云梦县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云梦县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)如图,AB,CD相交于点O,AC⊥CD与点C,若∠BOD=38°,则∠A等于()
A. 52
B. 46
C. 48
D. 50
【答案】A
【考点】对顶角、邻补角
【解析】【解答】解:由对顶角的性质和直角三角形两锐角互余,可以求出∠A的度数为52.
故答案为:A
【分析】利用对顶角的性质,可知∠AOC=∠BOD,由直角三角形两锐角互余,可求出∠A的度数.
2、(2分)若不等式组有三个非负整数解,则m的取值范围是()
A.3<m<4
B.2<m<3
C.3<m≤4
D.2<m≤3
【答案】D
【考点】一元一次不等式的特殊解
【解析】【解答】解不等式组,可得,,即-3≤x<m,该不等式组有三个非负整数解,分析可知,这三个非负整数为0、1、2,由此可知2≤m<3.
【分析】首先确定不等式组非负整数解,然后根据不等式的非负整数解得到一个关于m的不等式组,从而求解.解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
3、(2分)若不等式(a+1)x>a+1的解集是x<1,则a必满足()
A.a<-1
B.a>-1
C.a<1
D.a>1
【答案】A
【考点】不等式的解及解集,解一元一次不等式
【解析】【解答】解:根据不等式的不等号发生了改变,可知a+1<0,解得a<-1.
故答案为:A
【分析】根据不等式的性质3和所给不等式的解集可知a+1<0,即可求出a的取值范围.注意不等式的性质3:
不等式两边除以同一个负数时,不等式的方向改变.
4、(2分)已知关于x,y的方程组,当x+y=3时,求a的值()
A. -4
B. 4
C. 2
D.
【答案】B
【考点】解一元一次方程,解二元一次方程组
【解析】【解答】解:解方程组得:又∵x+y=3,∴a-3+2=3,∴a=4;
故答案为:B。

【分析】首先解出关于x,y的二元一次方程组,求解得出x,y的值,再将x,y,的值代入x+y=3,得出一个关于a 的方程,求解即可得出a的值。

5、(2分)如图,工人师傅在工程施工中需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()
A. AB∥BC
B. BC∥CD
C. AB∥DC
D. AB与CD相交
【答案】C
【考点】平行线的判定
【解析】【解答】解:∵∠ABC=150°,∠BCD=30°
∴∠ABC+∠BCD=180°
∴AB∥DC
故答案为:C
【分析】根据已知可得出∠ABC+∠BCD=180°,根据平行线的判定,可证得AB∥DC。

6、(2分)如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥OE于O,若∠AOD=70°,则∠AOF 等于()
A. 35°
B. 45°
C. 55°
D. 65°
【答案】C
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【解答】∵∠B0C=∠AOD=70°,又∵OE平分∠BOC,∴∠BOE= ∠BOC=35°.∵OF⊥OE,∴∠EOF=90°.∴∠AOF=180°-∠EOF-∠BOE=55°.故答案为:C.
【分析】有角平分线性质和对顶角相等,由角的和差求出∠AOF=180°-∠EOF-∠BOE的度数.
7、(2分)已知a,b满足方程组则a+b的值为()
A. ﹣4
B. 4
C. ﹣2
D. 2
【答案】B
【考点】解二元一次方程组
【解析】【解答】,
①+②:4a+4b=16
则a+b=4,
故答案为:B.
【分析】观察方程组中的同一未知数的系数特点,因此将两方程相加除以4,就可求解。

8、(2分)下列各数中:,无理数个数为()
A. 2
B. 3
C. 4
D. 5
【答案】B
【考点】无理数的认识
【解析】【解答】解:是无理数,
故答案为:B.
【分析】无理数是指无限不循环小数。

所以无理数有0.101001 … ,−π,共3个。

9、(2分)16的平方根是()
A. 4
B. ±4
C.
D. ± 【答案】B
【考点】平方根
【解析】【解答】解:∵±4的平方是16,
∴16的平方根是±4.故答案为:B
【分析】根据平方根的定义知:(±4)2=16,从而得出16的平方根。

10、(2分)如图,在数轴上表示无理数的点落在()
A.线段AB上
B.线段BC上
C.线段CD上
D.线段DE上
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:∵=2≈2×1.414≈2.828,
∴2.8<2.828<2.9,
∴在线段CD上.
故答案为:C.
【分析】根据无理数大概的范围,即可得出答案.
11、(2分)若,则y用只含x的代数式表示为()
A.y=2x+7
B.y=7﹣2x
C.y=﹣2x﹣5
D.y=2x﹣5
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:,
由①得:m=3﹣x,
代入②得:y=1+2(3﹣x),
整理得:y=7﹣2x.
故答案为:B.
【分析】由方程(1)变形可将m用含x、y的代数式表示,再将m代入方程(2)中整理可得关于x、y的方程,再将这个方程变形即可把y用含x的代数式表示出来。

12、(2分)判断下列现象中是平移的有几种?().
(1 )篮球运动员投出篮球的运动;(2)升降机上上下下运送东西;(3)空中放飞的风筝的运动;(4)飞机在跑道上滑行到停止的运动;(5)铝合金窗叶左右平移;(6)电脑的风叶的运动.
A. 2种
B. 3种
C. 4种
D. 5种
【答案】B
【考点】生活中的平移现象
【解析】【解答】解:(2)(4)(5)是平移;(1)(3)(6)不是平移
故答案为:B
【分析】平移是指让物体沿着一定的方向移动一定的距离,所以(2)、(4)、(5)是平移.
二、填空题
13、(1分)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为________元/千克.
【答案】10
【考点】一元一次不等式的应用
【解析】【解答】解:设售价至少应定为x元/千克,依题可得方程x(1-5%)×80≥760,从而得出x≥10.
故答案为:10.
【分析】设售价至少应定为x元/千克,根据“ 有5%的水果正常损耗”可知销售的水果占(1-5%),故每千克水果损耗后的价格为x(1-5%),根据题意列出不等式即可.
14、(1分)如图,把一个含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠2=23°,那么∠1的度数是________
【答案】22°
【考点】平行线的性质
【解析】【解答】解:如图,
∵把一个含有45°的直角三角形的两个顶点放在直尺的对边上,∠2=23°,
∴∠3=45°﹣∠2=45°﹣23°=22°,
∵直尺的两边互相平行,
∴∠1=∠3=22°.
故答案为:22°.
【分析】因为等腰直角三角形的底角度数为,所以可知,因为两直线平行,内错角相等,
所以∠1=.
15、(1分)已知那么|x-3|+|x-1|=________
【答案】2
【考点】绝对值及有理数的绝对值,代数式求值,解一元一次不等式组
【解析】【解答】解:解不等式①得:x>1
解不等式②得:2x-2<x+1
解之:x<3
∴不等式组的解集为:1<x<3
即x-3<0,x-1>0
原式=3-x+x-1=2
故答案为:2
【分析】先求出不等式组的解集是1<x<3,然后利用绝对值的性质化简可得结果是2
16、(1分)按商品质量规定:商店出售的标明500 g的袋装食盐,其实际克数与所标克数相差不能超过5 g.设实际克数为x(g),则x应满足的不等式是________.
【答案】495≤x≤505
【考点】不等式及其性质
【解析】【解答】解:根据题意,可知x应满足的不等式是500-5≤x≤500+5,即495≤x≤505.
故答案为:495≤x≤505.
【分析】由相差不能超过5 g可知x应满足的不等式是500-5≤x≤500+5,即495≤x≤505.
17、(3分)的绝对值是________,________的倒数是,的算术平方根是________.【答案】;3;2
【考点】绝对值及有理数的绝对值,有理数的倒数,算术平方根
【解析】【解答】解:(1);(2)的倒数是3;(3),4的算术平方根是2;
【分析】一个负数的绝对值等于它的相反数;一个分数的倒数,只需要将这个分数的分子分母交换位置;将先化简为4,再根据算数平方根的意义算出4的算数平方根即可。

18、(1分)请写出一个大于-4而小于-3的无理数________.
【答案】
【考点】估算无理数的大小
【解析】【解答】大于-4而小于-3的无理数.
【分析】由题意可知,写出的这个无理数大于而小于即可。

三、解答题
19、(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
20、(5分)如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.
【答案】解:∵AB∥EF,
∴∠FRG=∠APR,
∵∠FRG=110°,
∴∠APR=110°,
又∵PS⊥GH,
∴∠SPR=90°,
∴∠APS=∠APR-∠SPR=20°,
∵AB∥CD,
∴∠PSQ=∠APS=20°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得内错角∠FRG=∠APR=110°,再由垂直性质得∠SPR=90°,从而求得∠APS=20°;由平行线的性质得内错角∠PSQ=∠APS=20°.
21、(5分)把下列各数填在相应的括号内:
整数:
分数:
无理数:
实数:
【答案】解:整数:
分数:
无理数:
实数:
【考点】实数及其分类
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。

22、(15分)某市团委在2015年3月初组织了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事的件数,并进行统计,将统计结果绘制成如图所示的统计
图.
(1)这6个学雷锋小组在2015年3月份共做好事多少件?
(2)补全条形统计图;
(3)求第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数.
【答案】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件
(2)解:如图所示:
(3)解:×100%≈49.12%,答:第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数约为49.12%
【考点】条形统计图,折线统计图
【解析】【分析】(1)根据折线统计图中的数据,相加可得结果;
(2)根据第三组对应的数据即可补全统计图;
(3)计算第2、4、6小组做好事的件数的总和除以总件数可得百分比.
23、(5分)把下列各数分别填入相应的集合里:-2.4,3,- ,,,0,,-(-2.28),3.14,-∣-4∣,-2.1010010001……(相邻两个1之间的0的个数逐次加1).
正有理数集合:( …);
整数集合:( …);
负分数集合:( …);
无理数集合:( …).
【答案】解:正有理数集合:(3,, -(-2.28), 3.14 …);
整数集合:( 3,0,-∣-4∣ …);
负分数集合:(-2.4,- ,, …);
无理数集合:(, -2.1010010001…… …).
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类,正整数、0、负整数统称为整数,无限不循环的小数是无理数。

逐一填写即可。

24、(10分)近年来,由于乱砍滥伐,掠夺性使用森林资源,我国长江、黄河流域植被遭到破坏,土地
沙化严重,洪涝灾害时有发生,沿黄某地区为积极响应和支持“保护母亲河”的倡议,建造了长100千米,宽0.5千米的防护林.有关部门为统计这一防护林共有多少棵树,从中选出10块防护林(每块长1km、宽0.5km)进行统计.
(1)在这个问题中,总体、个体、样本各是什么?
(2)请你谈谈要想了解整个防护林的树木棵数,采用哪种调查方式较好?说出你的理由.
【答案】(1)解:总体:建造的长100千米,宽0.5千米的防护林中每块长1km、宽0.5km的树的棵树;个体:一块(每块长1km、宽0.5km)防护林的树的棵树;
样本:抽查的10块防护林的树的棵树
(2)解:采用抽查的方式较好,因为数量较大,不容易调查
【考点】全面调查与抽样调查,总体、个体、样本、样本容量
【解析】【分析】(1)总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据总体、个体和样本的定义即可解答;
(2)一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,根据抽样调查和普查的定义及特征进行选择即可.
25、(5分)在数轴上表示下列数(要准确画出来),并用“<”把这些数连接起来.-(-4),-|-
3.5|,,0,+(+2.5),1
【答案】解:如图,
-|-3.5|<0< <1 <+(+2.5)< -(-4)
【考点】数轴及有理数在数轴上的表示,有理数大小比较,实数在数轴上的表示,实数大小的比较
【解析】【分析】将需化简的数进行化简;带根号的无理数,需要在数轴上构造边长为1的正方形,其对
角的长度为;根据每个数在数轴上的位置,左边的数小于右边的数.
26、(15分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?
【答案】(1)解:6÷25%=24(人).故该校七年一班此次预选赛的总人数是24人
(2)解:24﹣6﹣4﹣6=8(人),书法所在扇形圆心角的度数8÷24×360°=120°;
补全条形统计图如下:
(3)解:480÷24×2=20×2
=40(名)
故本次比赛全学年约有40名学生获奖
【考点】扇形统计图,条形统计图
【解析】【分析】(1)先根据版画人数除以所占的百分比可得总人数;
(2)先根据(1)中的总人数减去其余的人数可得书法参赛的人数,然后计算圆心角,补全统计图即可;(3)根据总数计算班级数量,然后乘以2可得获奖人数.。

相关文档
最新文档