苏教版数学八年级上册 压轴题 期末复习试卷测试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版数学八年级上册 压轴题 期末复习试卷测试卷(解析版)
一、压轴题
1.对于实数x ,若231a x ≤+,则符合条件的a 中最大的正数为X 的內数,例如:8的内数是5;7的内数是4.
(1)1的内数是______,20的內数是______,6的內数是______;
(2)若3是x 的內数,求x 的取值范围;
(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过t 秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为n ,例如当1t =时,4n =,如图2①……;当4t =时,9n =,如图2②,③;…… ①用n 表示t 的內数;
②当t 的內数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标.(若有多点并列最远,全部写出)
2.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE .
(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.
(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.
3.如图,直线l 1:y 1=﹣x +2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12
x +b 过点P . (1)求点P 坐标和b 的值;
(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正
方向移动.设点Q的运动时间为t秒.
①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;
②求出t为多少时,△APQ的面积小于3;
③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.
4.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.
(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使
△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
AB=,
5.如图,已知四边形ABCO是矩形,点A,C分别在y轴,x轴上,4
BC=.
3
(1)求直线AC 的解析式;
(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;
(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标.
6.如图,直线112
y x b =-
+分别与x 轴、y 轴交于A ,B 两点,与直线26y kx =-交于点()C 4,2.
(1)b = ;k = ;点B 坐标为 ;
(2)在线段AB 上有一动点E ,过点E 作y 轴的平行线交直线y 2于点F ,设点E 的横坐标为m ,当m 为何值时,以O 、B 、E 、F 为顶点的四边形是平行四边形;
(3)若点P 为x 轴上一点,则在平面直角坐标系中是否存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形.若存在,直接写出所有符合条件的Q 点坐标;若不存在,请说明理由.
7.问题背景:(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE =BD +CE .
拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE 、BD 、CE 三条线段的数量关系.(不需要证明)
实际应用:(3)如图,在△ACB 中,∠ACB =90°,AC =BC ,点C 的坐标为(-2,0),点A 的坐标为(-6,3),请直接写出B 点的坐标.
8.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:
若1,(2),(2)
b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).
(1)①点3,1)-的限变点的坐标是________;
②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)
(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.
9.在等边△ABC 的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A 向B 和由C 向A 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D 、E 处,请问:
(1)如图1,在爬行过程中,CD 和BE 始终相等吗,请证明?
(2)如果将原题中的“由A 向B 和由C 向A 爬行”,改为“沿着AB 和CA 的延长线爬行”,EB 与CD 交于点Q ,其他条件不变,蜗牛爬行过程中∠CQE 的大小保持不变,请利用图2说明:∠CQE =60°;
(3)如果将原题中“由C 向A 爬行”改为“沿着BC 的延长线爬行,连接DE 交AC 于F ”,其他条件不变,如图3,则爬行过程中,证明:DF =EF
10.学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.
(初步思考)
我们不妨将问题用符号语言表示为:在△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.
(深入探究)
第一种情况:当∠B 是直角时,△ABC ≌△DEF .
(1)如图①,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据______,可以知道Rt △ABC ≌Rt △DEF .
第二种情况:当∠B 是钝角时,△ABC ≌△DEF .
(2)如图②,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角.求证:△ABC ≌△DEF .
第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.
(3)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角.请你用直尺在图③中作出△DEF ,使△DEF 和△ABC 不全等,并作简要说明.
11.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两
条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:
(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”
(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”
请你根据3位同学的提示,分别求出三种情况下AB 的长度.
12.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°
(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF
①求证:△AED ≌△AFD ;
②当BE =3,CE =7时,求DE 的长;
(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.
【参考答案】***试卷处理标记,请不要删除
一、压轴题
1.(1)2,7,4;(2)83
x ≥;(3)①t 的内数=有2个,离原点最远的格点的坐标有两个,为()8,4-±.
【解析】
【分析】
(1)根据内数的定义即可求解;
(2)根据内数的定义可列不等式2331x ≤+,求解即可;
(3)①分析可得当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =……归纳可得结论;②分析可得当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;且最大实心正方形的边长为:t 的內数-1,即可求解.
【详解】
解:(1)22311=⨯+,所以1的内数是2;
232017⨯+>,所以20的内数是7;
23614⨯+>,所以6的内数是4;
(2)∵3是x 的內数,
∴2331x ≤+, 解得83
x ≥; (3)①当1t =时,即t 的内数为2时,4n =;
当4t =时,即t 的内数为3时,9n =,
当5t =时,即t 的内数为4时,16n =,
……
∴t 的内数=
②当t 的内数为2时,最大实心正方形有1个;
当t 的内数为3时,最大实心正方形有2个,
当t 的内数为4时,最大实心正方形有1个,
……
即当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;
∴当t 的內数为9时,符合条件的最大实心正方形有2个,
由前几个例子推理可得最大实心正方形的边长为:t 的內数-1,
∴此时最大实心正方形的边长为8,
离原点最远的格点的坐标有两个,为()8,4-±.
【点睛】
本题考查图形类规律探究,明确题干中内数的定义是解题的关键.
2.(1)见解析(2)(4,2)(3)(6,0)
【解析】
【分析】
(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;
(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;
(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.
【详解】
证明:∵∠ACB=90°,AD⊥l
∴∠ACB=∠ADC
∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE
∴∠CAD=∠BCE,
∵∠ADC=∠CEB=90°,AC=BC
∴△ACD≌△CBE,
∴AD=CE,CD=BE,
(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,
由已知得OM=ON,且∠OMN=90°
∴由(1)得MF=NG,OF=MG,
∵M(1,3)
∴MF=1,OF=3
∴MG=3,NG=1
∴FG=MF+MG=1+3=4,
∴OF﹣NG=3﹣1=2,
∴点N的坐标为(4,2),
(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,
对于直线y =﹣3x+3,由x =0得y =3
∴P (0,3),
∴OP =3
由y =0得x =1,
∴Q (1,0),OQ =1,
∵∠QPR =45°
∴∠PSQ =45°=∠QPS
∴PQ =SQ
∴由(1)得SH =OQ ,QH =OP
∴OH =OQ+QH =OQ+OP =3+1=4,SH =OQ =1
∴S (4,1),
设直线PR 为y =kx+b ,则341b k b =⎧⎨+=⎩ ,解得1k 2b 3
⎧=-⎪⎨⎪=⎩ ∴直线PR 为y =﹣
12x+3 由y =0得,x =6
∴R (6,0).
【点睛】
本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.
3.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272
;②7<t <9或9<t <11,③存在,当t 的值为3或9+
或9﹣
或6时,△APQ 为等腰三角形.
【解析】
分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;
(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12
P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22
t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()222
2(71)032103,t -++-=++-当AQ =PA 时,则
()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,
即可求得.
详解:解;(1)∵点P (m ,3)为直线l 1上一点,
∴3=−m +2,解得m =−1,
∴点P 的坐标为(−1,3),
把点P 的坐标代入212y x b =
+ 得,()1312b =⨯-+, 解得72b =
; (2)∵72
b =; ∴直线l 2的解析式为y =12x +72,
∴C 点的坐标为(−7,0),
①由直线11:2l y x =-+可知A (2,0),
∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222
S AQ yP t t =
⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222
S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =
-或327.22S t =- ②∵S <3, ∴
273322t -<或327 3.22
t -< 解得7<t <9或9<t <11. ③存在;
设Q (t −7,0),
当PQ =PA 时,则()()()222
2(71)032103,t -++-=++-
∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()22
2(72)2103,t --=++-
∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()2
22(71)03(72)t t -++-=--,
∴22(6)9(9)t t -+=-, 解得t =6.
故当t 的值为3或9+9-6时,△APQ 为等腰三角形.
点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.
4.(1)①△BPD 与△CQP 全等,理由见解析;②当点Q 的运动速度为125
cm /s 时,能够使△BPD 与△CQP 全等;(2)经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.
【解析】
【分析】
(1)①由“SAS”可证△BPD ≌△CQP ;
②由全等三角形的性质可得BP=PC=
12
BC=5cm ,BD=CQ=6cm ,可求解; (2)设经过x 秒,点P 与点Q 第一次相遇,列出方程可求解.
【详解】 解:(1)①△BPD 与△CQP 全等,
理由如下:∵AB =AC =18cm ,AD =2BD ,
∴AD =12cm ,BD =6cm ,∠B =∠C ,
∵经过2s 后,BP =4cm ,CQ =4cm ,
∴BP =CQ ,CP =6cm =BD ,
在△BPD 和△CQP 中,
BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩

∴△BPD ≌△CQP (SAS ),
②∵点Q 的运动速度与点P 的运动速度不相等,
∴BP ≠CQ ,
∵△BPD 与△CQP 全等,∠B =∠C ,
∴BP =PC =
12BC =5cm ,BD =CQ =6cm , ∴t =52
, ∴点Q 的运动速度=612552
=cm /s ,
∴当点Q 的运动速度为125
cm /s 时,能够使△BPD 与△CQP 全等; (2)设经过x 秒,点P 与点Q 第一次相遇, 由题意可得:125
x ﹣2x =36, 解得:x =90, 点P 沿△ABC 跑一圈需要
181810232++=(s ) ∴90﹣23×3=21(s ),
∴经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全
等三角形的判定是本题的关键.
5.(1)y =34-
x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】
【分析】
(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;
(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;
(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.
【详解】
解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,
故A (0,3),C (4,0),
设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),
点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:
340b k b =⎧⎨+=⎩解得:343
k b ⎧=-⎪⎨⎪=⎩, 所以直线AC 的解析式为:y =34
-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),
设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),
点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:
-340n m n =⎧⎨+=⎩解得:343
m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34
x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .
(3)
点P 在运动过程中,||PA PB -存在最大值,
由题意可知:如图,延长AB 与直线CD 交点即为点P ,
此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),
此时,||PA PB -= AB =4,y p = y A =3,
点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:
34
x -3=3, x =8,
故P 点坐标为(8,3),
||PA PB -的最大值为x p -x B =8-4=4.
【点睛】
本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.
6.(1)4;2;(0,4);(2)125m =或285m =;(3)存在.Q 点坐标为()
45,4-,()
45,4,()0,4-或()5,4. 【解析】
【分析】
(1)根据待定系数法,将点C (4,2)代入解析式可求解;
(2)设点E (m ,142
m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;
(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解.
【详解】
解:(1)(1)∵直线y 2=kx -6交于点C (4,2),
∴2=4k -6,
∴k =2,
∵直线212
y x b =-+过点C (4,2),
∴2=-2+b , ∴b =4, ∴直线解析式为:212y x b =-
+,直线解析式为y 2=2x -6, ∵直线212
y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,
∴点B (0,4),点A (8,0),
故答案为:4;2;(0,4)
(2)∵点E 在线段AB 上,点E 的横坐标为m ,
∴1,42E m m ⎛⎫-
+ ⎪⎝⎭,(),26F m m -, ∴()154261022
EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,
∴EF BO =,
∴51042
m -=, 解得:125m =
或285m =时, ∴当125m =或285
m =时,四边形OBEF 是平行四边形. (3)存在.此时Q 点坐标为()45,4-,()
45,4,()0,4-或()5,4.
理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:
①以AB 为边,如图1所示.
因为点()8,0A ,()0,4B ,
所以45AB =.
因为以P ,Q ,A ,B 为顶点的四边形为菱形,
所以AP AB =或BP BA =.
当AP AB =时,点()845,0P -或()
845,0+;
当BP BA =时,点()8,0P -. 当(
)845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()
45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.
②以AB 为对角线,对角线的交点为M ,如图2所示.
可得5AP =,
点P 坐标为()3,0.
因为以P ,Q ,A ,B 为顶点的四边形为菱形,
所以点Q 坐标为()5,4.
综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形,此时Q 点坐标为()45,4-,()
45,4,()0,4-或()5,4.
【点睛】
本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.
7.(1)证明见解析;(2)DE =BD +CE ;(3)B(1,4)
【解析】
【分析】
(1)证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;
(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE ,证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;
(3)根据△AEC ≌△CFB ,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答.
【详解】
(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,
∴∠ADB =∠CEA =90°
∵∠BAC =90°
∴∠BAD +∠CAE =90°
∵∠BAD +∠ABD =90°
∴∠CAE =∠ABD
∵在△ADB 和△CEA 中
ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△ADB ≌△CEA (AAS )
∴AE =BD ,AD =CE
∴DE =AE +AD =BD +CE
即:DE =BD +CE
(2)解:数量关系:DE =BD +CE
理由如下:在△ABD 中,∠ABD=180°-∠ADB-∠BAD ,
∵∠CAE=180°-∠BAC-∠BAD ,∠BDA=∠AEC ,
∴∠ABD=∠CAE ,
在△ABD 和△CAE 中,
ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩
=== ∴△ABD ≌△CAE (AAS )
∴AE=BD ,AD=CE ,
∴DE=AD+AE=BD+CE ;
(3)解:如图,作AE ⊥x 轴于E ,BF ⊥x 轴于F ,
由(1)可知,△AEC ≌△CFB ,
∴CF=AE=3,BF=CE=OE-OC=4,
∴OF=CF-OC=1,
∴点B 的坐标为B (1,4).
【点睛】
本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.
8.(1)①
()
3,1;②B ;(2)3s =;(3)59k ≤≤. 【解析】
【分析】
(1)利用限变点的定义直接解答即可;
(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;
(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;
(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.
【详解】
解:(1
)①∵2a =, ∴11b b ==-=',
∴坐标为:)

故答案为:); ②∵对于限变点来说,横坐标保持不变,
∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,
, 限变点(2,1)B 对应的原来点的坐标为:()2,2,
∵()2,2满足2y =,
∴这个点是B ,
故答案为:B ;
(2)∵点C 的坐标为(2,2)--,
∴OC 的关系式为:()0y x x =≤,
∵点D 的坐标为(2,2)-,
∴OD 的关系式为:()0y x x =-≥,
∴点P 满足的关系式为:()(
)00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:
当2x ≥时:1b x '=--,
当02x <<时:b x x '=-=,
当0x ≤时,b x x '==-,
图像如下:
通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,
当2x <时,0b '≥,∴0m =,
∴()033s m n =-=--=;
(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,
,, 把(2,5)E --,(,3)F k k -代入得:253
a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,, ∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x x
b x x x -⎧'=⎨
-=--<⎩, 图象如下:
当x =2时,b ′取最小值,b '=2﹣4=﹣2,
当b '=5时,
x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,
当b ′=1时,
x ﹣4=1,解得:x =5,
∵ 25b '-≤≤,
∴由图象可知,k 的取值范围时:59k ≤≤.
【点睛】
本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.
9.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.
【解析】
【分析】
(1)先证明△ACD ≌△CBE ,再由全等三角形的性质即可证得CD=BE ;
(2)先证明△BCD ≌△ABE ,得到∠BCD=∠ABE ,求出
∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC ,∠CQE=180°-∠DQB ,即可解答; (3)如图3,过点D 作DG ∥BC 交AC 于点G ,根据等边三角形的三边相等,可以证得AD=DG=CE ;进而证明△DGF 和△ECF 全等,最后根据全等三角形的性质即可证明.
【详解】
(1)解:CD 和BE 始终相等,理由如下:
如图1,AB=BC=CA ,两只蜗牛速度相同,且同时出发,
∴CE=AD ,∠A=∠BCE=60°
在△ACD 与△CBE 中,
AC=CB ,∠A=∠BCE ,AD=CE
∴△ACD ≌△CBE (SAS ),
∴CD=BE ,即CD 和BE 始终相等;
(2)证明:根据题意得:CE=AD ,
∵AB=AC ,
∴AE=BD ,
∴△ABC 是等边三角形,
∴AB=BC ,∠BAC=∠ACB=60°,
∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,
∴∠EAB=∠DBC ,
在△BCD 和△ABE 中,
BC=AB ,∠DBC=∠EAB ,BD=AE
∴△BCD ≌△ABE (SAS ),
∴∠BCD=∠ABE
∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,
∴∠CQE=180°-∠DQB=60°,即CQE=60°;
(3)解:爬行过程中,DF 始终等于EF 是正确的,理由如下:
如图,过点D 作DG ∥BC 交AC 于点G ,
∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E ,
∴△ADG 为等边三角形,
∴AD=DG=CE ,
在△DGF 和△ECF 中,
∠GFD=∠CFE,∠GDF=∠E,DG=EC
∴△DGF≌△EDF(AAS),
∴DF=EF.
【点睛】
本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.
10.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF 和△ABC不全等.
【解析】
【分析】
(1)根据直角三角形全等的方法“HL”证明;
(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;
(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;
(4)根据三种情况结论,∠B不小于∠A即可.
【详解】
(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.
(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角
∴G、H分别在AB、DE的延长线上.
∵CG⊥AG,FH⊥DH,
∴∠CGA=∠FHD=90°.
∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,
∴∠CBG=∠FEH.
在△BCG和△EFH中,
∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,
∴△BCG≌△EFH.
∴CG=FH.
又∵AC=DF.∴Rt△ACG≌△DFH.
∴∠A=∠D.
在△ABC和△DEF中,
∵∠ABC=∠DEF,∠A=∠D,AC=DF,
∴△ABC≌△DEF.
(3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等.
【点睛】
本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.
11.(1522213221
【解析】
【分析】
(1)分别过点B,C向l1作垂线,交l1于M,N两点,证明△ABM≌△CAN,得到
AM=CN,AN=BM,即可得出AB;
(2)分别过点B,C向l1作垂线,交l1于点P,Q两点,在l1上取M,N使
∠AMB=∠CNA=120°,证明△AMB≌△CAN,得到CN=AM,再通过△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的长;
(3)在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交l3于点P,过A作l3的垂线,交l3于点Q,证明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,从而得到PC,结合BP算出BC的长,即为AB.
【详解】
解:(1)如图,分别过点B,C向l1作垂线,交l1于M,N两点,
由题意可得:∠BAC=90°,
∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,
∴∠MAB=∠NCA,
在△ABM和△CAN中,
=
=
=
AMB CNA
MAB NCA
AB AC
∠∠


∠∠




∴△ABM≌△CAN(AAS),
∴AM=CN=2,AN=BM=1,
∴AB=22
25
1=
+;
(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,
∵∠BAC=120°,
∴∠MAB+∠NAC=60°,
∵∠ABM+∠MAB=60°,
∴∠ABM=∠NAC,
在△AMB和△CNA中,
=
=
=
AMB CNA
ABM NAC
AB AC
∠∠


∠∠




∴△AMB≌△CNA(AAS),
∴CN=AM,
∵∠AMB=∠ANC=120°,
∴∠PMB=∠QNC=60°,
∴PM=
1
2
BM,NQ=
1
2
NC,
∵PB=1,CQ=2,
设PM=a,NQ=b,
∴222
1=4
a a
+,222
2=4
b b
+,
解得:
3
a,
23
=
b,

2
2
23
2
3
⎛⎫
+ ⎪

⎝⎭
43

AB=22AP BP +=()22AM PM BP ++=221;
(3)如图,在l 3上找M 和N ,使得∠BNC=∠AMC=60°,
过B 作l 3的垂线,交于点P ,过A 作l 3的垂线,交于点Q ,
∵△ABC 是等边三角形,
∴BC=AC ,∠ACB=60°,
∴∠BCN+∠ACM=120°,
∵∠BCN+∠NBC=120°,
∴∠NBC=∠ACM ,
在△BCN 和△CAM 中,
BNC CMA NBC MAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩

∴△BCN ≌△CAM (AAS ),
∴CN=AM ,BN=CM ,
∵∠PBN=90°-60°=30°,BP=2,
∴BN=2NP ,
在△BPN 中,222BP NP BN +=,
即22224NP NP +=,
解得:23 ∵∠AMC=60°,AQ=3,
∴∠MAQ=30°,
∴AM=2QM , 在△AQM 中,222AQ QM AM +=, 即22234QM QM +=,
解得:3,
∴AM=23,
∴PC=CN-NP=AM-NP=
33
, 在△BPC 中,
BP2+CP2=BC2,
即BC=
2
222
43221
2
3
BP CP
⎛⎫
+=+=


⎝⎭

∴AB=BC=221
.
【点睛】
本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.
12.(1)①见解析;②DE=29
7
;(2)DE的值为517
【解析】
【分析】
(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;
(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.
【详解】
(1)①如图1中,
∵将△ABE绕点A逆时针旋转90°后,得到△AFC,
∴△BAE≌△CAF,
∴AE=AF,∠BAE=∠CAF,
∵∠BAC=90°,∠EAD=45°,
∴∠CAD+∠BAE=∠CAD+∠CAF=45°,
∴∠DAE=∠DAF,
∵DA=DA,AE=AF,
∴△AED≌△AFD(SAS);
②如图1中,设DE=x,则CD=7﹣x.
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∵∠ABE=∠ACF=45°,
∴∠DCF=90°,
∵△AED≌△AFD(SAS),
∴DE=DF=x,
∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,
∴x=29
7

∴DE=29
7

(2)∵BD=3,BC=9,
∴分两种情况如下:
①当点E在线段BC上时,如图2中,连接BE.
∵∠BAC=∠EAD=90°,
∴∠EAB=∠DAC,
∵AE=AD,AB=AC,
∴△EAB≌△DAC(SAS),
∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,
∴∠EBD=90°,
∴DE2=BE2+BD2=62+32=45,
∴DE=35;
②当点D在CB的延长线上时,如图3中,连接BE.
同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,
∴DE2=EB2+BD2=144+9=153,
∴DE=317,
综上所述,DE的值为35或317.
【点睛】
本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.。

相关文档
最新文档