人教版七年级初一数学第二学期第六章 实数单元 易错题难题提高题学能测试试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级初一数学第二学期第六章 实数单元 易错题难题提高题学能测试
试卷
一、选择题
1.在求234567891666666666+++++++++的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:234567891666666666S =+++++++++……① 然后在①式的两边都乘以6,得:234567891066666666666S =+++++++++……②
②-①得10661S S -=-,即10
561S =-,所以10615S -=. 得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出23420181...a a a a a ++++++的值?你的答案是
A .201811a a --
B .201911a a --
C .20181a a -
D .20191a -
2.设记号*表示求,a b 算术平均数的运算,即*2
a b a b +=
,那么下列等式中对于任意实数,,a b c 都成立的是( ) ①()()()**a b c a b a c +=++;②()()**a b c a b c +=+;
③()()()**a b c a b a c +=++;④()()**22a a b c b c +=
+ A .①②③ B .①②④ C .①③④
D .②④ 3.下列命题中,真命题是( )
A .实数包括正有理数、0和无理数
B .有理数就是有限小数
C .无限小数就是无理数
D .无论是无理数还是有理数都是实数
4.若2a a a -=,则实数a 在数轴上的对应点一定在( )
A .原点左侧
B .原点或原点左侧
C .原点右侧
D .原点或原点右侧
5.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2
()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①②
B .①③
C .②③
D .①②③ 6.下列五个命题:
①如果两个数的绝对值相等,那么这两个数的平方相等;
②内错角相等;
③在同一平面内,垂直于同一条直线的两条直线互相平行;
④两个无理数的和一定是无理数;
⑤坐标平面内的点与有序数对是一一对应的.
其中真命题的个数是( )
A .2个
B .3个
C .4个
D .5个
7.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )
A .线段A
B 上 B .线段BO 上
C .线段OC 上
D .线段CD 上 8.下列各组数的大小比较正确的是( ) A .﹣5>﹣6 B .3>π
C .5.3>29
D . 3.1->﹣3.1 9.下列各数中,介于6和7之间的数是( ) A .43 B .50 C .58
D .339 10.下列判断正确的有几个( )
①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③33是3的立方根;④无理数是带根号的数;⑤2的算术平方根是2.
A .2个
B .3个
C .4个
D .5个
二、填空题
11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示). 12.一个数的平方为16,这个数是 .
13.符号“f ”表示一种运算,它对一些数的运算结果如下:
(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;
(2)f (12)=2,f (13)=3,f (14)=4,f (15
)=5,… 利用以上规律计算:1(2019)
()2019
f f ____. 14.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.
15.一个数的立方等于它本身,这个数是__. 16.3是______的立方根;81的平方根是________;32-=__________.
17.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.
18.若x <0323x x ____________.
19.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个
无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________
20.已知a 、b 为两个连续的整数,且a
b ,则a +b =_____.
三、解答题
21.先阅读第()1题的解法,再解答第()2题:
()1已知a ,b
是有理数,并且满足等式52b a =+,求a ,b 的值.
解:因为52b a -=+
所以(
)52b a =-所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩
()2已知x ,y
是有理数,并且满足等式2x 2y 17--=-x y +的值.
22.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.
你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:
①31000100==,又1000593191000000<
<,
10100∴<<,∴能确定59319的立方根是个两位数.
②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9. ③如果划去59319后面的三位319
得到数59,
<<3
4<<,可得3040<<,
由此能确定59319的立方根的十位数是3
因此59319的立方根是39.
(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.
①它的立方根是_______位数.
②它的立方根的个位数是_______.
③它的立方根的十位数是__________.
④195112的立方根是________.
(2
)请直接填写....
结果:
=________.
=________.
23.观察以下一系列等式:
①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;④_____:…
(1)请按这个顺序仿照前面的等式写出第④个等式:_____;
(2)根据你上面所发现的规律,用含字母n 的式子表示第n 个等式:_____;
(3)请利用上述规律计算:20+21+22+23+ (2100)
24.观察下列等式: ①111122=-⨯, ②1112323=-⨯, ③1113434
=-⨯. 将以上三个等式两边分别相加,得
1111111113111223342233444
++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子 (2)猜想并写出:
1n(n 1)+= . (3)探究并计算:111244668+++⨯⨯⨯ (1100102)
⨯. 25.你会求(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:
()()2111a a a -+=-,
()()23111a a a a -++=-,
()()324111a a a a a -+++=-,
(1)由上面的规律我们可以大胆猜想,得到(a ﹣1)(a 2014+a 2013+a 2012+…+a 2+a+1)= 利用上面的结论,求:
(2)22014+22013+22012+…+22+2+1的值是 .
(3)求52014+52013+52012+…+52+5+1的值.
26.已知a 是最大的负整数,b 是多项式2m 2n ﹣m 3n 2﹣m ﹣2的次数,c 是单项式﹣2xy 2的系数,且a 、b 、c 分别是点A 、B 、C 在数轴上对应的数.
(1)求a 、b 、c 的值,并在数轴上标出点A 、B 、C .
(2)若M 点在此数轴上运动,请求出M 点到AB 两点距离之和的最小值;
(3)若动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒
12
个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,点Q 能追上点P ?
(4)在数轴上找一点N ,使点M 到A 、B 、C 三点的距离之和等于10,请直接写出所有的N 对应的数.(不必说明理由)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
首先根据题意,设M=1+a+a 2+a 3+a 4+…+a 2014,求出aM 的值是多少,然后求出aM-M 的值,即可求出M 的值,据此求出1+a+a 2+a 3+a 4+…+a 2019的值是多少即可.
【详解】
∵M=1+a+a 2+a 3+a 4+…+a 2018①,
∴aM=a+a 2+a 3+a 4+…+a 2014+a 2019②,
②-①,可得aM-M=a 2019-1,
即(a-1)M=a 2019-1,
∴M= 201911
a a --. 故选:B.
【点睛】
考查了整式的混合运算的应用,主要考查学生的理解能力和计算能力.
2.B
解析:B
【分析】
根据材料新定义运算的描述,把等式的两边进行变形比较即可.
【详解】
①中()*2b c a b c a ++=+,()*()22a b a c b c a b a c a ++++++==+,所以①成立; ②中()2a b c a b c ++*+=,()*2
a b c a b c +++=,所以②成立; ③中,()()32*2a b c a b a c ++++=
,()2*2a b c a b c +++=,所以③不成立; ④中()2a b a b c c +*+=
+,22(*2)22222
a a
b
c a b c a b b c c +++++=+==+,所以④成立.
故选:B .
【点睛】 考核知识点:代数式.理解材料中算术平均数的定义是关键.
3.D
解析:D
【分析】
直接利用实数以及有理数、无理数的定义分析得出答案.
【详解】
A、实数包括有理数和无理数,故此命题是假命题;
B、有理数就是有限小数或无限循环小数,故此命题是假命题;
C、无限不循环小数就是无理数,故此命题是假命题;
D、无论是无理数还是有理数都是实数,是真命题.
故选:D.
【点睛】
此题主要考查了命题与定理,正确掌握相关定义是解题关键.
4.B
解析:B
【分析】
根据非正数的绝对值是它的相反数,可得答案.
【详解】
解:由a-|a|=2a,得
|a|=-a,
故a是负数或0,
∴实数a在数轴上的对应点在原点或原点左侧
故选:B.
【点睛】
本题考查了实数与数轴,利用了非负数的绝对值,非正数与数轴的关系:非正数位于原点及原点的左边.
5.A
解析:A
【分析】
在正确理解完全对称式的基础上,逐一进行判断,即可得出结论.
【详解】
解:根据信息中的内容知,只要任意两个字母交换,代数式不变,就是完全对称式,则:
①(a-b)2=(b-a)2;是完全对对称式.故此选项正确.
②将代数式ab+bc+ca中的任意两个字母交换,代数式不变,故ab+bc+ca是完全对称
式, ab+bc+ca中ab对调后ba+ac+cb,bc对调后ac+cb+ba,ac对调后cb+ba+ac,都与原式一样,故此选项正确;
③a2b+b2c+c2a 若只ab对调后b2a+a2c+c2b 与原式不同,只在特殊情况下(ab相同时)才会与原式的值一样
∴将a与b交换,a2b+b2c+c2a变为ab2+a2c+bc2.故a2b+b2c+c2a不是完全对称式.故此选项错误,
所以①②是完全对称式,③不是
故选择:A.
【点睛】
本题是信息题,考查了学生读题做题的能力.正确理解所给信息是解题的关键.
6.B
解析:B
【分析】
根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.
【详解】
①正确;
②在两直线平行的条件下,内错角相等,②错误;
③正确;
④反例:两个无理数π和-π,和是0,④错误;
⑤坐标平面内的点与有序数对是一一对应的,正确;
故选:B.
【点睛】
本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.
7.B
解析:B
【分析】
【详解】
由被开方数越大算术平方根越大,得由不等式的性质得:故选B.【点睛】
本题考查了实数与数轴,无理数大小的估算,解题的关键正确估算无理数的大小.
8.A
解析:A
【分析】
正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.
【详解】

∴选项A符合题意;

∴选项B不符合题意;
∵5.3
∴选项C不符合题意;
-<﹣3.1,
∵ 3.1
∴选项D不符合题意.
故选A.
【点睛】
此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
9.A
解析:A
【分析】
求出每个根式的范围,再判断即可.
【详解】
解:A、67,故本选项正确;
B、78,故本选项错误;
C、78,故本选项错误;
D、34,故本选项错误;
故选:A.
【点睛】
本题考查了估算无理数的大小的应用,关键是求出每个根式的范围.
10.B
解析:B
【分析】
根据平方根的定义判断①;根据实数的定义判断②;根据立方根的定义判断③;根据无理数的定义判断④;根据算术平方根的定义判断⑤.
【详解】
解:①一个数的平方根等于它本身,这个数是0,因为1的平方根是±1,故①错误;
②实数包括无理数和有理数,故②正确;
3的立方根,故③正确;
④π是无理数,而π不带根号,所以无理数不一定是带根号的数,故④错误;
⑤2,故⑤正确.
故选:B.
【点睛】
本题考查了平方根、立方根、算术平方根及无理数、实数的定义,是基础知识,需熟练掌握.
二、填空题
11..
【解析】
【详解】
根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:
bn=.
解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.
“ 解析:12++n n . 【解析】
【详解】 根据题意按规律求解:b 1=2(1-a 1)=131221-
4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =1
2++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=
12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.
12.【详解】
解:这个数是 解析:
【详解】
解:2(4)16,±=∴这个数是4±
13.-1
【分析】
根据新定义中的运算方法求解即可.
【详解】
∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,
∴f(2019)=2018.
∵f()=2,f()=3,f()=4,f()
解析:-1
【分析】
根据新定义中的运算方法求解即可.
【详解】
∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,
∴f(2019)=2018.
∵f(12)=2,f(13)=3,f(14)=4,f(15
)=5,…, ∴1()2019
f 2019,

1
(2019)()
2019
f f2018-2019=-1.
故答案为:-1.
【点睛】
本题考查了新定义运算,明确新定义的运算方法是解答本题的关键.
14.1或5.
【分析】
根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.
【详解】
解:根据题意得:x=3,y=2或x=3,y=﹣2,
则x﹣y=1或5.
故答案为1
解析:1或5.
【分析】
根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.
【详解】
解:根据题意得:x=3,y=2或x=3,y=﹣2,
则x﹣y=1或5.
故答案为1或5.
【点睛】
此题考查了代数式求值,熟练掌握运算法则是解本题的关键.
15.0或±1.
【分析】
根据立方的定义计算即可.
【详解】
解:∵(﹣1)3=﹣1,13=1,03=0,
∴一个数的立方等于它本身,这个数是0或±1.
故答案为:0或±1.
【点睛】
本题考查了乘方的
解析:0或±1.
【分析】
根据立方的定义计算即可.
【详解】
解:∵(﹣1)3=﹣1,13=1,03=0,
∴一个数的立方等于它本身,这个数是0或±1.
故答案为:0或±1.
【点睛】
本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.
16.±9 2-
【分析】
根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;
【详解】
解:∵ ,
∴3是27的立方根;
∵ ,
∴81的平方根是 ;
∵ ,
∴;
故答案为:2
解析:
【分析】
根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;
【详解】
解:∵3327= ,
∴3是27的立方根;
∵2(9)81±= ,
∴81的平方根是9± ;
2< ,
22=
故答案为:27,9±,;
【点睛】
本题主要立方根、平方根的定义以及去绝对值法则,掌握一个数的平方根有两个,它们互为相反数是解题的关键.
17.255
【分析】
根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.
【详解】
∴对255只需要进行3次操作后变成1,
∴对256需要进行4次操作
解析:255
【分析】
根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.
【详解】
解:25515,3,1,⎡⎤===⎣⎦ ∴对255只需要进行3次操作后变成1,
25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,
∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255.
【点睛】
本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.
18.0
【分析】
分别利用平方根和立方根直接计算即可得到答案.
【详解】
解:∵x<0,
∴,
故答案为:0.
【点睛】 本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是
解析:0
【分析】
分别利用平方根和立方根直接计算即可得到答案.
【详解】
解:∵x <0,
0x x =-+=,
故答案为:0.
本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.19.2个
【分析】
①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即
解析:2个
【分析】
①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.
【详解】
=,故①错误;
①10
②数轴上的点与实数成一一对应关系,故说法正确;
③两条平行直线被第三条直线所截,同位角相等;故原说法错误;
④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;
与的和是0,是有理数,故说法错误;
⑥无理数都是无限小数,故说法正确.
故正确的是②⑥共2个.
故答案为:2个.
【点睛】
此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无
π也是无理数.
20.9
【分析】
首先根据的值确定a、b的值,然后可得a+b的值.
【详解】
∵<,
∴4<<5,
∵a<<b,
∴a=4,b=5,
∴a+b=9,
故答案为:9.
【点睛】
本题主要考查了估算无理数的
解析:9
【分析】
a 、
b 的值,然后可得a +b 的值.
【详解】
<
∴45,
∵a b ,
∴a =4,b =5,
∴a +b =9,
故答案为:9.
【点睛】
本题主要考查了估算无理数的大小,关键是正确确定a 、b 的值. 三、解答题
21.x y 9+=或x y 1+=-.
【分析】
利用等式左右两边的有理数相等和二次根式相同,建立方程组,然后解方程即可.
【详解】
因为2x 2y 17--=-
所以()
2x 2y 17-=- 所以2x 2y 17
y 4-=⎧=⎨⎩
, 解得{x 5y 4==或{x 5
y 4=-=,
所以x y 9+=或x y 1+=-.
【点睛】
本题是一个阅读题目,主要考查了实数的运算,其中关键是理解解方程组的思路就是消元.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题.
22.(1)①两;②8;③5;④58;(2)①24;②56.
【分析】
(1)①根据例题进行推理得出答案;
②根据例题进行推理得出答案;
③根据例题进行推理得出答案;
④根据②③得出答案;
(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论; ②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.
【详解】
(1)①31000100==,10001951121000000<< ,
∴10100<<,
∴能确定195112的立方根是一个两位数,
故答案为:两;
②∵195112的个位数字是2,又∵38512=,
∴能确定195112的个位数字是8,
故答案为:8;
③如果划去195112后面三位112得到数195,
<<
∴56<<,
可得5060<<,
由此能确定195112的立方根的十位数是5,
故答案为:5;
④根据②③可得:195112的立方根是58,
故答案为:58;
(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,
∴13824的立方根是24,
故答案为:24;
②175616的立方根是两位数,立方根的个位数是6,十位数是5,
∴175616的立方根是56,
故答案为:56.
【点睛】
此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.
23.24-23=16-8=23
24﹣23=16﹣8=23 2n ﹣2(n ﹣1)═2(n ﹣1) 【解析】
试题分析:(1)根据已知规律写出④即可.
(2)根据已知规律写出n 个等式,利用提公因式法即可证明规律的正确性.
(3)写出前101个等式,将这些等式相加,整理即可得出答案.
试题解析:(1)根据已知等式:
①21-20=2-1=20;
②22-21=4-2=21;
③23-22=8-4=22;
得出以下:
④24-23=16-8=23,
(2)①21-20=2-1=20;
②22-21=4-2=21;
③23-22=8-4=22;
④24-23=16-8=23;
得出第n 个等式:
2n -2(n-1)=2(n-1);
证明:
2n -2
(n-1), =2(n-1)×(2-1), =2(n-1);
(3)根据规律:
21-20=2-1=20;
22-21=4-2=21;
23-22=8-4=22;
24-23=16-8=23;

2101-2100=2100;
将这些等式相加得:
20+21+22+23+ (2100)
=2101-20,
=2101-1.
∴20+21+22+23+…+2100=2101-1.
24.(1)
1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】
试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545
=-⨯; (2)根据以上规律直接写出即可;
(3)各项提出12
之后即可应用(1)中的方法进行计算. 解:(1)答案为:
1114545=-⨯; (2)答案为:()11111
n n n n =-++; (3)111244668+++⨯⨯⨯ (1100102)

=1
2
×(
111
122334
++
⨯⨯⨯
+…+
1
5051


=1
2
×
50
51
=25 51
.
点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.
25.(1)a2015﹣1;(2)22015﹣1;(3)
2015
51
4
-

【分析】
(1)根据已知算式得出规律,即可得出答案.
(2)先变形,再根据规律得出答案即可.
(3)先变形,再根据规律得出答案即可.
【详解】
(1)由上面的规律我们可以大胆猜想,(a﹣1)(a2012+a2011+a2010+…+a2+a+1)=a2015﹣1,
故答案为:a2015﹣1;
(2)22014+22013+22012+…+22+2+1
=(2﹣1)×(22014+22013+22012+…+22+2+1)
=22015﹣1,
故答案为:22015﹣1;
(3)52014+52013+52012+…+52+5+1
=1
4
×(5﹣1)×(52014+52013+52012+…+52+5+1)

2015
51
4
-

【点睛】
本题考查了实数运算的规律题,掌握算式的规律是解题的关键.
26.(1)a=﹣1,b=5,c=﹣2,数轴详见解析;(2)6;(3)运动4秒后,点Q可以追
上点P;(4)M对应的数为2或﹣22
3.
【解析】
【分析】
(1)根据题意易得a,b,c的值,然后在数轴上表示出来即可;
(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为AB的长;(3)用AB的长度除以点Q与点P的速度差即可得解;
(4)分析M点在不同的位置时,所得到的M的值即可.
【详解】
(1)∵a是最大的负整数,
∴a=﹣1,
∵b是多项式2m2n﹣m3n2﹣m﹣2的次数,
∴b=3+2=5,
∵c是单项式﹣2xy2的系数,
∴c=﹣2,
如图所示:
(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为5﹣(﹣1)=6;(3)∵动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒1
2
个单位长度,
点Q的速度是每秒2个单位长度,
∴AB=6,两点速度差为:2﹣1
2

∴6÷(2﹣1
2
)=4,
答:运动4秒后,点Q可以追上点P;
(4)存在点M,使P到A、B、C的距离和等于10,
当M在AB之间,则M对应的数是2,
当M在C点左侧,则M对应的数是:﹣22 3 .
综上所述,M对应的数为2或﹣22
3.
【点睛】
本题主要考查实数与数轴,数轴上两点之间的距离.解此题的关键在于根据题意准确画出数轴上各点所表示的数.。

相关文档
最新文档