登封市第一高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

登封市第一高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 复数满足2+2z
1-i =i z ,则z 等于( )
A .1+i
B .-1+i
C .1-i
D .-1-i 2. 在△ABC 中,a=1,b=4,C=60°,则边长c=( )
A .13
B .
C .
D .21
3. 设M={x|﹣2≤x ≤2},N={y|0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )
A .
B .
C .
D .
4. 若全集U={﹣1,0,1,2},P={x ∈Z|x 2
<2},则∁U P=( ) A .{2} B .{0,2}
C .{﹣1,2}
D .{﹣1,0,2}
5. 下列函数中,为偶函数的是( )
A .y=x+1
B .y=
C .y=x 4
D .y=x 5
6. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( )
A .2017
B .﹣8
C .
D .
7. 已知集合A={4,5,6,8},B={3,5,7,8},则集合A ∪B=( ) A .{5,8}
B .{4,5,6,7,8}
C .{3,4,5,6,7,8}
D .{4,5,6,7,8}
8. 下面的结构图,总经理的直接下属是( )
A.总工程师和专家办公室
B.开发部
C.总工程师、专家办公室和开发部
D.总工程师、专家办公室和所有七个部
9.如图可能是下列哪个函数的图象()
A.y=2x﹣x2﹣1 B.y=
C.y=(x2﹣2x)e x D.y=
10.已知a为常数,则使得成立的一个充分而不必要条件是()
A.a>0 B.a<0 C.a>e D.a<e
11.与函数y=x有相同的图象的函数是()
A.B.C.D.
12.已知点A(1,1),B(3,3),则线段AB的垂直平分线的方程是()
A.y=﹣x+4 B.y=x C.y=x+4 D.y=﹣x
二、填空题
13.函数f(x)=x2e x在区间(a,a+1)上存在极值点,则实数a的取值范围为.
14.已知曲线y=(a﹣3)x3+lnx存在垂直于y轴的切线,函数f(x)=x3﹣ax2﹣3x+1在[1,2]上单调递减,则a的范围为.
15.设α为锐角,=(cosα,sinα),=(1,﹣1)且•=,则sin(α+)=.
16.已知向量、满足,则|+|=.
17.在△ABC中,若角A为锐角,且=(2,3),=(3,m),则实数m的取值范围是.
18.抛物线y2=4x的焦点为F,过F且倾斜角等于的直线与抛物线在x轴上方的曲线交于点A,则AF的长
为.
三、解答题
19.已知函数f(x)=cosx(sinx+cosx)﹣.
(1)若0<α<,且sinα=,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.
20.长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点.
(1)求证:BD1∥平面A1DE;
(2)求证:A1D⊥平面ABD1.
21.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ;
(2)设(){}
1n
n n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .
【命题意图】本题考查等差数列与等比数列的通项与前n 项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.
22.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取7080100位,得到数据如表:
70后公民中随机抽取3位,记其中生二胎的人数为X ,求随机变量X 的分布列和数学期望;
(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由. 2.072
2.706
3.841
5.024
(参考公式:,其中n=a+b+c+d )
23.设函数f (x )=1+(1+a )x ﹣x 2﹣x 3,其中a >0. (Ⅰ)讨论f (x )在其定义域上的单调性;
(Ⅱ)当x ∈时,求f (x )取得最大值和最小值时的x 的值.
24.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知
1cos )sin 3(cos 2
cos 22
=-+C B B A
. (I )求角C 的值;
(II )若2b =,且ABC ∆的面积取值范围为,求c 的取值范围. 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.
登封市第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】
【解析】解析:选D.法一:由2+2z
1-i =i z 得
2+2z =i z +z , 即(1-i )z =-2,
∴z =-2
1-i =-2(1+i )
2=-1-i.
法二:设z =a +b i (a ,b ∈R ), ∴2+2(a +b i )=(1-i )i (a +b i ), 即2+2a +2b i =a -b +(a +b )i ,
∴⎩
⎪⎨⎪⎧2+2a =a -b
2b =a +b , ∴a =b =-1,故z =-1-i. 2. 【答案】B
【解析】解:∵a=1,b=4,C=60°,
∴由余弦定理可得:c=
=
=

故选:B .
3. 【答案】B
【解析】解:A 项定义域为[﹣2,0],D 项值域不是[0,2],C 项对任一x 都有两个y 与之对应,都不符.
故选B .
【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题.
4. 【答案】A
【解析】解:∵x 2
<2 ∴﹣
<x <
∴P={x ∈Z|x 2
<2}={x|﹣
<x <
,x ∈Z|}={﹣1,0,1},
又∵全集U={﹣1,0,1,2}, ∴∁U P={2}
故选:A.
5.【答案】C
【解析】解:对于A,既不是奇函数,也不是偶函数,
对于B,满足f(﹣x)=﹣f(x),是奇函数,
对于C,定义域为R,满足f(x)=f(﹣x),则是偶函数,
对于D,满足f(﹣x)=﹣f(x),是奇函数,
故选:C.
【点评】本题主要考查了偶函数的定义,同时考查了解决问题、分析问题的能力,属于基础题.
6.【答案】D
【解析】解:∵f(x+2)=﹣f(x),
∴f(x+4)=﹣f(x+2)=f(x),
即f(x+4)=f(x),
即函数的周期是4.
∴a2017=f(2017)=f(504×4+1)=f(1),
∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,
∴f(1)=f(﹣1)=,
∴a2017=f(1)=,
故选:D.
【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.
7.【答案】C
【解析】解:∵A={4,5,6,8},B={3,5,7,8},
∴A∪B={3,4,5,6,7,8}.
故选C
8.【答案】C
【解析】解:按照结构图的表示一目了然,
就是总工程师、专家办公室和开发部.
读结构图的顺序是按照从上到下,从左到右的顺序.
故选C.
【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读.
9.【答案】C
【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,
∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;
B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,
∴B中的函数不满足条件;
C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;
且y=e x>0恒成立,
∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;
∴C中的函数满足条件;
D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,
∴y=<0,∴D中函数不满足条件.
故选:C.
【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.
10.【答案】C
【解析】解:由积分运算法则,得
=lnx=lne﹣ln1=1
因此,不等式即即a>1,对应的集合是(1,+∞)
将此范围与各个选项加以比较,只有C项对应集合(e,+∞)是(1,+∞)的子集
∴原不等式成立的一个充分而不必要条件是a>e
故选:C
【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.
11.【答案】D
【解析】解:A:y=的定义域[0,+∞),与y=x的定义域R不同,故A错误
B:与y=x的对应法则不一样,故B错误
C:=x,(x≠0)与y=x的定义域R不同,故C错误
D:,与y=x是同一个函数,则函数的图象相同,故D正确
故选D
【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题12.【答案】A
【解析】解:∵点A(1,1),B(3,3),
∴AB的中点C(2,2),
k AB==1,
∴线段AB的垂直平分线的斜率k=﹣1,
∴线段AB的垂直平分线的方程为:
y﹣2=﹣(x﹣2),整理,得:y=﹣x+4.
故选:A.
二、填空题
13.【答案】(﹣3,﹣2)∪(﹣1,0).
【解析】解:函数f(x)=x2e x的导数为y′=2xe x+x2e x =xe x(x+2),
令y′=0,则x=0或﹣2,
﹣2<x<0上单调递减,(﹣∞,﹣2),(0,+∞)上单调递增,
∴0或﹣2是函数的极值点,
∵函数f(x)=x2e x在区间(a,a+1)上存在极值点,
∴a<﹣2<a+1或a<0<a+1,
∴﹣3<a<﹣2或﹣1<a<0.
故答案为:(﹣3,﹣2)∪(﹣1,0).
14.【答案】.
【解析】解:因为y=(a﹣3)x3+lnx存在垂直于y轴的切线,即y'=0有解,即
y'=在x>0时有解,
所以3(a﹣3)x3+1=0,即a﹣3<0,所以此时a<3.
函数f(x)=x3﹣ax2﹣3x+1在[1,2]上单调递减,则f'(x)≤0恒成立,
即f'(x)=3x2﹣2ax﹣3≤0恒成立,即,
因为函数在[1,2]上单调递增,所以函数的最大值为,
所以,所以.
综上.
故答案为:.
【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用.15.【答案】:.
【解析】解:∵•=cosα﹣sinα=,
∴1﹣sin2α=,得sin2α=,
∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,
∴cos2α==,
∵α为锐角,sin(α+)>0,
∴sin(α+)
====

故答案为:.
16.【答案】5.
【解析】解:∵=(1,0)+(2,4)=(3,4).
∴==5.
故答案为:5.
【点评】本题考查了向量的运算法则和模的计算公式,属于基础题.
17.【答案】.
【解析】解:由于角A为锐角,
∴且不共线,
∴6+3m>0且2m≠9,解得m>﹣2且m.
∴实数m的取值范围是.
故答案为:.
【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题.
18.【答案】4.
【解析】解:由已知可得直线AF的方程为y=(x﹣1),
联立直线与抛物线方程消元得:3x2﹣10x+3=0,解之得:x1=3,x2=(据题意应舍去),
由抛物线定义可得:AF=x1+=3+1=4.
故答案为:4.
【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.
三、解答题
19.【答案】
【解析】解:(1)∵0<α<,且sinα=,
∴cosα=,
∴f(α)=cosα(sinα+cosα)﹣,
=×(+)﹣
=.
(2)f (x )=cosx (sinx+cosx )﹣.
=sinxcosx+cos 2x ﹣
=sin2x+cos2x
=sin (2x+
),
∴T==π,
由2k π﹣
≤2x+
≤2k π+
,k ∈Z ,得k π﹣
≤x ≤k π+
,k ∈Z ,
∴f (x )的单调递增区间为[k π﹣,k π+
],k ∈Z .
20.【答案】
【解析】证明:(1)连结A 1D ,AD 1,A 1D ∩AD 1=O ,连结OE , ∵长方体ABCD ﹣A 1B 1C 1D 1中,ADD 1A 1是矩形, ∴O 是AD 1的中点,∴OE ∥BD 1,
∵OE ∥BD 1,OE ⊂平面ABD 1,BD 1⊄平面ABD 1, ∴BD 1∥平面A 1DE .
(2)∵长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AA 1=AD=4,点E 为AB 中点, ∴ADD 1A 1是正方形,∴A 1D ⊥AD 1,
∵长方体ABCD ﹣A 1B 1C 1D 1中,AB ⊥平面ADD 1A 1, ∴A 1D ⊥AB ,
又AB ∩AD 1=A ,∴A 1D ⊥平面ABD 1.
21.【答案】
【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,
则由990S =,15240S =,得11
93690
15105240a d a d +=⎧⎨+=⎩,解得12a d ==,……………3分
所以2(n 1)22n a n =+-⨯=,即2n a n =,
(1)
22(1)2
n n n S n n n -=+
⨯=+,即1n S n n =+().……………5分
22.【答案】
【解析】解:(Ⅰ)由已知得该市70后“生二胎”
的概率为
=,且X ~B (3
,),
P (X=0)
=
=
, P (X=1)
=
=, P (X=2)=
=, P (X=3)
=
=,
∴E (X )=3×=2.
(Ⅱ)假设生二胎与年龄无关,
K 2=
=
≈3.030>2.706,
所以有90%以上的把握认为“生二胎与年龄有关”.
23.【答案】
【解析】解:(Ⅰ)f (x )的定义域为(﹣∞,+∞),f ′(x )=1+a ﹣2x ﹣3x 2

由f ′(x )=0,得x 1=,x 2=,x 1<x 2,
∴由f ′(x )<0得x <,x >;
由f ′(x )>0得<x <;
故f (x )在(﹣∞,)和(
,+∞)单调递减,
在(,
)上单调递增;
(Ⅱ)∵a >0,∴x 1<0,x 2>0,∵x ∈,当
时,即a ≥4
①当a ≥4时,x 2≥1,由(Ⅰ)知,f (x )在上单调递增,∴f (x )在x=0和x=1处分别取得最小值和最大值. ②当0<a <4时,x 2<1,由(Ⅰ)知,f (x )在单调递增,在上单调递减,
因此f (x )在x=x 2=
处取得最大值,又f (0)=1,f (1)=a ,
∴当0<a <1时,f (x )在x=1处取得最小值; 当a=1时,f (x )在x=0和x=1处取得最小值; 当1<a <4时,f (x )在x=0处取得最小值.
24.【答案】 【解析】(I )∵1cos )sin 3(cos 2
cos 22
=-+C B B A
, ∴0cos sin 3cos cos cos =-+C B C B A , ∴0cos sin 3cos cos )cos(=-++-C B C B C B ,
∴0cos sin 3cos cos sin sin cos cos =-++-C B C B C B C B ,
∴0cos sin 3sin sin =-C B C B ,因为sin 0B >,所以3tan =C 又∵C 是三角形的内角,∴3
π
=
C .。

相关文档
最新文档