七年级数学8.1《角的表示》练习题2(带答案)

合集下载

新人教版初中数学七年级上学期《角》知识点讲解及例题解析

新人教版初中数学七年级上学期《角》知识点讲解及例题解析

《角》知识讲解及例题解析【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算.【要点梳理】要点一、角的概念1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.图1 图2(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.要点三、角的比较与运算1.角的比较角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB =∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.2.角的和、差运算如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.3.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示.(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”.(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向.(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念1. 利用一副三角板上的角,能画出多少个小于180°的角,试一一画出来.【思路点拨】首先发现一副三角板上有30°,45°,60°,90°这样4个不相等的角,利用这些角进行一次和差,可得小于180°的所有角.【答案与解析】解:除了可以画30°,45°,60°,90°外,还可画15°,75°,105°,120°,135°,150°,165°的七个度数的角,画法如图所示.【总结升华】利用一副三角板共可以画出11个度数的角,分别是:30°,45°,60°,90°,15°,75°,105°,120°,135°,150°,165°.举一反三:【变式】下列说法中,正确的是()A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看做是由一条射线绕着它的端点旋转而形成的图形D.角可以看做是由一条线段绕着它的端点旋转而形成的图形【答案】C.类型二、角度制的换算2. 计算下列各题:(1)152°49′12″+20.18°; (2)82°-36°42′15″;(3)35°36′47″×9; (4)41°37′÷3.【答案与解析】解:(1)解法一:∵ 20.18°=20°10′48″即:152°49′12″+20.18°=173°.解法二:∵ 152°49′12″=152.82°,∴ 152.82°+20.18°=173°.即:152°49′12″+20.18°=173°.(2)将82°化为81°59′60″,则∴ 82°-36°42′15″=45°17′45″.423″=7′3″, 324′+7′=5°31′,∴ 35°36′47″×9=320°31′3″.∴ 41°37′÷3=13°52′20″.【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后进行计算;在进行乘法运算时,往往先把度、分、秒分别乘以倍数,将结果满60″进1′,满60′进1°;对于除法运算则是从度开始除,将余数化为分和以前的分数相加再除,将余数再化成秒和以前的秒数相加再除,若除不尽往往四舍五入.举一反三:【变式】计算:(1)23°45′36″+66°14′24″;(2)180°-98°24′30″;(3)15°50′42″×3; (4)88°14′48″÷4.【答案】(1)23°45′36″+66°14′24″=90°;(2)180°-98°24′30″=81°35′30″;(3)15°50′42″×3=47°32′6″;(4)88°14′48″÷4=22°3′42″.类型三、角的比较与运算3. 如图所示表示两块三角板.(1)用叠合法比较∠1,∠α,∠2的大小;(2)量出图中各角的度数,并把图中的6个角从小到大排列,然后用“<”或“=”连接.【答案与解析】解:(1)如图所示,把两块三角板叠在一起,可得∠1>∠α,用同样的方法,可得∠α<∠2.所以∠2=∠1>∠α.(2)用量角器量出图中各个角的度数,分别是∠1=∠2=45°,∠3=90°,∠α=30°,∠β=60°,∠γ=90°,把它们从小到大排列,有∠α<∠1=∠2<∠β<∠3=∠γ.【总结升华】比较角的大小有叠合法和度量法两种:①先将两个角的顶点与顶点重合,一条边与一条边重合再比较.②先量出每个角的度数,然后按它们的度数来比较.举一反三:【变式】如图,∠AOB的平分线OM,ON为∠MOA内的一条射线,OG为∠AOB外的一条射线.某同学经过认真分析,得到一个关系式是∠MON=12(∠BON-∠AON),你认为这个同学得到的关系式正确吗?若正确,请把得到这个结论的过程写出来.【答案】解:正确,理由如下:∵∠AOB的平分线OM,∴∠AOM=∠MOB又∵∠MON=∠AOM-∠AON=∠MOB-∠AON=(∠BON-∠MON) -∠AON 即有∠MON=∠BON-∠MON -∠AON∴ 2∠MON=∠BON-∠AON∴∠MON=12(∠BON-∠AON)4. 如图,∠AOB=90°,∠AOC=30°,且OM平分∠BOC,ON平分∠AOC,(1)求∠MON的度数;(2)若∠AOB=α其他条件不变,求∠MON的度数;(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?【思路点拨】(1)要求∠MON,即求∠COM﹣∠CON,再根据角平分线的概念分别进行计算即可求得;(2)和(3)均根据(1)的计算方法进行推导即可.(4)根据(2)和(3)中的结论进行总结.【答案与解析】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°∵OM平分∠BOC,ON平分∠AOC∴∠COM=60°,∠CON=15°∴∠MON=∠COM﹣∠CON=45°.(2)∵∠AOB=α,∠AOC=30°,∴∠BOC=α+30°∵OM平分∠BOC,ON平分∠AOC∴∠COM=+15°,∠CON=15°∴∠MON=∠COM﹣∠CON=.(3)∵∠AOB=90°,∠AOC=β,∴∠BOC=90°+β∵OM平分∠BOC,ON平分∠AOC∴∠COM=45°+,∠CON=.∴∠MON=∠COM ﹣∠CON=45°. (4)从上面的结果中,发现:∠MON 的大小只和∠AOB 得大小有关,与∠A0C 的大小无关.【总结升华】能够结合图形表示角之间的和差关系,根据角平分线的概念运用几何式子表示角之间的倍分关系.举一反三:【变式】如图,已知O 是直线AC 上一点,OD 平分∠AOB ,OE 在∠BOC 内,且∠BOE =12∠EOC ,∠DOE =70°,求∠EOC 的度数.【答案】解:设∠EOC=x °,则∠BOE =12∠EOC =12x °,根据题意可得:1180127022x xx --+= ,解得: 80x = .∠EOC =2∠BOE =80°. 类型四、方位角5.已知小岛A 位于基地O 的东南方向,货船B 位于基地O 的北偏东50°方向,那么∠AOB 的度数等于 . 【答案】85°. 【解析】解:如图:∵∠2=50°,∴∠3=40°, ∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°, 故答案为:85°.【总结升华】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A ,B 的方位,注意东南方向是45度是解答此题的关键. 类型五、钟表上有关夹角问题6. 在7时到7时10分之间的什么时刻,时针与分针成一条直线? 【答案与解析】解:设7时x 分钟,时针与分针成一条直线,由题意得:16302x x -=,5511x =. 答:7时5511分钟时针与分针成一条直线.【总结升华】时钟上的分针与时针绕着中心顺时针均匀转动,在不同时刻,两针之间形成一定的角度.如果把单位时间分针和时针转过的度数当作它们的速度则: ① 分针的速度为36060=6°/分;②时针的速度为3060°分=0.5°/分. 故分针速度是时针速度的12倍. 举一反三:【变式】某人下午6点多外出购物,表上的时针和分针的夹角恰为110°,下午7点前回家时,发现表上的时针和分针的夹角又是110°,试算出此人外出用了多长时间? 【答案】解:设此人外出用了x 分钟,则分针转了6x 度,时针转了0.5x 度.根据题意得:6x-0.5x =110×2,解之得x =40. 答:此人外出购物用了40分钟的时间.。

七年级数学上册《角》练习题及答案

七年级数学上册《角》练习题及答案

七年级数学上册《角》练习题1.下列说法中正确的是().(A ) 两条射线组成的图形叫做角(B ) 角的两边都可以延长(C) 平角的两边构成一条直线(D) 由射线OA、OB 组成的角,可以记作∠OAB2.下列四个图形中,能用∠1,∠AOB,∠O 三种方法表示同一个角的是(). 3.用三个字母表示图中所标注的∠1,∠2,∠3 和∠4:∠1 是____________;∠2 是____________;∠3 是____________;∠4 是____________.4.计算:(1) 0.4º =______';(2) 0.6ʹ =______ʺ;(3) 36ʹ =_______º;(4) 48ʺ =______ʹ;(5) 57.32º =______º ______ʹ______ʺ;(6) 17º 14ʹ24ʺ=________º =__________ʺ.5.(1)时钟的时针1 小时旋转多少度? 时钟的分针1 分钟旋转多少度?(2) 5 点整时,时钟的时针与分针之间的夹角是多少度?(3)时钟在8:30 时,时针与分针的夹角为多少度?6.如下图,在横线上填上适当的角:(1) ∠AOC=______+______;(2) ∠AOD-∠BOD=______;(3) ∠BOC=______-∠COD;(4) ∠BOC=∠AOC+∠BOD-______.7.按下图填空:(1) ∠ABC = ______+______;(2) ∠BDC=______-______.8.如图,(1)若∠AOB=∠COD,则∠AOC=∠______.(2)若∠AOC=∠BOD,则∠______=∠______.9.在小于平角的∠AOB 的内部取一点C,并作射线OC,则一定存在( ).(A)∠AOC>∠BOC (B)∠AOC=∠BOC(C)∠BOC>∠AOC (D)∠AOB>∠AOC10.不能用一副三角板拼出的角是( ).(A) 120°(B) 105°(C) 100°(D) 75°11.已知α、β 是两个钝角,计算1/6(α+β),四位同学算出了四种不同的答案,分别为24°,48°,76°,86°,其中只有一个答案是正确的,那么你认为正确的是( )(A) 24°(B) 48°(C) 76°(D) 86°12.已知∠AOB=70°,∠BOC=40°,求∠AOC 的度数.13.如图,若OC 是∠AOB 的平分线,则_____=_____=1/2_____;或_____=2_____=2_____.14.如图,OM 是∠AOB 的平分线,且∠AOM=30°,则∠BOM=______;∠AOB=______.15.射线OC 在∠AOB 的内部,下列四个式子中不能判定OC 是∠AOB 的平分线的是( ).(A)∠AOB=2∠AOC (B)∠BOC=∠AOC(C)∠AOC=1/2∠AOB (D)∠AOC+∠BOC=∠AOB16.如图,如果OT 平分∠AOB,同时平分∠COD,那么∠AOT=∠______,∠AOC=∠______,∠AOD=∠______17.如图,射线OD,OE 分别是∠AOC 和∠BOC 的平分线,∠AOD=40°,∠BOE=25°,求∠AOB 的度数.解:因为OD 平分∠AOC,OE 平分∠BOC,所以∠AOC=2∠AOD,∠BOC=2∠______.()因为∠AOD=40°,∠BOE=25°,所以∠AOC=____________=______,∠BOC=____________=______.所以∠AOB=∠______+∠______=_______.18.已知:如图,∠ADC=∠ABC,DE 是∠ADC 的平分线,BF 是∠ABC 的平分线. 求证:∠2=∠3.证明:因为DE 是∠ADC 的平分线,所以∠2=______.()所以BF 是∠ABC 的平分线,所以∠3=______.()又因为∠ADC=∠ABC,所以∠2=∠3.()19.已知,AOB 是直线,∠AOC=∠EOD=90°,写出图中互余的角.参考答案:1.C;2.B ;3.∠CAD;∠CAB;∠ACB;∠ACD;4. (1) 24; (2) 36; (3) 0.6; (4) 0.8;(5) 57, 19, 12; (6) 17.24, 62064;5.(1) 30, 6; (2) 150; (3) 75.6. (1)∠AOB,∠BOC;(2)∠AOB;(3)∠BOD;(4)∠AOD;7. (1)∠ABD,∠CBD;(2)∠ADC,∠ADB;8. (1)∠BOD;(2)∠AOB,∠COD;9. D;10. C;11. B;12. 110°或30°.13. (1)∠AOC,∠BOC,∠AOB,∠AOB,∠AOC,∠BOC;14. 30º,60º;15. D;16. ∠BOT, ∠BOD,∠BOC;17. ∠BOE,角平分线的定义,2×40°,80°,2×25°,50°,80°,50°,130°;18. 1/2∠ADC,角平分线的定义,1/2∠ABC,角平分线的定义,等量代换.19. ∠1 与∠2 互余,∠1 与∠4 互余,∠2 与∠3 互余,∠3 与∠4 互余.。

初中数学青岛版七年级下册第8章8.1角的表示练习题-普通用卷

初中数学青岛版七年级下册第8章8.1角的表示练习题-普通用卷

初中数学青岛版七年级下册第8章8.1角的表示练习题一、选择题1.下午3:30时,钟表上的时针与分针间的夹角是()A. 40°B. 50°C. 60°D. 75°2.在上午9时到10时之间,时钟的分针与时针会重合一次,这次的重合时间是()A. 9:48~9:49B. 9:49∼9:50C. 9:50~9:51D. 9:51~9:523.在8:30这一时刻,时钟上的时针和分针之间的夹角为()A. 85°B. 75°C. 70°D. 60°4.若A在B的北偏西30º方向,那么B在A的()方向A. 北偏西30°B. 北偏西60°C. 南偏东30°D. 南偏东60°5.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地在A地的北偏东43°的方向上,那么从B地测得C地在B地的()A. 南偏西43°B. 南偏东43°C. 北偏东47°D. 北偏西47°6.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A. 80°B. 100°C. 120°D. 140°7.如图,在灯塔O处观测到轮船A位于北偏东70°的方向,轮船B位于南偏东30°的方向,那么∠AOB的大小为()A. 100°B. 40°C. 80°D. 60°8.学校,电影院,公园在平面图上的标点分别是A,B,C,电影院在学校的正东方向,公园在学校的南偏西25º方向,那么平面图上的∠CAB等于()A. 25ºB. 155ºC. 115ºD. 65º9.下列说法中正确的个数是()①由两条射线组成的图形叫做角;②角的大小与边的长短无关,只与两条边张开的角度有关;③角的两边是两条射线;④把一个角放到一个放大10倍的放大镜下观看,角度数也扩大为原来的10倍.A. 1个B. 2个C. 3个D. 4个10.下列图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的图形是()A. B.C. D.11.甲看乙的方向为北偏东35°,那么乙看甲的方向是()A. 南偏西35°B. 南偏东35°C. 南偏东55°D. 南偏西55°12.如图,能用∠AOB、∠O、∠1三种方法表示同一个角的图形是A. B.C. D.二、填空题13.图中一共有______个角.14.钟表上的时间指示为两点半,此时时针与分针所成的角(小于平角)的度数为______.15.如图所示,射线OA表示______ 28°方向,射线OB表示______ 方向,∠AOB=______ °.16.时钟的时间是3点30分,时钟面上的时针与分针的夹角是______.三、解答题17.观察下图,回答下列问题:(1)在图①中有几个角?(2)在图②中有几个角?(3)在图③中有几个角?(4)以此类推,如图④所示,若一个角内有n条射线,此时共有多少个角?18.按照上北下南,左西右东的规定画出表示东南西北的十字线,然后在图上画出表示下列方向的射线:(1)北偏西60∘;(2)南偏东30∘;(3)北偏东45∘;(4)西南方向19.(1)请在给定的图中按照要求画图:①画射线AB;②画平角∠BAD;③连接AC;(2)设点B、C分别表示两个村庄,它们之间要铺设燃气管道.若节省管道,则沿着线段BC铺设.这样做的数学依据是:_________________________20.钟面角是指时钟的时针与分针所成的角.(1)钟面时刻3:00时,钟面角为90°,请举一例:钟面时刻为____,钟面角为90°;(2)6:00至7:00之间,哪些时刻钟面角为90°?答案和解析1.【答案】D【解析】【分析】本题考查了钟面角,确定时针与分针相距的大格数是解题关键.根据时针与分针相距的大格数乘每个大格的度数,可得答案.【解答】解:下午3:30时时针与分针相距2+12=52个大格,每个大格是30∘,下午3:30时,钟表上的时针与分针间的夹角是30×52=75∘.故选D . 2.【答案】B【解析】【分析】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,时钟的时针每小时转过的角是一份,即30°;分针每分钟转过的角是15分,即15×30°=6°;九点钟,时针和分针呈270°,时针1分钟走0.5°,分针一分钟走6°设九点x 分,重合,则有0.5x +270=6x ,即可解答.【解答】解:九点钟,时针和分针呈270°,时针1分钟走0.5°,分针一分钟走6°设九点x 分重合,则有0.5x +270=6x ,x =49111,故选B . 3.【答案】B【解析】解:8:30,时针指向8与9之间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,∴此时刻分针与时针的夹角正好是2×30°+15°=75°.故选:B.画出图形,利用钟表表盘的特征解答.本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:°,并且利用起点时间时针和分针的位置关系建立角的图形.分针每转动1°时针转动1124.【答案】C【解析】【分析】本题主要考查了方向角的定义,在叙述方向角时一定要注意以哪个图形为参照物是本题的关键.根据A在B的北偏西30º方向,是以B为标准,反之A看B的方向是以A为标准,从而得出答案.【解答】解:如图,A在B的北偏西30º方向,,那么A看B的方向是南偏东30°.故选:C.5.【答案】D【解析】解:∵AF//DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=47°,∴C地在B地的北偏西47°的方向上.故选:D.根据方向角的概念,和平行线的性质求解.本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.6.【答案】D【解析】本题考查方向角,解决此题时,能准确找到方向角是解题的关键.∠BAC等于三个角的和,求出各角的度数,相加即可.【解答】解:由题意,∠BAC=(90°−60°)+90°+20°=140°.故选D.7.【答案】C【解析】解:∵在灯塔O处观测到轮船A位于北偏东70°的方向,同时轮船B在南偏东30°的方向,∴∠AOB=(90°−70°)+(90°−30°)=20°+60°=80°,故选:C.根据在灯塔O处观测到轮船A位于北偏东70°的方向,同时轮船B在南偏东30°的方向,可知∠AOB为90°减去70°与90°减去30°的和,从而可以解答本题.本题考查了方向角,解题的关键利用数形结合的思想,可以由题目中的信息得到所求角的度数.8.【答案】C【解析】【分析】本题考查了方向角.解答此类题需要从运动的角度,正确画出方向角,找准中心是做这类题的关键.根据方向角的概念,正确画出方位图表示出方向角,即可求解.【解答】解:从图中发现平面图上的∠CAB=∠1+∠2=115°.故选C.【解析】【分析】此题主要考查了角的概念,熟练根据角的组成分析得出是解题关键.根据角的定义分别分析得出答案即可.【解答】①角是由两条有公共端点的两条射线组成的图形,故①错误;②角的大小与边的长短无关,只与两条边张开的角度有关,故②正确;③角的两边是两条射线,故③正确;④把一个角放到一个放大10倍的放大镜下观看,角的度数不变,故④错误,故正确的有2个,故选:B.10.【答案】B【解析】解:A、不能用∠1,∠AOB,∠O三种方法表示同一个角,故A选项错误;B、能用∠1,∠AOB,∠O三种方法表示同一个角,故B选项正确;C、不能用∠1,∠AOB,∠O三种方法表示同一个角,故C选项错误;D、不能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项错误;故选:B.根据角的表示方法和图形逐个判断即可.本题考查了角的概念.解题的关键是掌握角的表示方法的运用.11.【答案】A【解析】【分析】本题考查了方向角的知识,属于基础题,解答此类题需要从运动的角度,正确画出方位角,找准中心是解答这类题的关键,根据方位角的概念,画图正确表示出方位角,即可求解.【解答】解:如图:由题意可知∠1=35°,∵AB//CD,∴∠1=∠2,由方向角的概念可知乙在甲的南偏西35°.故选A.12.【答案】D【解析】【分析】本题考查了角的表示方法的应用,掌握角的表示方法是解题的关键.根据角的四种表示方法和具体要求回答即可.【解答】解:A.以O为顶点的角不止一个,不能用∠O表示,故A选项错误;B.以O为顶点的角不止一个,不能用∠O表示,故B选项错误;C.以O为顶点的角不止一个,不能用∠O表示,故C选项错误;D.能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项正确.故选D.13.【答案】6【解析】解:图中的角有:∠AOB、∠AOC、∠AOD、∠BOC、∠BOD、∠COD这6个,故答案为:6.根据角的定义得出图中的角即可.本题主要考查角,熟练掌握角的定义是解题的关键.14.【答案】105°【解析】解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上2点30分,时针与分针的夹角可以看成3×30°+0.5°×30=105°,故答案为:105°.因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:)°,并且利用起点时间时针和分针的位置关系建立角的图形.分针每转动1°时针转动(11215.【答案】北偏东东南107【解析】解:射线OA表示北偏东28°方向,射线OB表示东南方向,∠AOB=(90°−28°)+45°=107°.故答案是:北偏东,东南,107.根据方向角的定义即可解答.本题考查了方向角的定义,理解定义是关键.16.【答案】75°【解析】解:根据钟面上的圆心角的度数规律得,每个大格,即两个相邻数字与圆心所成的圆心角为30°,每个小格所对应的圆心角为6°3点30分时,分针指向6的位置,时针指向3与4中间的位置,因此夹角为2.5个大格所对应的度数,因此2.5×30°=75°,故答案为75°.钟面上每一个小格所对应的圆心角为360°÷60=6°,每两个相邻数字之间所对应的圆心角为6°×5=30°,再根据3点30分时,时针、分针的位置确定几个大格,几个小格,从而确定度数.考查钟面角的特征,明确钟面上的一个小格、一个大格所对应的圆心角的度数是解决问题的关键.17.【答案】解:由分析知:=1(个);(1)①图中有2条射线,则角的个数为:2×(2−1)2=3(个);(2)②图中有3条射线,则角的个数为:3×(3−1)2=6(个);(3)③图中有4条射线,则角的个数为:4×(4−1)2(4)由前三问类推,角内有n条射线时,图中共有(n+2)条射线,则角的个数为(n+1)(n+2)2个.【解析】解答此题首先要弄清楚题目的规律:当图中有n条射线时,每条射线都与(n−1)条射线构成了(n−1)个角,则共有n(n−1)个角,由于两条射线构成一个角,因此角的总数为:n(n−1),可根据这个规律,直接求出(1)(2)(3)的结论;2在解答(4)题时,首先要弄清图中共有多少条射线,已知角内共n条射线,那么图中共有(n+2)条射线,代入上面的规律,即可得到所求的结论.解答此类规律型问题,一定要弄清题目的规律,可以从简单的图形入手进行总结,然后得到一般化结论再进行求解.18.【答案】【解析】略19.【答案】解:①如图所示:②③如图所示:(2)两点之间,线段最短.【解析】【分析】此题考查的是射线、角和线段的画法以及线段的性质,正确理解射线,线段和角的定义是关键.(1)根据射线,角的定义和线段画法作图即可;(2)根据线段性质可得结论.【解答】(1)见答案;(2)设点B 、C 分别表示两个村庄,它们之间要铺设燃气管道.若节省管道,则沿着线段BC 铺设.这样做的数学依据是:两点之间,线段最短.故答案为:两点之间,线段最短.20.【答案】解:(1)9:00(答案不唯一);(2)解:设6点x 分时,钟面角为90°,则6点半前时,30°×(6+x 60)−6°x =90°,解这个方程,得x =18011, 6点半后时,6°x −30°×(6+x 60)=90°,解这个方程,得x =54011. 答:6点18011分或者6点54011分时,钟面角为90°.【解析】【分析】本题考查了一元一次方程的应用,钟面角,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.(1)根据钟面上两格之间为30°进行解答.(2)根据分针1分钟转动6°,时针1分钟转动0.5°,根据角度之间的等量关系:角度差是90°列出方程即可求解.【解答】解:(1)如图所示,9:00时,钟面角为90°.故答案是9:00(答案不唯一);(2)见答案.。

新人教版七年级数学上册专题训练:角的计算(含答案)

新人教版七年级数学上册专题训练:角的计算(含答案)

新人教版七年级数学上册专题训练:角的计算(含答案)专题训练角的计算类型1 利用角度的和、差关系要求求解的角与已知角之间有和、差关系,可以利用角度和、差来计算。

1.如图,已知 $\angle AOC=\angle BOD=75°$,$\angle BOC=30°$,求 $\angle AOD$ 的度数。

解:因为 $\angle AOC=75°$,$\angle BOC=30°$,所以$\angle AOB=\angle AOC-\angle BOC=75°-30°=45°$。

又因为$\angle BOD=75°$,所以 $\angle AOD=\angle AOB+\angle BOD=45°+75°=120°$。

2.将一副三角板的两个顶点重叠放在一起(两个三角板中的锐角分别为45°、45°和30°、60°)。

1) 如图1所示,在此种情形下,当 $\angle DAC=4\angle BAD$ 时,求 $\angle CAE$ 的度数。

2) 如图2所示,在此种情形下,当 $\angle ACE=3\angle BCD$ 时,求 $\angle ACD$ 的度数。

解:(1) 因为 $\angle BAD+\angle DAC=90°$,$\angle DAC=4\angle BAD$,所以 $5\angle BAD=90°$,即 $\angle BAD=18°$。

所以 $\angle DAC=4\times18°=72°$。

因为 $\angle DAE=90°$,所以 $\angle CAE=\angle DAE-\angle DAC=18°$。

2) 因为 $\angle BCE=\angle DCE-\angle BCD=60°-\angle BCD$,$\angle ACE=3\angle BCD$,所以 $\angle ACB=\angle ACE+\angle BCE=3\angle BCD+60°-\angle BCD=90°$。

七年级数学上册《角》练习题

七年级数学上册《角》练习题

七年级数学上册《角》练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.1︒等于()A.10'B.12'C.60'D.100'2.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V"字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角a的度数为()A.25B.35C.45D.553.下列说法中正确的是()A.射线AB与射线BA是同一条射线B.两条射线组成的图形叫做角C.各边都相等的多边形是正多边形D.连接两点的线段的长度叫做两点之间的距离4.下列角中,能用1∠,ACB∠三种方法表示同一个角的是()∠,CA.B.C.D.5.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,12740'∠=︒,则2∠的余角是( )A .1720'︒B .3220︒'C .3320'︒D .5820︒'6.如图,下列说法中错误的是( ).A .OA 方向是北偏东20︒B .OB 方向是北偏西15︒C .OC 方向是南偏西30︒D .OD 方向是东南方向二、填空题7.如图所示,120AOD ∠=︒,50AOB ∠=︒,OC 平分BOD ∠,那么BOC ∠=__________.8.计算:45396541︒'︒'+=________.9.计算:(1)1003441'︒-︒=_________;(2)23252455''︒+︒=_________;(3)1366435428''''︒-︒=_________. 10.如图,写出图中以A 为顶点的角______.三、解答题A B C是同一平面内三个点,借助直尺、刻度尺、量角器完成(以答题卡上印刷的11.读句画图如图,点,,图形为准):(1)画图:①画射线AB;①画直线BC;=.①连接AC并延长到点D,使得CD CA∠约为_________°(精确到1︒).(2)测量:ABC12.【观察思考】如图,五边形ABCDE内部有若干个点,用这些点以及五边形ABCDE的顶点ABCDE把原五边形分割成一些三角形(互相不重叠).【规律总结】(1)填写下表:(2)【问题解决】原五边形能否被分割成2022个三角形?若能,求此时五边形ABCDE内部有多少个点;若不能,请说明理由.参考答案:1.C【分析】根据1°=60′即可得到答案.【详解】解:1°=60′,故选:C.【点睛】本题考查了度、分、秒之间的换算,能正确进行度、分、秒之间的换算是解此题的关键,注意:1°=60′.2.B【分析】根据图形和各个角度的大小得出即可.【详解】解:根据图形可以估计①α约等于35°,故选:B.【点睛】本题考查了估算角的度数的大小的应用,主要考查学生观察图形的能力.3.D【分析】直接利用角的定义以及正多边形的定义、两点之间距离定义分别分析得出答案.【详解】解:A、射线AB与射线BA不是同一条射线,故此选项错误;B、有公共端点是两条射线组成的图形叫做角,故此选项错误;C、各边都相等、各角都相等的多边形是正多边形,故此选项错误;D、连接两点的线段的长度叫做两点之间的距离,故此选项正确.故选:D.【点睛】此题主要考查了角的定义以及正多边形的定义、两点之间距离定义,正确掌握相关定义是解题关键.4.C【分析】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,据此分析即可【详解】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,A、B、D选项中,点C为顶点的角存在多个,故不符合题意故选C【点睛】本题考查了角的表示方法,掌握角的表示方法是解题的关键.角的表示方法有三种:(1)用三个字母及符号“①”来表示.中间的字母表示顶点,其它两个字母分别表示角的两边上的点.(2)用一个数字表示一个角.(3)用一个字母表示一个角.具体用哪种方法,要根据角的情况进行具体分析,总之表示要明确,不能使人产生误解.5.B【分析】根据余角的定义可得①2的余角即①EAC ,然后利用角的运算列式计算求解,注意1°=60′.【详解】解:由题意可得:①2+①EAC =90°①①2的余角是①EAC①①EAC =601602740'3220'︒-∠=︒-︒=︒故选:B .【点睛】本题考查余角的概念及角的和差运算,掌握概念及角度制的运算是解题关键. 6.A【分析】由方位角的含义逐一判断各选项即可得出答案.【详解】解:OA 方向是北偏东70︒,故A 错误;OB 方向是北偏西15︒,故B 正确;OC 方向是南偏西30︒,故C 正确;OD 方向是东南方向,故D 正确;故选:A .【点睛】本题考查的是方位角,掌握方位角的含义是解题的关键.7.35°【分析】由已知可求BOD ∠的大小,根据角平分线的概念可求BOC ∠的大小.【详解】①120AOD ︒∠=,50AOB ︒∠=,①70BOD AOD AOB ︒∠=∠-∠=,①OC 平分BOD ∠, ①1352BOC BOD ︒∠=∠=, 故答案为:35︒.【点睛】本题主要考查了角的认识,角平分线的概念,熟练掌握角的相关概念是解题的关键. 8.111°20´.【分析】两个度数相交,度与度,分与分对应相加,分的结果若满60,则转化为度.【详解】45°39´+65°41´=111°20´,故答案为111°20´.【点睛】本题考查度角分的换算,学生们要知道角度之间的运算是60进制.9. 6519'︒ 4820'︒ 921132'''︒【分析】(1)根据角的各单位之间的是60进位,可以把100︒写成9060'︒,然后再用度减度,分减分,进行计算即可;(2)按照度加度,分加分计算即可;(3)根据角的各单位之间的是60进位,可以把1366'︒写成13565'60''︒,然后再用度减度,分减分,秒减秒进行计算即可【详解】(1)1003441'9960'3441'6519'︒-︒=︒-︒=︒;(2)2325'2455'4780'4820'︒+︒=︒=︒;(3)1366'4354'28''︒-︒=13565'60''4354'28''︒-︒9211'32''=︒.故答案为:①6519'︒,①4820'︒,①921132'''︒.【点睛】本题考查的度、分、秒的计算,掌握度、分、秒的换算方法是解题关键. 10.①DAC ①DAB ①CAB【分析】根据角的表示方法即可求解.【详解】写出图中以A 为顶点的角①DAC 、①DAB 、①CAB.故答案为①DAC ,①DAB ,①CAB.【点睛】此题考查的是角的表示方法,角可用三个大写字母表示,顶点字母写在中间,每边上的点写在两旁;也可以用一个大写字母表示,在角的顶点处有多个角时,不可以用一个字母表示这个角.11.(1)①见解析;①见解析;①见解析;(2)50【分析】(1)根据题目要求结合概念作图可得;(2)利用量角器测量可得.【详解】解:(1)如图所示: ①射线AB 即为所求;①直线BC 即为所求;①线段CD=CA 即为所求(2)ABC ∠约为50°故答案为:50【点睛】本题主要考查作图,解题的关键是掌握直线、射线、线段的概念及角的定义和测量.12.(1)11,2n+3;(2)不能,理由见解析.(1)根据图形特点找出五边形ABCDE内点的个数与分割成的三角形的个数的关系,【分析】总结规律即可;(2)根据规律列出方程,解方程得到答案.(1)有1个点时,内部分割成5个三角形;有2个点时,内部分割成5+2=7个三角形;有3个点时,内部分割成5+2×2=9个三角形;有4个点时,内部分割成5+2×3=11个三角形;…以此类推,有n个点时,内部分割成5+2×(n−1)=(2n+3)个三角形;故答案为11,2n+3;(2)令2n+3=2022,即2n=2019,显然这个方程没有整数解,①原五边形不能被分割成2022个三角形.【点睛】本题考查图形类规律探索,熟练掌握不完全归纳的方法及求一元一次方程整数解的方法是解题关键.。

人教版数学七年级上学期:《角》课时练习(含答案)

人教版数学七年级上学期:《角》课时练习(含答案)

4.3角4.3.1角能力提升1.下列说法中正确的是()A.两条射线组成的图形叫做角B.角是一条线段绕它的一个端点旋转而成的图形C.有公共端点的两条线段组成的图形叫做角D.角是一条射线绕着它的端点旋转而成的图形2.如图,O是直线AB上一点,图中小于180°的角的个数为()A.7B.9C.8D.103.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90°B.105°C.120°D.135°(第2题图)(第3题图)4.若∠1=75°24',∠2=75.3°,∠3=75.12°,则()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.以上都不对5.由2点15分到2点30分,钟表的分针转过的角度是()A.30°B.45°C.60°D.90°6.(1)32.6°=°';(2)10.145°=°'″;(3)50°25'12″=°.7.小明说:我每天下午3:00准时做“阳光体育”活动.则下午3:00这一时刻,时钟上分针与时针所夹的角等于.8.指出图中所示的小于平角的角,并把它们表示出来.★9.如图,从点O引出的5条射线OA,OB,OC,OD,OE组成的图形中共有几个角?创新应用★10.观察下图,回答下列问题.(1)在∠AOB内部任意画1条射线OC,则图①中有个不同的角;(2)在∠AOB内部任意画2条射线OC,OD,则图②中有个不同的角;(3)在∠AOB内部任意画3条射线OC,OD,OE,则图③中有个不同的角;(4)在∠AOB内部任意画10条射线OC,OD,…,则共形成个不同的角.参考答案能力提升1.D2.B3.B时钟上每一大格是30°,2点30分时时针与分针之间是3.5个格,所以夹角为3.5×30°=105°.4.D因为∠1=75°24'=75.4°,所以∠1,∠2和∠3都不相等.5.D6.(1)3236(2)10842(3)50.427.90°8.解:满足条件的角有6个,它们是∠A,∠D,∠ABE,∠ABF,∠DCE,∠DCF.9.解:图形中有∠AOB,∠AOC,∠AOD,∠AOE,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE,共10个角.创新应用10.(1)3(2)6(3)10(4)66(1)2+1=3;(2)3+2+1=6;(3)4+3+2+1=10;(4)11+10+9+…+3+2+1=66.第2课时线段的性质能力提升1.如图所示,要在直线PQ上找一点C,使PC=3CQ,则点C应在()A.P,Q之间B.点P的左边C.点Q的右边D.P,Q之间或在点Q的右边2.如果线段AB=5 cm,BC=3 cm,那么A,C两点间的距离是()A.8 cmB.2 cmC.4 cmD.不能确定3.C为线段AB的一个三等分点,D为线段AB的中点,若AB的长为6.6 cm,则CD的长为()A.0.8 cmB.1.1 cmC.3.3 cmD.4.4 cm4.如图所示,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC-BDB.CD=BCC.CD=AB-BDD.CD=AD-BC5.下面给出的4条线段中,最长的是()A.dB.cC.bD.a6.已知A,B是数轴上的两点,点A表示的数是-1,且线段AB的长度为6,则点B表示的数是.7.已知线段AB=7 cm,在线段AB所在的直线上画线段BC=1 cm,则线段AC=. 8.如图所示,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.9.如图所示,点C是线段AB上一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=20 cm,AM=6 cm,求NC的长;(2)如果MN=6 cm,求AB的长.10.在桌面上放了一个正方体的盒子,如图所示,一只蚂蚁在顶点A处,它要爬到顶点B处找食物,你能帮助蚂蚁设计一条最短的爬行路线吗?要是食物在顶点C处呢?★11.已知线段AB=12 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,求线段AM 的长.创新应用★12.在同一条公路旁,住着5人,他们在同一家公司上班,如图,不妨设这5人的家分别住在点A,B,D,E,F所示的位置,公司在点C处,若AB=4 km,BC=2 km,CD=3 km,DE=3 km,EF=1 km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价6元(3 km以内,包括3 km),超过3 km超出的部分每千米1.5元(不足1 km,以1 km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司应支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?参考答案能力提升1.D注意本题中的条件是在直线PQ上找一点C,所以C可以在P,Q之间,也可以在点Q的右侧.2.D A,B,C三点位置不确定,可能共线,也可能不共线.3.B如图,AD=AB=3.3cm,AC=AB=2.2cm,所以CD=AD-AC=3.3-2.2=1.1(cm).4.B5.A6.-7或5点B可能在点A的左侧,也有可能在点A的右侧.若点B在点A的左侧,则点B表示的数比点A表示的数小6,此时点B表示的数为-7;若点B在点A的右侧,则点B表示的数比点A表示的数大6,此时点B表示的数为5.7.8 cm或6 cm分两种情况:①点C在线段AB内,②点C在线段AB的延长线上.8.解:连接AC,BD,交点P即为购物中心的位置.理由:根据公理“两点之间,线段最短”,要使购物中心到A,B,C,D的距离和最小,购物中心既要在AC上,又要在BD上.9.解:(1)因为M为AC的中点,所以MC=AM.又因为AM=6cm,所以AC=2×6=12(cm).因为AB=20cm,所以BC=AB-AC=20-12=8(cm).又因为N为BC的中点,所以NC=BC=4(cm).(2)因为M为AC的中点,所以MC=AM.因为N为BC的中点,所以CN=BN.所以AB=AC+BC=2(MC+CN)=2MN=2×6=12(cm).10.解:如图所示,是该正方体的侧面展开图.食物在B处时的最短路线为线段AB,食物在C处时的最短路线为线段AC.11.解:(1)当点C在线段AB上时,如图①,图①因为M是AC的中点,所以AM=AC.又因为AC=AB-BC,AB=12cm,BC=6cm,所以AM=(AB-BC)=×(12-6)=3(cm).(2)当点C在线段AB的延长线上时,如图②,图②因为M是AC的中点,所以AM=AC.又因为AC=AB+BC,AB=12cm,BC=6cm,所以AM=AC=(AB+BC)=×(12+6)=9(cm).故AM的长度为3cm或9cm.创新应用12.解:(1)在A处乘车的车费为6+(4+2-3)×1.5=10.5(元);在B处乘车的车费为6元;在D处乘车的车费为6元;在E处乘车的车费为6+(3+3-3)×1.5=10.5(元);在F处乘车的车费为6+(1+3+3-3)×1.5=12(元),合计45元.(2)A,B同乘一辆车,从A开出,D,E,F同乘一辆车,从F开出,合计22.5元.。

初一数学角与角的度量试题

初一数学角与角的度量试题

初一数学角与角的度量试题1.下列各图中表示角的是()【答案】D【解析】本题主要考查的是角的定义根据角的定义:有公共端点的两条射线组成的图形叫做角,依次分析各项即可。

根据角的定义:有公共端点的两条射线组成的图形叫做角,可知只有D选项中的图表示角,故选D.思路拓展:有公共端点的两条射线组成的图形叫做角,注意不要忽略“公共端点”.2.钟面上时针1小时转______度,分针每分钟转_______度。

【答案】30,6【解析】本题考查的是钟表表盘与角度相关的特征钟表表盘被分成12大格,每一大格所对角的度数为30°,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°,根据时针1小时转一大格,分针每分钟转一小格即可得到结果。

钟面上时针1小时转30度,分针每分钟转6度。

思路拓展:钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°.分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30°,逆过来同理.3.14400"等于多少分?等于多少度?【答案】240¹,4º【解析】本题考查的是度、分、秒的转化运算进行度、分、秒的转化运算,注意以60为进制.先将秒的部分除以60化为分,再将分的部分除以60化为度.根据1°=60′,1′=60″得,14400"÷60=240′,240′÷60=4°,所以14400"等于240¹,等于4º.思路拓展:由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由小单位化大单位要除以60,由大单位化小单位要乘以60.4.下列语句正确的是()A.两条直线相交组成的图形叫角;B.一条直线可以看成一个平角;C.一个平角的两边可以看成一条直线;D.周角就是一条射线【答案】C【解析】此题考查了角的定义根据角的组成、平角、周角的定义解答,只要举出一个反例即可证明命题错误.A、有公共端点的两条射线组成的图形叫做角,故本选项错误;B、直线和平角是两个概念,平角是由处在同一直线上方向相反的两条射线构成的角,不能将直线和射线混为一谈,故本选项错误;C、平角等于180 º,故一个平角的两边可以看成一条直线,本选项正确;D、有公共端点的两条射线组成的图形叫做角,周角等于360 º,周角的两边重合,故本选项错误;思路拓展:解答此题,必须明确角的边、顶点、平角与直线的区别与联系,侧重于对基本概念的理解.5.下列四个图形中,能同时用∠1,∠ABC,∠B三种方法表示同一个角的图形是()【答案】B【解析】本题考查的是角的表示方法根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.A、因为顶点B处有四个角,所以这四个角均不能用∠B表示,故本选项错误;B、因为顶点B处只有一个角,所以这个角能用∠1,∠ABC,∠B表示,故本选项正确;C、因为顶点B处有三个角,所以这三个角均不能用∠B表示,故本选项错误;D、因为顶点B处有三个角,所以这三个角均不能用∠B表示,故本选项错误.故选B.思路拓展:角的表示方法一般有以下几种:①一个大写字母,②一个希腊字母,③一个阿拉伯数字,④三个大写字母且表示顶点的字母写在中间.要注意,当顶点处有多个角时,不能用一个大写字母表示,以免混淆.6.下列关于角的描述正确的是:()A.角的边是两条线段;B.角是由两条射线组成的图形C.角可以看成一条射线绕着它的端点旋转而成图形;D.角的大小与边的长短有关【答案】C【解析】本题主要考查的是角的定义根据角的定义:有公共端点的两条射线组成的图形叫做角,角的大小与边的长短无关,只与两边张开的程度有关,依次分析各项即可。

七年级数学《角》测试题 带答案

七年级数学《角》测试题 带答案

第八章 《角》单元测试题一、单选题1、21°21’可化为( )A .21°21' B.21°20'1" C. 21°12'6" D. 21°12'36" 2、下列说法正确的是( ) ①两条射线所组成的图形叫做角. ②角的大小与边的长短无关. ③延长一个角的两边. ④角的两边是两条射线.A.①②B.②④C.②③D.③④3、如图所示,四个图形中,能用1∠,AOB ∠,O ∠,三种方法表示同一角的图形是( )A.①B.②C.③D.④ 4、如图所示,数一数,图中共有多少个角( ) A.9个 B.8个 C.7个 D.6个OAEACB O5、下列说法正确的是( )A.一个角的补角比这个角的余角大90°.B.一个角的补角一定大于这个角.C .两个角互补,必定一个角是锐角,另一个角是钝角. D.小于平角的角是钝角.6、下列12∠∠和是对顶角的是( )A.①B.②C.③D.④ 7、如图,在下面的四个等式中,可以表示“OC 是AOB ∠的平分线”的是( )② AOC BOC ∠=∠③2AOB BOC ∠=∠ ④AOC BOC AOB ∠+∠=∠A.①②③④B.①②③C.②③④D.①②④ 8、中午12时15分,此时钟表上的时针和分针所成的角是( ) A.90° B.75° C.82.5° D.60° 9、已知3AOB BOC ∠=∠,若=30BOC ∠︒,则AOC ∠等于( ) A. 120︒ B. 12060︒︒或 C. 30︒ D. 3090︒︒或OAB10、已知OA OC ⊥,且:2:3AOB AOC ∠∠=,则BOC ∠的度数是( ) A. 30︒ B. 150︒ C. 30150︒︒或 D.不能确定 二、填空题11、48°22'11"______48.37°(填“>,=,<”).12、一个角的余角是55°47'25",则这个角的补角是__________. 13、从1时5分到1时35分,时针转了______°,分针转了_________°. 14、若∠1与∠2互余,∠3与∠2互补,且∠3=120°,那么∠1=_______ 15、如图所示,直线a,b,c 两两相交,其中1=23∠∠,2=65∠︒,则4∠的度数是_____________.三、解答题16、已知α∠=131°28',β∠=51°32'15".求:(1)+αβ∠∠ (2)-αβ∠∠ (3)2β∠17、已知,一个角的余角比这个角的三倍还少30°,求一下这个角的度数.并指出这个角的余角和补角.18、如图,O 为直线AC 上一点,OD 为AOB ∠的平分线,OE 在BOC ∠的内部,其中=2COE BOE ∠∠,=72DOE ∠︒,求COE ∠的度数.19、如图,已知直线BD ,CE 相交于点O ,OA OH ⊥,OF 平分AOD ∠,OD 平分EOH ∠,=60DOF ∠︒,求BOC ∠的度数.第八章 《角》单元测试题答案一、选择题ACHB1—5 D B D A A 6—10 D B C B C 二、填空题 11. < 12.145°47'25" 13.15、180 14.30° 15.32.5° 三、解答题16.(1)183°15" (2)79°55'45" (3)103°4'30" 17.解:设这个角为x ︒. 由题意得:90330x x ︒-︒=︒-︒4120x ︒=︒30x ︒=︒这个角的余角:60︒ 这个角的补角:150︒ 18. 解:设BOE x ∠=︒ 设∠BOE= x ° ∵∠COE=2∠BOE ∴∠COE=2x °∵∠DOE=∠DOB+∠BOE=72° ∴∠BOD=∠DOE-∠BOE=72°-x ° ∵OD 平分∠AOB∴∠AOD=∠BOD=72°-x°∵∠AOC为平角∴∠AOD+∠DOE+∠COE=180°即72°-x°+72°+2x°=180°∴x=36°∴∠COE=72°19.解:∵OF平分∠AOD∴∠AOF=∠DOF=1/2∠AOD=60°∴∠AOD=∠AOF+∠DOF=120°∵OA⊥OH∴∠AOH=90°∵∠AOD=∠AOH+∠DOH∴∠DOH=∠AOD-∠AOH=30°∵OD平分∠EOH∴∠DOE=∠DOH=30°∵∠BOC和∠DOE为对顶角∴∠BOC=∠DOE=30°。

七年级上册数学角试卷【含答案】

七年级上册数学角试卷【含答案】

七年级上册数学角试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 角是由两条具有公共端点的射线组成的图形,这个公共端点称为角的()。

A. 顶点B. 边C. 射线D. 直线2. 下列哪种角是锐角?A. 30°B. 90°C. 120°D. 180°3. 两条直线相交,如果形成的两个相邻角相等,那么这两个角是()。

A. 钝角B. 锐角C. 直角D. 对顶角4. 一个角的补角比这个角的余角大()。

A. 30°B. 45°C. 60°D. 90°5. 如果一个角的度数是另一个角的2倍,那么这两个角的关系是()。

A. 补角B. 余角C. 对顶角D. 无法确定二、判断题(每题1分,共5分)1. 所有的角都可以分为锐角、直角和钝角。

()2. 如果两个角的和为180°,那么这两个角互为补角。

()3. 任何角都有对应的余角和补角。

()4. 一个角的补角和余角的和为90°。

()5. 对顶角相等。

()三、填空题(每题1分,共5分)1. 一个角的补角比这个角的余角大______。

2. 如果两个角的和为______,那么这两个角互为补角。

3. 任何角都有对应的余角和补角,余角和补角的和为______。

4. 对顶角是指两个角的顶点相同,且两个角的边分别是另两个角的______。

5. 一个角的度数是另一个角的2倍,那么这两个角的关系是______。

四、简答题(每题2分,共10分)1. 请简述角的概念。

2. 什么是补角?什么是余角?它们之间的关系是什么?3. 如何判断两个角是对顶角?4. 什么是锐角?什么是钝角?什么是直角?5. 如何计算一个角的补角和余角?五、应用题(每题2分,共10分)1. 已知一个角的度数是60°,求它的补角和余角。

2. 如果两个角的和为120°,求这两个角的补角。

3. 画出两个对顶角,并标出它们的度数。

七年级数学第八章 角知识点及习题含答案

七年级数学第八章 角知识点及习题含答案

第八章角角的表示知识点:(1)角的定义由__有公共端点的两条射线____所组成的图形。

由此知角的三个条件①___________②_______________③______________。

组成角的两条射线叫角的__边__,_他们的公共端点_叫角的顶点。

角还可以看成是一条射线绕着它的_端点____,从_起始位置旋转到终止位置_所成的图形。

_射线的起始位置____叫做角的始边,__终止位置__叫做角的终边。

(2)角的表示方法。

符号:角的符号表示____∠____四种表示方法:A.用三个大写的英文字母,如图(1)记作______或______,表示顶点的字母写在________。

B.用一个大写英文字母表示,如图(1)可记作________。

C.用一个数字表示,如图(2)可记作______、______。

D.一个希腊字母表示,如图(3)可记作_______、_______思考:何时用三个字母表示一个角?而何时又可以用一个字母表示一个角?两者的区别和联系是怎样的?(3)平角和周角。

平角是_当角的终边和始边恰成一条直线时,所成的角叫做直角__;直角是_______________;周角是射线旋转一周回到起始位置时,所成的角叫做周角 。

3.精讲点拨例题:如图,点D 在AB 上。

(1)∠ABC 与∠DBC 相同吗?(2)图中哪几个角可以用一个字母表示?写出来。

(3)以点C 为顶点的角有几个?写出来。

(4)图中共有几个角?把他们分别写出来。

解:(1)相同 (2)∠A 和∠(3)3个,∠ACD ,∠ACB ,∠DCB(4)7个,∠A ,∠ADC ,∠BDC ,∠A ,∠BCD ,∠BCA ,∠DCA 练习:1.如图(1),分别指出以射线OA 、OB 、OC 为一边的角,并用三个大写英文字母表示出来。

2.如图(2),分别用三个大写英文字母表示∠1,∠2、∠3、∠4、∠53.请将图中的角用不同方法表示出来,并填写下表:4. 如图,图中小于平角的角有______个,其中可以用一个大写字母表示的角有∠ABE∠1 ∠2 ∠3_____个,它们是_______.答案:72 B C ∠∠,5. 如图,OA 所表示的方位角是______度,OB 所表示的方位角是______度.答案:北偏东60,南偏西30.6. 如图,三条直线AB CD EF 、、交于同一点O ,则图中以点O 为顶点的角(小于平角)共有( )A. 6个 B .8个 C .10个 D .12个 答案:D7. 下列说法正确的是( )A .一个钝角与一个锐角的差一定是锐角B .一个钝角和一个直角的差一定是锐角C .一个钝角与一个锐角的差一定是直角D .一个钝角与一个锐角的差仍是钝角 答案:B8. 一位同学打电话询问从A 地如何才能到达E 地,你需要用电话告诉他如图所示的路线,你应该说______.答案:向东走30米接着向南偏东30走20米,再向东走40米,接着向南走10AB CDAB 东北60 30OAB CDEF O北30C 10米 A BD E30米40米 20米米到E .9. 如下图所示,AOC BOD ∠∠和都是直角,若28DOC ∠=,则_______AOB ∠=.答案:152°10. 如下图所示,在一张城市地图上,有学校、医院、图书馆三地,但被墨迹污染,图书馆的具体位置看不清,但知道图书馆在学校的北偏东45°方向,在医院的南偏西60°方向,你能确定图书馆的位置吗? 答案:略11. 在下图中,锐角的个数有( )A.6个 B.8个 C.7个 D.4个 答案:B12. 书店、学校、食堂在平面上分别用点,,A B C 来表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的ABC ∠的度数应该是( ) A.65° B.35° C.165° D.135° 答案:C13. 如下图所示,这个图案黑色阴影部分的面积( )白色部分的面积.OADCB医院学校55° 34° 31° 20°A.大于B.等于C.小于D.无关系答案:B14. 请你用三角板、圆规或量角器等工具,画∠POQ=60°,在它的边OP上截取OA=50 mm,OQ上截取OB=70 mm,连结AB,画∠AOB的平分线与AB交于点C,并量出AC和OC 的长.(结果精确到1 mm,不要求写作法).答案:画出图形(基本正确即可)AC=26 mm,OC=50 mm.角的比较知识点一:比较角的大小DC2.度量法 例题: 右图中,(1)∠AOC 是哪两个角的和?(2)∠AOB 是哪两个角的差? (3)如果∠AOB=∠COD ,那么∠AOC 与∠DOB 相等吗?针对练习: 按照图形填空:(1)∠AOD=______+______+______; (2)∠BOC=______﹣∠COD ; (3)∠AOB=______-∠BOC ; (4)∠AOC+∠BOD-∠BOC=______。

(完整word版)七年级数学角的重点习题

(完整word版)七年级数学角的重点习题

(完整word版)七年级数学角的重点习题亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。

下面是本文详细内容。

最后最您生活愉快 ~O(∩_∩)O ~七年级数学角的重点练习题1、如图,OD、OE分别是∠AOC和∠BOC的平分线,∠AOD=40°,∠BOE=25°,求∠AOB的度数.解:∵OD平分∠AOC,OE平分∠BOC,∴∠AOC=2∠AOD,∠BOC=2∠______.∵∠AOD=40°,∠BOE=25°,∴∠BOC=______,∠AOC=______.∴∠AOB=____2、如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD.3、已知:如图∠ABC=30°,∠CBD=70°BE是∠ABD的平分线,求∠DBE的度数。

4、如图,①∠AOC=60°,∠AOB和∠COD都是直角,则∠AOD+∠BOC= ;②若∠AOC=30°,∠AOB=90°,∠COD=90°,则∠AOD+∠BOC= ;③∠AOB和∠COD都是直角,试猜想∠AOD和∠BOC这两个角在数量上存在怎样的关系?并说明理由;④当∠COD绕点O旋转到图(2)的位置,你原来的猜想的结论还正确吗?为什5、.如图,AO⊥BO,直线CD经过点O,∠AOC=30°,求∠BOD的度数.6、如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°46’,OD平分∠COE,求∠COB的度数EDCBAO7、如图,已知直线AB和CD相交于O点,COE∠是直角,OF平分AOE∠,34COF∠,求BOD∠的度数.8、如图,点O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线,若∠AOD=14°,求∠DOE、∠BOE的度数.9、如图10,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE,求∠ACF的度数.10、如图14,将一副三角尺的直角顶点重合在一起.(1)若∠DOB与∠DOA的比是2∶11,求∠BOC的度数.(2)若叠合所成的∠BOC=n°(0<n<90),则∠AOD的补角的度数与∠BOC的度数之比是多少11、如图,已知∠AOB=90°,OM,ON分别平分∠AOC和∠BOC,(1)若∠AOC=30°,求∠MON的度数,(2)若∠BOC=50°,求∠MON的度数,(3)由(1)(2)你发现了什么,请写出结论,并说明理由。

七年级数学《角》练习题及答案

七年级数学《角》练习题及答案

七年级数学《角》练习题及答案一、选择题1.下列说法正确的就是( )A、两点之间直线最短B、用一个放大镜能够把一个图形放大,也能够把一个角的度数放大C、把一个角分成两个角的射线叫角的平分线D、直线l经过点A,那么点A在直线l上呢2、下列4个图形中,能用∠1,∠AOB,∠O三种方法表示同一角的图形就是()3.下列关于平角、周角的说法正确的就是( ).A.平角就是一条直线B.周角就是一条射线C.反向延长射线OA,就形成一个平角D.两个锐角的与不一定小于平角4、右图中,小于平角的角有()A、5个B、6个C、7个D、8个5、如图所示,射线OA表示的方向,射线OB表示的方向,则∠AOB=( )A、155 °B、205 °C、85°D、105°6、一个人从A点出发向北偏东60°方向走到B点,再从B偏西15方向走到C点,那么∠ABC=( )A 、60°B 、15° C、45° D、70°二、填空题:7、角也可以瞧作由旋转面形成的图形。

8、 2周角= 1平角=9、1°的_____ 就是1′10、1周角= 平角= 直角= ;11、换算:42°27′= °,68°45′36″= °;12、2点15分,钟表的时针与分针所成的锐角就是度;13.钟面上从4点到5点,时针与分针重合时,此时4点________分14.计算:北东75︒40︒OA4题图5题图6题图(1)53°18′36″-16°51′(2)(43°13′28″÷2-10°5′18″)×315.如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C与海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C与海岛D方向的射线.16.(如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ACB17、(如图,已知:∠AOE=100°,∠BOF=80°,OE平分∠BOC,OF平分∠AOC,求∠EOF的度数。

2022-2023学年七年级上数学:角(附答案解析)

2022-2023学年七年级上数学:角(附答案解析)
2022-2023学年七年级上数学:角
一.选择题(共5小题)
1.如果A看B的方向是南偏西20°,那么B看A的方向是( )
A.北偏东70°B.南偏西70°C.北偏东20°D.北偏西20°
2.如图,点B在点A的( )方向.
A.北偏东35°B.北偏东55°C.北偏西35°D.北偏西55°
3.如图,∠AOB=50°,则∠AOB的余角的度数是( )
A.北偏东35°B.北偏东55°C.北偏西35°D.北偏西55°
【分析】先求出55°的余角,再根据方向角的定义,即可解答.
【解答】解:由题意得:
90°﹣55°=35°,
∴如图,点B在点A的北偏西35°方向,
故选:C.
【点评】本题考查了方向角,熟练掌握方向角的定义是解题的关键.
3.如图,∠AOB=50°,则∠AOB的余角的度数是( )
∴∠COD=∠AOD,
∵∠AOE+∠BOE=180°,
当∠COD与∠BOE互补时,
∴∠AOE=∠COD,
∴∠COE=3∠COD,
∵∠COE=∠BOE,
∴∠BOE=3∠COD,
∵∠AOE+∠BOE=180°,
∴4∠COD=180°,
∴∠COD=45°,
∴∠AOC=90°.
故答案为:90.
【点评】本题考查有关角的计算,关键是由条件推出∠BOE=3∠COD.
【分析】由图可知∠AOC=∠AOB+∠BOC,根据已知可求出∠AOC,再根据角平分线的性质可求出∠COD.
【解答】解:∵∠AOB=84°,∠BOC=44°,
∴∠AOC=∠AOB+∠BOC=84°+44°=128°,
∵OD平分∠AOC,
∴∠COD=∠AOD= ∠AOC= 128°=64°.

七年级上册数学《角》例题

七年级上册数学《角》例题

角有疑问的题目请发在“51加速度学习网”上,让我们来为你解答()51加速度学习网整理一、知识回顾1、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。

或:角也可以看成是一条射线绕着它的端点旋转而成的。

2、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。

终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

二、典型例题例1:下列说法正确的是()A.平角是一条直线B.周角是一条射线C.上午9点整时,时针和分针的夹角是90°D.已知OC是∠AOB的平分线,则∠AOB=1/2∠AOC分析:根据平角、周角和角平分线的定义以及钟面角的问题分别进行判断即可.解答:A、平角是角的一边绕顶点旋转180°,与另一边在一条直线上,所以A选项错误;B、周角是它的一边绕顶点旋转360°与另一边重合,所以所以B选项错误;C、上午9点整,时针与分针相差3大格即90°,所以C选项正确;D、OC平分∠AOB,则∠AOB=2∠AOC,所以D选项错误.故选C.例2:下列说法正确的是()A.若两个角的和为180°,则必有一个角是钝角B.平面上A,B两点间的距离是线段ABC.若线段AC=BC,则点C是线段AB的中点D.平面上有三点A,B,C,过其中两点的直线有三条或一条分析:需要明角、线段中点的概念及直线的性质,利用这些知识逐一判断.解答: A、互补的两个角可以都为直角,故本选项错误;B、平面上A,B两点间的距离是线段AB的长度,故本选项错误;C、只有当点B在线段AC上,且AB=BC时,点C才是线段AB的中点,故本选项错误.D、平面上有三点A,B,C,过其中两点的直线有三条(三点不共线)或一条(三点共线),故本选项正确;故选D.例3:下面的语句中,错误的是()A.钝角没有余角B.和为180°的角叫补角C.平分一个角的射线,是这个角的平分线D.一条射线,不是周角分析:首先理解钝角、余角、补角、周角的概念,然后对选项进行判断.解答:A、钝角大于90°,故没有余角,A正确,B、一个大于180°的角和一个负角之和可能也为180,故B错误,C、平分一个角的射线,是这个角的平分线,故C正确,D、一条射线,不是周角,故D正确.故选B.例4:(2008•淮安)如图,直线AB、CD相交于点O,OE平分∠AOD,若∠BOC=80°,则∠AOE 的度数是()A.40°B.50°C.80°D.100°分析:根据角平分线的定义计算.解答:∵∠BOC=80°∴∠AOD=∠BOC=80度∵OE平分∠AOD∴∠AOE=1/2 ∠AOD=1/2 ×80°=40度故填A.例5:如图,OC是∠AOB的平分线,OD平分∠AOC,若∠COD=25°,则∠AOB的度数为()A.100 B.80 C.70 D.60分析:利用角平分线的性质计算.解答:∵OC是∠AOB的平分线,∴∠AOC=∠COB;∵OD是∠AOC的平分线,∴∠AOD=∠COD;∵∠COD=25°,∴∠AOC=50°,∴∠AOB=100°.故选A.例:6:如图:如果∠1=∠3,那么()A.∠1=∠2 B.∠2=∠3 C.∠AOC=∠BOD D.∠1=1/2∠BOD分析:根据题意,注意∠2这一公共角,结合题意,相加易得答案.解答:根据题意,∠1=∠3,有∠1+∠2=∠3+∠2,即∠AOC=∠BOD;故选C例7:在如图中,点E是直线CA上的点,∠CEG=∠BEG,∠BEF=∠AEF.则下列结论错误的是()A.EG平分∠CEB B.GE⊥EFC.∠CEG是∠BEF的余角D.∠CEG是∠BEF的补角分析:本题需根据角的平分线的概念分别进行计算,然后逐个分析每一项即可求出答案.解答:∵∠CEG=∠BEG,∴EG平分∠CEB,故A正确.∵∠BEF=∠AEF,∴∠GEF=90°,∴GE⊥EF,故B正确;∵∠GEF=90°,∴∠CEG是∠BEF的余角,故C正确;∵∠CEG+∠BEF=90°,∴∠CEG是∠BEF的余角,故D错误.故选D.例8:若∠1与∠2互补,∠2与∠3互补,∠1=50°,则∠3等于()A.50°B.130° C.40° D.140°分析:由于∠1、∠3都与∠2互补,应当联想到用“同角的补角相等”来解决.解答:解:∵∠1+∠2=180°,∠2+∠3=180°,∴∠3=∠1=50°.故选A.三、解题经验理解各种角的定义至关重要,其次要灵活运用角之间的转换和关系。

七年级角的练习题及答案

七年级角的练习题及答案

七年级角的练习题及答案七年级角的练习题及答案一、选择题1.A.15°B.20°C.85°D.105°答案:A 北A4题图东西?B 南题图题图6、2.×=×=11°31′26″×3=33°93′78″=34°34′18″15.1B第2题图 A BCD3.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,?,那么六条直线最多有A.21个交点B.18个交点C.15个交点D.10个交点.已知=65°,则的补角等于A.125°B.105°C.115°D.95°.下列说法正确的个数是①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形. A.①②B.①③ C.②③ D.①②③6. 如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是A.∠2=∠B.C.D.以上都不对7. 在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是A.2㎝ B.0.5㎝ C.1.5㎝ D.1㎝8. 下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有A. ①②B. ①③C. ②④D. ③④9. 如图,下列关系式中与图不符合的式子是 A.C.B.D.第9题图10. 下列叙述正确的是A.180°的角是补角 B.110°和90°的角互为补角 1C.10°、20°、60°的角互为余角D.120°和60°的角互为补角二、填空题 11.已知=67°,则的余角等于度.12. 如图,∠AOC=∠BOD=78°,∠BOC=35°,则∠AOD=. 13.有下列语句:①在所有连接两点的线中,直线最短;②线段③取直线是点与点的距离;的中点;,得到射线,其中正确的是 .第12题图④反向延长线段14. 要在墙上钉一根木条,至少要用两个钉子,这是因为:. 15. 一个角的补角是这个角的余角的3倍,则这个角的度数是 . 16. 已知直线上有A,B,C三点,其中AB=cm,BC=cm,则AC=_______. 17. 计算:180°2313′6″__________. 18.若线段MN=_______.,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则三、解答题19. 将下列几何体与它的名称连接起来.圆锥三棱锥圆柱正方体球长方体20.如图所示,线段AD=cm,线段AC=BD=cm ,E、F分别是线段AB、CD的中点,求EF.第20题图21.如图,已知画直线画射线三点.;;2找出线段画出的中点,连结的平分线与;相交于,与相交于点.第21题图第22题图22. 如图,的度数.23. 火车往返于A、B两个城市,中途经过4个站点,不同的车站往返需要不同的车票.共有多少种不同的车票?如果共有≥3)个站点,则需要多少种不同的车票?°,°,求、24. 如图,数一数以O为顶点且小于180°的角一共有多少个?你能得到解这类问题的一般方法吗?第24题图3第4章直线与角检测题参考答案1.C 解析:∵,∴ ∠∠1∠290°,∴ ∠2=90°∠1=90°40°50°.2.B 解析:选项A和C能折成原几何体的形式,但涂颜色的面是底面与原几何体的涂颜色面的位置不一致;选项B能折叠成原几何体的形式,且涂颜色的面的位置与原几何体一致;选项D不能折叠成原几何体的形式.3.C 解析:由题意,得条直线之间交点的个数最多为,故6条直线最多有=15交点.4.C 解析:∠的补角为180°∠=115°,故选C.5.C 解析:教科书是立体图形,所以①不对,②③都是正确的,故选C.6. C 解析:因为∠1与∠2互补,所以∠1+∠2=180°.又因为∠2与∠3互余,所以∠2+∠3=90°,所以∠1+=180°,所以∠1=90°+∠3.7.D 解析:因为是顺次取的,所以AC=cm,因为O是线段AC的中点,所以OA=OC= cm.OB=AB-OA=5-4=1. 故选D.8.D 解析:①②是两点确定一条直线的体现,③④可以用“两点之间,线段最短”来解释.故选D.9.C 解析:根据线段之间的和差关系依次进行判断即可得出正确答案.正确;,故本选项错误;,正确;,正确.故选C.,而10.D 解析:180°的角是平角,所以A不正确;110°+90°180°,所以B不正确;互为余角是指两个角,所以C不正确;120°+60°=180°,所以D正确. 11.2312. 121° 解析:根据∠AOC=∠BOD=78°,∠BOC=35°,∴∠AOB=∠AOC?∠BOC=78°?35°?43°,故∠AOD=∠AOB+∠BOD=43°+78°=121°.13.④ 解析:∵ 在所有连接两点的线中,线段最短,∴ ①错误;∵ 线段点的距离,∴ ②错误;∵ 直线没有长度,∴ 说取直线向延长线段,得到射线的长是点与的中点错误,∴ ③错误;∵ 反正确,∴ ④正确.故答案为④.14.两点确定一条直线15.45° 解析:设这个角为,所以,根据题意可得.,所以416.cm或cm 解析:当三点按的顺序排列时,;当三点,按的顺序排列时,.17.156°46′54″ 解析:原式=179°59′60″-23°13′6″156°46′54″.18. 解析:.19.分析:正确区分各个几何体的特征. 解:圆锥三棱锥圆柱正方体球长方体20.解:如题图,∵ 线段AD=cm,线段AC=BD=cm,∴ BC?AC?BD?AD?4?4?6?2. ∴ AB?CD?AD?BC?6?2?4. 又∵ E、F分别是线段AB、CD的中点, ∴ EB?112AB,CF?2CD ,∴ EB?CF?112AB?2CD?122.∴ EF?EB?BC?CF?2?2?4. 答:线段EF的长为cm.21.分析:根据直线是向两方无限延长的画出直线即可;根据射线是向一方无限延长的画出射线即可;找出的中点,画出线段即可;画出∠的平分线即可.解:如图所示.54.4角的比较同步练习题一、填空:1.如图1,∠AOB______∠AOC,∠AOB_______∠BOC; 用量角器度量∠BOC=____°,∠AOC=______°,∠AOC______∠BOC.COADCBACDOOA2.如图2,∠AOC=______+______=______-______;∠BOC=______-______= _____-________..OC是∠分线,则 4. A.B. C.D.若∠5. A.756.如图3,A.∠7.如果∠ A.∠3>8.OC的度数.9.如图,得∠A′B’的角平BA’O10.如图,BD平分∠ABC,BE分∠ABC分2:5两部分,∠DBE=21°,求∠ABC的度数.A3eud教育网/retype/zoom/77bbcad7b14e852458fb5768?pn=2&x=0&y=0& raww=593&rawh=565&o=jpg_6_0_______&type=pic&aimh=45 7.3355817875211&md5sum=1d5aefae49907123dde0618f965853f2&sign=6f1cf12c4e&zoom=&png=9821-19123&jpg=45326-79563” target=“_blank”>点此查看米B,答案: 1.略。

七年级数学角的度量典型试题及答案(中考重点考点试题)

七年级数学角的度量典型试题及答案(中考重点考点试题)

七年级数学角的度量典型试题及答案(中考重点考点试题)5分钟训练(预习类训练,可用于课前)1.图4-3-1中,角的表示方法正确的个数有( )∠ABC ∠CAB 直线是夹角∠AOB是夹角图4-3-1A.1个B.2个C.3个D.4个1.思路解析:利用三个点表示角时,中间的点必须是角的顶点.答案:B2.45°=______直角=______平角=_______周角.思路解析:直角=90°,平角=180°,周角=360°.答案:1214183.计算:(1)0.12°=()′;(2)24′36″=()°.思路解析:因为度、分、秒之间的进率是60,所以(1)只需把0.12°乘以60就得到分;(2)则需先将秒变成分,再将分变成度,需要两次除以60.答案:(1)7.2 (2)0.4110分钟训练(强化类训练,可用于课中)1.判断:图4-3-2(1)两条射线组成的图形叫做角;( )(2)平角是一条直线,周角是一条射线;( )(3)∠ABC也可以表示为∠ACB;( )(4)如图4-3-2,∠BAC可以表示为∠2;( )(5)两个形状相同的三角尺,则大三角尺中的角就比小三角尺中对应的角大.( )思路解析:熟悉角的有关概念和表示方法是解决本题的关键.答案:(1)×(2)×(3)×(4)√(5)×2.计算:(1)3.15°=______′=______″;(2)36′36″=_______°.思路解析:(1)只需把3.15°乘以60就得到分,再乘以60就得到秒;(2)则需先将秒变成分,再将分变成度,需要两次除以60即可.答案:(1)189 11 340 (2)0.6013.如图4-3-3:(1)以B为顶点的角有几个:把它们表示出来;图4-3-3(2)指出以射线BA为边的角;(3)以D为顶点,DC为一边的角有几个?分别表示出来.思路解析:找角时为避免遗漏,可以按一定的顺序,而且必须注意利用三个点表示角时,中间的点必须是角的顶点.答案:(1)以B为顶点的角有3个,分别是∠ABD、∠ABC、∠DBC.(2)以射线BA为边的角有2个,分别是∠ABD和∠ABC.(3)以D为顶点,DC为一边的角有2个,分别是∠BDC和∠CDE.4.图4-3-4是中央电视台部分节目的播出时间,分别确定钟表上时针与分针所成的最小的角的度数.图4-3-4解:钟表一周为360°,每一大格为30°,时针1小时走过30°,1分钟走过0.5°.解决本题时可以先确定钟表上时针与分针所成的角有几个大格,如新闻联播的时间时针与分针所成的角正好有五个大格,所以为150°.而今日说法的时间时针与分针所成的角正好有423个大格,所以为140°.5.在如图4-3-5中的方向坐标中画出表示下列方向的射线:(1)北偏东20°;(2)北偏西50°;(3)南偏东10°;(4)西南方向(即南偏西45°).图4-3-5思路解析:画射线时一定要找准题目中给出的起始线,如北偏东20°,即为以南北方向为起始线,向东偏20°.答案:如图:快乐时光手中有斧头上道德课时,老师说:“华盛顿总统在儿童时代,有一次砍掉了种植园中的一棵樱桃树.由于他勇敢地承认了自己的错误,父亲就没有惩罚他.”接着,老师又问:“为什么犯了错误的华盛顿没有受罚,谁能说说其中的原因吗?”一名男孩站起来说:“这很简单,因为华盛顿手里拿着斧头.”30分钟训练(巩固类训练,可用于课后)1.下列计算错误的是()A.0.25°=900″B.(1.5)°=90′C.1 000″=(518)° D.125.45°=125.45′思路解析:要明确度、分、秒之间的换算,1°=60′,1′=60″,所以125.45°=7 525′. 答案:D2.轮船航行到C处观测小岛A的方向是北偏西48°,那么从A同时观测轮船在C处的方向是()A.南偏东48°B.东偏北48°C.东偏南48°D.南偏东42°思路解析:画出A、C两点的位置并标出方向坐标,可以得出答案.答案:A3.若∠A=20°18′,∠B=20°15′30″,∠C=20.25°,则()A.∠A>∠B>∠CB.∠B>∠A>∠CC.∠A>∠C>∠BD.∠C>∠A>∠B思路解析:将三个角化成统一单位,即可得出答案.答案:A4.(1)如图4-3-6,把图中的角都表示出来;(2)如图4-3-7,用字母A、B、C表示∠α,∠β;(3)如图4-3-8,图中共有几个角,分别用适当的方式表示出来.图4-3-6 图4-3-7 图4-3-8思路解析:角的表示方法有三类:第一类,可以用1个或3个大写字母表示角;第二类,可以用数字表示角;第三类,可以用希腊字母表示角.答案:(1)图中的角有:∠AOB、∠AOC、∠BOC.(2)∠α表示为∠CAB,∠β表示为∠ABC.(3)图中共有13个角,它们是∠1、∠2、∠α、∠β、∠BAD、∠BAE、∠FAE、∠FAD、∠D、∠B、∠C、∠AFC、∠AEC.5.小明用放大镜看一个度数为10度的角,放大的倍数为4倍,小明看到的角的度数为______. 思路解析:放大镜不会改变角的大小.答案:10度6.(1)把3.62°化为用度、分、秒表示的角;(2)50°23′45″化为用度表示的角.思路解析:将大单位化为小单位时乘以60,将小单位化为大单位时除以60.答案:3.62°=3°37′12″,50°23′45″=50.395 8°7.一电视发射塔在学校的东北方向,则学校在电视塔的什么方向?画图说明.思路解析:东北方向即为北偏东45度,所以电视发射塔在学校的北偏东45度,则学校在电视塔南偏西45度.答案:学校在电视塔的西南方.如图所示:8.小明利用星期天搞社会调查活动,早晨8:00出发,中午12:30到家,他出发时和到家时时针和分针的夹角各为多少度?思路解析:可借助手表观察这两个时间时针和分针之间的大格数,即可解决.答案:8:00时针和分针的夹角为120度;12:30时针和分针的夹角为165度.9.观察图4-3-9,完成下列问题:(1)∠AOB内部有一条射线OC,图中有多少个角?(2)∠AOB内部有两条射线OC、OD,图中有多少个角?(3)∠AOB内部有三条射线OC、OD、OE,图中有多少个角?(4)如果∠AOB内部有n条射线,图中有多少个角?图4-3-9思路解析:同线段的识图一样,要按顺序找角,按逆时针方向,以射线OA为角的始边,则图(1)中以射线OC、OB为角的另一边共有两个角∠AOC、∠AOB,以射线OC为始边、射线OB为终边有一个角∠COB,所以(1)中共有角的个数是3=2+1;同理,(2)中角的个数是6=3+2+1;(3)中角的个数是10=4+3+2+1;经过观察,可以发现角内部射线的条数总比第一个加数小1,所以∠AOB内部有n条射线时,角的个数是(n+1)+n+…+3+2+1=(1)(2)2n n++个.答案:(1)3个;(2)6个;(3)10个;(4)(n+1)+n+…+3+2+1=(1)(2)2n n ++个.。

《角的表示》习题

《角的表示》习题

《角的表示》习题
1、下列关于角的说法正确的个数是()
(1)角是由两条射线组成的图形;
(2)角的边越长,角越大;
(3)在角一边延长线上取一点D;
(4)角可以看作由一条射线绕着它的端点旋转而成的图形.
A.1个
B.2个
C.3个
D.4个
2、下列说法中,不正确的是()
A.∠AOB的顶点是O点
B.∠AOB的边是两条射线
C.射线BO,射线AO分别是∠AOB的边
D.∠AOB与∠BOA表示的是同一个角
3、如图,下列表示角的方法错误的是()C
A.∠1与∠AOB表示同一个角βB B.∠AOC可用∠O来表示1A C.图中共有三个角∠AOB、∠AOC、∠BOC
D.∠β表示的是∠BOC
4、下列说法中,正确的是()
A.平角是一条直线
B.一条直线是一个周角
C.两边成一条直线的角是平角
D.直线是平角
5、下列说法正确的是()
A.一个钝角与一个锐角的差一定是锐角
B.一个钝角与一个直角的差一定是直角
C.一个钝角与一个锐角的差一定是直角
D.一个钝角与一个锐角的差仍是钝角
6、判断题.
(1)所有的直角都相等.()
(2)大于直角的角都是钝角.()
7、角是由两条公共断点的两条________组成的图形,也可以看成是由一条_______绕它的端点旋转而成的图形.__________叫做角的顶点,_________叫做角的始边,__________叫做角的终边.
8、请你举出几个由旋转产生的角的实例.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学8.1《角的表示》练习题2
一、单选题
1.下列说法正确的是()
A.角是由两条射线组成的图形
B.一条射线是一个周角
C.角的边越长,角越大
D.角可以看作由一条射线绕着它的端点旋转而形成的图形
2.下图中表示∠ABC的图是().
A 、
B 、
C 、
D 、
3.如图,射线AB与AC所组成的角不正确的表示方法是()
A.∠1 B.∠A C.∠BAC D.∠CAB
4.下图中,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()
A. B.
C. D.
5.如图,图形表示的是()
A.直线B.射线C.平角D.周角
6.如图,下列说法正确的是()
A.∠1与∠OAB表示同一个角
B.∠AOC也可以用∠O表示
C.图中共有三个角:∠AOB、∠AOC和∠BOC
D.∠β表示的是∠COA
7.如图所示,对所给图形及说法正确的个数是()
A.0 B.1 C.2 D.3
8.如图,点O在直线AB上,则在此图中小于平角的角有()
A.4个B.5个C.6个D.7个9.如图,下列说法错误的是()
A.∠DAE也可以表示为∠A
B.∠1也可以表示为∠ABC
C.∠BCE也可以表示为∠C
D.∠ABD是一个平角
10.如图,∠AOB是直角,OPi(i=1,2,3,4,5,6)是射线,则图中共有锐角()
A.28个B.27个C.24个D.22个
二、填空题
11.如图,角的顶点是,边是,
请你用四种不同的记法表示这个角为、、、.
12.41周角= 平角= 直角. 13. 如图,图中能用一个大写字母表示的角是________;
以A 为顶点的角有______个,它们分别是__________.
14.如图,(1)能用一个字母表示的角有______.
(2)用三个大写字母表示∠1为_______,∠2为_________ ,∠3为_________.
15.如图,图中有________个小于平角的角.
三、解答题
16.如图,写出:
(1)能用一个字母表示的角;
(2)以B 为顶点的角;
(3)图中共有几个小于平角的角,一一写出来?
17.写出如图的符合下列条件的角.(图中所有的角均指小于平角的角).
(1)能用一个大写字母表示的角;
(2)以点A 为顶点的角;
(3)图中所有的角(可用简便方法表示).
18.数一数,图中共有多少个角?把他们分别表示出来.
19.如
图:
(1) 图中以点B 为顶点的角有几个?把他们表示出来.
(2) 指出以射线BA 为边的角.
(3) 以D 为顶点,DC 为一边的角有几个?分别表示出来(平角、周角除外).
七年级数学8.1角的表示练习题答案
一、单选题
1.D
D C
A B
E
【解析】
根据角的定义:有公共端点的两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边,角的大小与边的长度无关分别进行分析.
A、角是由两条射线组成的图形,说法错误;
B、周角是一条射线绕其端点旋转所形成的角,而射线是直线的一部分,有一个端点,向一方无限延伸,二者不是一个范畴,错误;
C、角的边越长,角越大,说法错误;
D、角可以看作由一条射线绕着它的端点旋转而形成的图形,说法正确;
2.C
【解析】
用三个大写英文字母表示角,表示角顶点的字母要写在中间,A图表示为∠CAB,B图表示的不是角,C图表示为∠ABC,D图表示为∠ACD.
3..B
【解析】
本题主要考查角的定义以及角的表示,解题的关键是要注意其表示方法.
解题方法提示:要想得到射线AB与AC所组成的角,则可用一个阿拉伯数字表示,也可用三个大写英文字4..D
【解析】
A、顶点O处有四个角,不能用∠O表示,错误;
B、顶点O处有二个角,不能用∠O表示,错误;
C、顶点O处有三个角,不能用∠O表示,错误;
D、顶点O处有一个角,能同时用∠AOB,∠O,∠1表示,正确.
5..D
【解析】
周角可以看做一条射线绕端点旋转一周或始边与终边成一条射线,由图形特点可知图形表示的是周角.故选D.
6.C
【解析】
直接利用角的概念以及角的表示方法,进而分别分析得出即可.
A.∠1与∠OAB表示同一个角,错误;
B.∠AOC也可以用∠O表示,错误;
C.图中共有三个角:∠AOB、∠AOC和∠BOC,正确;
D.∠β表示的是∠COA,错误.
7.C
【解析】
此题主要考查了角的定义以及射线、直线、线段的定义,正确把握相关定义是解题关键.
①应表示为∠BOA,故此选项错误;
②应表示为∠COA,∠AOB,∠COA,故此选项错误;
③直线不能看作角,故此选项错误;
④正确;
⑤正确;
8.B
【解析】
小于平角的角有∠AOD,∠AOC,∠DOC,∠DOB,∠COB
9.C
【解析】
根据角的表示方法解答:在本题中,当顶点处只有一个角时,可用一个大写字母表示,也可用三个大写字母表示,顶点处有多个角时,不能只用一个大写字母表示,依次推理即可得出结论.
A、A处就有一个角,∴∠DAE也可以表示为∠A正确,
B、∠1也可以表示为∠ABC正确
C、∵C处有多个角,∴∠BCE不可以表示为∠C,故C错误,
D、ABD在一条线上,∴∠ABD是一个平角正确.
10.B
【解析】
此题考查了角的数法,要以每条边为始边,数出所有角,要注意,不能漏数,也不能多数.
分别以OP1、OP2等为一边,数出所有角,相加即可.
以OP1为一边的角有7个,
以OP2为一边的角有6个,

以OP6为一边的角1个.
∴共有角1+2+3+4+5+6+7=28个.
去掉∠AOB(直角),还有27个.
二、填空题
11.角的顶点是O,边是ON,OM,用四种不同的记法表示这个角为∠MON、∠1、∠O、∠α,
12.周角=平角=1直角.
13.图中能用一个大写字母表示的角是∠B,∠C;以A为顶点的角有6个,它们分别是∠CAD,∠CAE,∠CAB,∠DAE,∠DAB,∠EAB
14.(1)∠B;(2)∠MCB;∠AMC;∠CAN
15. 12
三、解答题
16.解:(1)能用一个字母表示的角有2个:∠A,∠C;
(2)以B为顶点的角有3个:∠ABE,∠ABC,∠EBC;
(3)图中小于平角的角有7个:∠A,∠C,∠ABE,∠ABC,∠EBC,∠AEB,∠BEC.
17.解:(1)能用一个大写字母表示的角为:∠B,∠C;
(2)以点A为顶点的角为:∠CAD,∠BAD,∠BAC;
(3)图中所有的角有:∠C,∠B,∠1,∠2,∠3,∠4,∠CAB.
18.解:共有16个角,分别是∠BAC,∠BAD,∠CAD, ∠ABD,
∠ABC,∠DBC,∠ACB,∠BCD,∠ACD,∠ADB,∠ADC,∠BDC,∠AOD,
∠AOB,∠BOC,∠COD
19.解:(1)以B为顶点的角有3个:∠ABC,∠ABD,∠DBC;
(2)以射线BA为边的角为:∠ABC,∠ABD
(3)以D为顶点,DC为一边的角为:∠BDC,∠EDC.。

相关文档
最新文档