∥BE,同旁内角互补得∠GFE+∠BEF=180°,结合折叠的特点,得
∠BEF+∠GEF=180°,因此得到:∠GFE=∠GEF,最后等量代换得∠AGH=∠HGE,即GH平分∠AGE;
②由于DF∥CE,两直线平行同位角相等,求得∠AGC=∠DFA=52°,则利用邻补角的性质定理求得∠AGE的度数,从而由∠HGE=∠AGE求得结果。

6.问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足____关系。

(直接写出结论)
问题情境2
如图3,AB∥CD,P是AB,CD内部一点,P在BD的左侧,可得∠B,∠P,∠D之间满足____关系。

(直接写出结论)
问题迁移:请合理的利用上面的结论解决以下问题:
已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F
(1)如图4,若∠E=80°,求∠BFD的度数;
(2)如图5中,∠ABM= ∠ABF,∠CDM= ∠CDF,写出∠M与∠E之间的数量关系并证明你的结论。

(3)若∠ABM= ∠ABF,∠CDM= ∠CDF,设∠E=m°,用含有n,m°的代数式直接写出∠M=________.
【答案】(1)解:根据问题情境2,可得出∠BFD=∠AEF+∠CDF
∵,∠ABE与∠CDE两个角的角平分线相交于点F
∴∠AEF=∠FBE,∠CDF=∠FDE
∴∠FBE+∠FDE=∠BFD
∵∠E+∠BFD+∠FBE+∠FDE=360°
∴80°+∠BFD+∠BFD=360°
∴∠BFD=140°
(2)结论为:6∠M+∠E=360°
证明:∵∠ABM= ∠ABF,∠CDM= ∠CDF
∴∠ABF=3∠ABM,∠CDF=3∠CDM
∵∠ABE与∠CDE两个角的角平分线相交于点F
∴∠ABE=6∠ABM,∠CDE=6∠CDM
∵∠ABE+∠CDE+∠E=360°
∴6(∠ABM+∠CDM)+∠E=360°
∵∠M=∠ABM+∠CDM
∴6∠M+∠E=360°
(3)证明:根据(2)的结论可知
2n∠ABM+2n∠CDM+∠E=360°
2n(∠ABM+∠CDME)+∠E=360°
∵∠M=∠ABM+∠CDM
∴2n∠M+m°=360°
∴∠M=
【解析】问题情境1: 图1中∠B,∠P,∠D之间关系是:∠P+∠B+∠D=360°,问题情境2:图3中∠B,∠P,∠D之间关系是:∠P=∠B+∠D;
【分析】问题情境1和2 过点P作EP∥AB,利用平行线的性质,可证得结论。

(1)利用问题情境2的结论,可得出∠BFD=∠AEF+∠CDF,再根据角平分线的定义得出∠AEF=∠FBE,∠CDF=∠FDE,再证明∠E+∠BFD+∠FBE+∠FDE=360°,就可建立方程80°+∠BFD+∠BFD=360°,解方程求出∠BFD的度数即可。

(2)根据已知可得出∠ABF=3∠ABM,∠CDF=3∠CDM,再根据角平分线的定义得出,∠ABE=6∠ABM,∠CDE=6∠CDM,然后根据问题情境1的结论∠ABE+∠CDE+∠E=360°,可推出6(∠ABM+∠CDM)+∠E=360°,变形即可证得结论。

(3)根据已知得出2n∠ABM+2n∠CDM+∠E=360°,再根据∠M=∠ABM+∠CDM,代入变形即可得出结论。

7.如图①,△ABC的角平分线BD,CE相交于点P.
(1)如果∠A=80∘,求∠BPC= ________.
(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示)________.
(3)将直线MN绕点P旋转。

(i)当直线MN与AB,AC的交点仍分别在线段AB和AC上时,如图③,试探索∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由。

(ii)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(i)中∠MPB,∠NPC,∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由。

【答案】(1)130°
(2)90°﹣∠A
(3)解:(i)∠MPB+∠NPC= − ∠A.
理由如下:
∵∠BPC= +∠A,
∴∠MPB+∠NPC= −∠BPC=180∘−( + ∠A)= −12 ∠A.
(ii)不成立,有∠MPB−∠NPC= − ∠A.
理由如下:
由题图④可知∠MPB+∠BPC−∠NPC= ,
由(1)知:∠BPC= + ∠A,∴∠MPB−∠NPC= −∠BPC= −( + ∠A)=
− ∠A.
【解析】【解答】(1)
故答案为:
( 2 )由 = 得∠MPB+∠NPC= −∠BPC= 1−( + ∠A)= − ∠A;故答案为:∠MPB+∠NPC= − ∠A
【分析】(1)根据角平分线的定义得出∠PBC+∠PCB=(∠ABC+∠ACB),再根据三角形的
内角和定理及∠A的度数,求出∠ABC+∠ACB的值,然后再利用三角形的内角和就可求出∠BPC的度数。

(2)根据角平分线的定义得出∠PBC+∠PCB=(∠ABC+∠ACB),再根据三角形的内角和定理得出∠BPC=180°-(∠PBC+∠PCB),∠ABC+∠ACB=180°-∠A ,代入计算即可得出结论。

(3)(i)根据∠MPB+∠NPC= 180 ° −∠BPC和∠BPC= 90 ° + ∠ A,代入即可得出结论;(ii)根
据∠BPC= 90 ° + ∠ A及∠MPB−∠NPC= 180 ° −∠BPC,代入求出即可得出结论
8.综合题
(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度.
(2)对于(1)问,如果我们这样叙述:“已知点C在直线AB上,且AC=6cm,BC=4cm,点M、N分别是AC,BC的中点,求线段MN的长度.”结果会有变化吗?如果有,求出结果;如果没有,说明理由.
【答案】(1)解:∵AC=6cm,且M是AC的中点,
∴MC= AC= 6=3cm,
同理:CN=2cm,
∴MN=MC+CN=3cm+2cm=5cm,
∴线段MN的长度是5m
(2)解:分两种情况:
当点C在线段AB上,由(1)得MN=5cm,
当C在线段AB的延长线上时,
∵AC=6cm,且M是AC的中点
∴MC= AC= ×6=3cm,
同理:CN=2cm,
∴MN=MC﹣CN=3cm﹣2cm=1cm,
∴当C在直线AB上时,线段MN的长度是5cm或1cm.
【解析】【分析】(1)根据线段的中点定义,由M是AC的中点,求出MC、CN的值,得到MN=MC+CN的值;(2)当点C在线段AB上,由(1)得MN的值;当C在线段AB 的延长线上时,再由M是AC的中点,求出MC、CN的值,得到MN=MC﹣CN的值.
9.综合题
(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;
(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC.求∠EOF的度数;
(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC=________.(用含α与β的代数式表示)
【答案】(1)解:∵CO⊥AB,
∴∠AOC=∠BOC=90°,
∵OE平分∠AOC,
∴∠EOC= ∠AOC= ×90°=45°,
∵OF平分∠BOC,
∴∠COF= ∠BOC= ×90°=45°,
∠EOF=∠EOC+∠COF=45°+45°=90°;
(2)解:∵OE平分∠AOD,
∴∠EOD= ∠AOD= ×(80+β)=40+ β,
∵OF平分∠BOC,
∴∠COF= ∠BOC= ×(80+β)=40+ β,
∠COE=∠EOD﹣∠COD=40+ β﹣β=40﹣β;
∠EOF=∠COE+∠COF=40﹣β+40+ β=80°;
(3)
【解析】【解答】(3)如图2,∵∠AOC=∠BOD=α,∠COD=β,
∴∠AOD=α+β,
∵OE平分∠AOD,
∴∠DOE= (α+β),
∴∠COE=∠DOE﹣∠COD= ,
如图3,∵∠AOC=∠BOD=α,∠COD=β,
∴∠AOD=α+β,
∵OE平分∠AOD,
∴∠DOE= (α﹣β),
∴∠COE=∠DOE+∠COD= .
综上所述:,
故答案为:.
【分析】(1)根据垂直的定义得到∠AOC=∠BOC=90°,根据角平分线的定义即可得到结论;
(2)根据角平分线的定义得到∠EOD=40+ β,∠COF=40+ β,根据角的和差即可得到结论;
(3)如图2由已知条件得到∠AOD=α+β,根据角平分线的定义得到∠DOE=(α+β),即
可得到结论.
10.已知,,,试回答下列问题:
(1)如图1所示,求证: .
(2)如图2,若点、在上,且满足,并且平分 .求 ________度.
(3)在(2)的条件下,若平行移动,如图3,那么的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.
(4)在(2)的条件下,如果平行移动的过程中,若使,求度数. 【答案】(1)证明:∵,

∵,
∴,

(2)40°
(3)解:结论:的值不发生变化.理由为:
∵,
∴,
又∵,
∴,
∴,

(4)解:∵
∴,
由(2)可以设:,,






∵由(1)可知



【解析】【解答】(2),所以∠BOA=180°-∠B=80°
由,且平分,得到∠EOC=∠EOF+∠FOC= (∠BOF+∠FOA)= ∠BOA=40°
【分析】(1)由同旁内角互补,两直线平行证明即可;(2)由,且平
分,得到∠EOC=∠EOF+∠FOC= (∠BOF+∠FOA)= ∠BOA,算出结果;(3),得到,,又,得到
,所以,故(4)结合(2)(3)结果,设出,
,由列出等式,得到,又由(1)得到
,列出等式解出α与β,所以
11.如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.
(1)求∠ECF的度数;
(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;
(3)当∠AEC=∠ACF时,求∠APC的度数.
【答案】(1)解:∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°-40°=140°
∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF
∴∠ECF= ∠ACD=70°
(2)解:不变.数量关系为:∠APC=2∠AFC.
∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP
∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC
(3)解:∵AB∥CD,∴∠AEC=∠ECD
当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF
∴∠PCD=∠ACD=70°
∴∠APC=∠PCD=70°
【解析】【分析】(1)先根据平行线的性质,得出∠ACD=120°,再根据CE、CF分别平分∠ACP和∠DCP,即可得出∠ECF的度数;(2)根据平行线的性质得出∠APC=∠PCD,∠AFC=∠FCD,再根据CF平分∠PCD,即可得到∠PCD=2∠FCD进而得出∠APC=2∠AFC;(3)根据∠AEC=∠ECD,∠AEC=∠ACF,得出∠ECD=∠ACF,进而得到∠ACE=∠FCD,根据∠ECF=70°,∠ACD=140°,可求得∠APC的度数.
12.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.
(1)若∠AOC=76°,求∠BOF的度数;
(2)若∠BOF=36°,求∠AOC的度数;
(3)若|∠AOC﹣∠BOF|=α°,请直接写出∠AOC和∠BOF的度数.(用含的代数式表示)【答案】(1)解:∵∠BOD=∠AOC=76°,
又∵OE平分∠BOD,
∴∠DOE= ∠BOD= ×76°=38°.
∴∠COE=180°﹣∠DOE=180°﹣38°=142°,
∵OF平分∠COE,
∴∠EOF= ∠COE= ×142°=71°,
∴∠BOF=∠EOF﹣∠BOE=71°﹣38°=33°
(2)解:∵OE平分∠BOD,OF平分∠COE,
∴∠BOE=∠EOD,∠COF=∠FOE,
∴设∠BOE=x,则∠DOE=x,
故∠COA=2x,∠EOF=∠COF=x+36°,
则∠AOC+∠COF+∠BOF=2x+x+36°+36°=180°,
解得:x=36°,
故∠AOC=72°
(3)解:设∠BOE=x,
∵OE平分∠BOD,∠BOD=∠AOC,
∴∠DOE=x,∠COA=2x,
∴∠BOC=180°-2x,
∴∠COE=180°-x,
∵OF平分∠COE,
∴∠EOF=90°- x,
∴∠BOF=90°﹣ x,
∵|∠AOC﹣∠BOF|=α°,
∴|2x﹣(90°﹣ x)|=α°,
解得:x=()°+ α°或x=()°﹣α°,
当x=()°+ α°时,
∠AOC=2x=()°+ α°,
∠BOF=90°﹣ x=()°﹣α°;
当x=()°﹣α°时,
∠AOC=2x=()°﹣α°,
∠BOF=90°﹣ x=()°+ α°
【解析】【分析】(1)由∠AOC=76°易得∠BOD=76°,结合OE平分∠BOD可得∠DOE=∠BOE=38°,由此可得∠COE=180°-38°=142°,结合OF平分∠COE可得∠EOF=71°,最后由∠BOF=∠EOF-∠BOE即可求得∠BOF的度数;(2)设∠BOE=x,由OE平分∠BOD,∠AOC=∠BOD可得∠DOE=∠BOE=x,∠AOC=2x,结合∠BOF=36°,OF平均∠EOF 可得∠COF=∠EOF=x+36°,最后由∠AOC+∠COF+∠BOF=180°即可列出关于x的方程,解方程求得x的值即可求得∠AOC的度数;(3)设∠BOE=x,则由已知条件易得∠AOC=2x,
∠BOF=90°- x,这样结合|∠AOC﹣∠BOF|=α°即可列出关于x的方程,解方程求得x的值即可求得∠AOC和∠BOF的值.
13.以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)
(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=________;
(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;
(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?
【答案】(1)30
(2)解:∵OE平分∠AOC,
∴∠COE=∠AOE=∠COA,
∵∠EOD=90°,
∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,
∴∠COD=∠DOB,
∴OD所在射线是∠BOC的平分线
(3)解:设∠COD=x,则∠AOE=5x.
∵∠AOE+∠DOE+∠COD+∠BOC=180°,∠DOE=90°,∠BOC=60°,
∴5x+90°+x+60°=180°,
解得x=5°,
即∠COD=5°.
∴∠BOD=∠COD+∠BOC=5°+60°=65°
∴∠BOD的度数为65°
【解析】【解答】(1)∵∠BOE=∠COE+∠COB=90°,
又∵∠COB=60°,
∴∠COE=30°,
故答案为:30;
【分析】(1)根据角的和差,由∠COE=∠BOE-∠COB即可算出答案;
(2)根据角平分线的定义得出∠COE=∠AOE=∠COA,根据角的和差及平角的定义得出∠AOE+∠DOB=90°,∠COE+∠COD=90°,根据等角的余角相等得出∠COD=∠DOB,故 OD所在射线是∠BOC的平分线;
(3)设∠COD=x,则∠AOE=5x ,根据平角的定义得出5x+90°+x+60°=180°,求解算出x的值,从而求出∠COD的度数,进而根据∠BOD=∠COD+∠BOC 即可算出答案。

14.已知直线AB和CD交于点O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.
(1)当x=19°48′,求∠EOC与∠FOD的度数.
(2)当x=60°,射线OE、OF分别以10°/s,4°/s的速度同时绕点O顺时针转动,求当射线OE与射线OF重合时至少需要多少时间?
(3)当x=60°,射线OE以10°/s的速度绕点O顺时针转动,同时射线OF也以4°/s的速度绕点O逆时针转动,当射线OE转动一周时射线OF也停止转动.射线OE在转动一周的过程中当∠EOF=90°时,求射线OE转动的时间.
【答案】(1)解:∵∠BOE=90°,
∴∠AOE=90°,
∵∠AOC=x=19°48′,
∴∠EOC=90°-19°48′=89°60°-19°48′=70°12′,
∠AOD=180°-19°48′=160°12′,
∵OF平分∠AOD,
∴∠FOD= ∠AOD= ×160°12′=80°6′;
(2)解:当x=60°,∠EOF=90°+60°=150°
设当射线OE与射线OF重合时至少需要t秒,
10t-4t=360-150,
t=35,
答:当射线OE与射线OF重合时至少需要35秒
(3)解:设射线OE转动的时间为t秒,
分三种情况:①OE不经过OF时,得10t+90+4t=360-150,
解得,t= ;
②OE经过OF,但OF在OB的下方时,得10t-(360-150)+4t=90
解得,t= ;
③OF在OB的上方时,得:360-10t=4t-120
解得,t= .
所以,射线OE转动的时间为t= 或或 .
【解析】【分析】(1)利用互余和互补的定义可得:∠EOC与∠FOD的度数;
(2)先根据x=60°,求∠EOF=150°,则射线OE、OF第一次重合时,则OE运动的度数-OF 运动的度数=360-150,列方程解出即可;
(3)分三种情况:①OE不经过OF时,②OE经过OF,但OF在OB的下方时;③OF在OB的上方时;根据其夹角列方程可得时间.
15.如(图1),在平面直角坐标系中,,,,且满足
,线段交轴于点.
(1)填空: ________, ________;
(2)点为轴正半轴上一点,若,,且分别平分,如(图2),求的度数;
(3)求点的坐标;
(4)如(图3),在轴上是否存在一点,使三角形的面积和三角形的面积相等?若存在,求出点坐标,若不存在,说明理由.
【答案】(1)-3;3
(2)解:∵AB∥DE,∴∠ODE+∠DFB=180°,∵,∴∠DFB=∠AFO=180°-140°=40°,∴∠FAO=50°,∵分别平分,∴∠OAN=∠FAO=25°,∠NDM=∠ODE=70°,∴∠DNM=∠ANO=90°-25°=65°,
∴∠AMD=180°−∠DNM-∠NDM=45°
(3)解:连结OB,如图,设F(0,t),∵△AOF的面积+△BOF的面积=△AOB的面积,∴ ×3×t+ ×t×3= ×3×3,解得t=,∴F点坐标为(0,);
(4)解:存在,∵,∴△的面积= ,设Q(0,y),
∵△ABQ的三角形=△AQF的面积+△BQF的面积,∴•|y− |•3+•|y− |•3=,解得y=5或y=−2,∴此时Q点坐标为(0,5)或(0,−2);
【解析】【解答】解:(1)∵(a+b)2+|b-a-6|=0,
∴a+b=0,b-a-6=0,
∴a=−3,b=3,
故答案为:-3,3;
【分析】(1)根据非负数的性质得a+b=0,b-a-6=0,然后解方程组求出a和b即可得到点A和B的坐标;(2)由AB∥DE可知∠ODE+∠DFB=180°,得到∠DFB=∠AFO=
180°-140°=40°,所以∠FAO=50°,再根据角平分线定义得∠OAN=∠FAO=25°,∠NDM=
∠ODE=70°,得到∠DNM=∠ANO=90°-25°=65°,然后根据三角形内角和定理得∠AMD=180°−∠DNM-∠NDM=45°;(3)①连结OB,如图3,设F(0,t),根据△AOF
的面积+△BOF的面积=△AOB的面积得到 ×3×t+ ×t×3= ×3×3,解得t=,则可得
到F点坐标为(0,);(4)先计算△ABC的面积=,利用△ABQ 的三角形=△AQF 的面积+△BQF的面积得到•|y− |•3+•|y− |•3=,解出y即可.。

相关文档
最新文档