高考物理推断题综合题专练∶法拉第电磁感应定律含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理推断题综合题专练∶法拉第电磁感应定律含答案
一、法拉第电磁感应定律
1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力.
(1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少?
(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少?
(3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少?
【答案】(1)1.2 V(2)3.2 J(3)0.9 J
【解析】
【详解】
(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:
10.44V=1.6 V
E BLv
==⨯⨯
因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:
U eb=3
4
E=1.2 V.
(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:
F安=BLI
根据闭合电路欧姆定律有:
I=E R
联立解得解得F安=4 N
所以克服安培力做功:
=2=420.4J=3.2J W F L ⨯⨯⨯安安
而Q =W 安,故该过程中产生的焦耳热Q =3.2 J
(3)设线框出磁场区域的速度大小为v 1,则根据运动学关系有:
22122v v a L -=
而根据牛顿运动定律可知:
()M m g
a M m
-=
+
联立整理得:
1
2
(M+m )( 21v -v 2)=(M-m )g ·2L 线框穿过磁场区域过程中,力F 和安培力都是变力,根据动能定理有:
W F -W'安+(M-m )g ·2L =
1
2
(M+m )( 21v -v 2) 联立解得:
W F -W'安=0
而W'安= Q',故Q'=3.6 J
又因为线框每边产生的热量相等,故eb 边上产生的焦耳热:
Q eb =
1
4
Q'=0.9 J. 答:(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb =1.2 V. (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q =3.2 J. (3) eb 边上产生的焦耳Q eb =0.9J.
2.如图甲所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。

线圈的半径为r 1。

在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t 0和B 0。

导线的电阻不计,求0至t1时间内
(1)通过电阻R 1上的电流大小及方向。

(2)通过电阻R 1上的电荷量q 。

【答案】(1) 20203n B r Rt π 电流由b 向a 通过R 1(2) 2021
3n B r t Rt π
【解析】 【详解】
(1)由法拉第电磁感应定律得感应电动势为
2 202 2
n
B r
B
E n n r
t t t
π
π
∆Φ∆
===
∆∆
由闭合电路的欧姆定律,得通过R1的电流大小为
2
02
33
n B r
E
I
R Rt
π
==
由楞次定律知该电流由b向a通过R1。

(2)由
q
I
t
=得在0至t1时间内通过R1的电量为:
2
021
1
3
n B r t
q It
Rt
π
==
3.如图所示,垂直于纸面的匀强磁场磁感应强度为B。

纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。

从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:
(1)拉力做功的功率P;
(2)ab边产生的焦耳热Q.
【答案】(1)P=
222
B L v
R
(2)Q=
23
4
B L v
R
【解析】
【详解】
(1)线圈中的感应电动势
E=BLv
感应电流
I=
E
R
拉力大小等于安培力大小
F=BIL
拉力的功率
P=Fv=
222
B L v
R
(2)线圈ab边电阻
R ab=
4
R
运动时间
t=L v
ab边产生的焦耳热
Q=I2R ab t =
23 4
B L v
R
4.如图所示,竖直平面内两竖直放置的金属导轨间距为L1,导轨上端接有一电动势为E、内阻不计的电源,电源旁接有一特殊开关S,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L2的矩形匀强磁场区域,磁感应强度大小均为B,方向如图。

一质量为m的金属棒从ab位置由静止开始下落,到达cd位置前已经开始做匀速运动,棒通过cdfe区域的过程中始终做匀速运动。

已知定值电阻和金属棒的阻值均为R,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g,求:
(1)金属棒匀速运动的速度大小;
(2)金属棒与金属导轨间的动摩擦因数μ;
(3)金属棒经过efgh区域时定值电阻R上产生的焦耳热。

【答案】(1);(2);(3)mgL2。

【解析】
【分析】
(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解;
(2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解;
(3)根据功能关系结合焦耳定律求解。

【详解】
(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件可得:mg=BIL1,
由于
解得:;
(2)由于金属棒切割磁感线时开关会自动断开,不切割时自动闭合,则在棒通过cdfe区域的过程中开关是闭合的,此时棒受到安培力方向垂直于轨道向里;
根据平衡条件可得:mg=μF A,
通过导体棒的电流I ′= ,则F A =BI ′L 1, 解得μ=

(3)金属棒经过efgh 区域时金属棒切割磁感线时开关自动断开,此时导体棒仍匀速运动;
根据功能关系可知产生的总的焦耳热等于克服安培力做的功,而W 克=mgL 2, 则Q 总=mgL 2,
定值电阻R 上产生的焦耳热Q R =Q 总=mgL 2。

【点睛】
对于电磁感应问题研究思路常常有两条:一条从力的角度,根据牛顿第二定律或平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解。

5.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)
(1)求导体棒下滑的最大速度;
(2)求当速度达到5m/s 时导体棒的加速度;
(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).
【答案】(1)18.75m/s (2)a=4.4m/s 2
(32
22mgs mv Rt
-
【解析】
【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;
解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R
θ=
=,
解得: 222sin 18.75cos mgR v B L θ
θ
=
=;
(2)由牛顿第二定律有:sin cos mg F ma θθ-= ,
cos 1BLv I A R
θ
=
=, 0.2F BIL N ==, 24.4/a m s =;
(3)根据能量守恒有:22012
mgs mv I Rt =
+ , 解得: 2
02mgs mv
I Rt
-=
6.水平面上平行固定两长直导体导轨MN 和PQ ,导轨宽度L =2m ,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T ,在垂直于导轨方向静止放置两根导体棒1和2,其中1的质量M =4kg,有效电阻R =0.6Ω,2的质量m =1kg ,有效电阻r =0.4Ω,现使1获得平行于导轨的初速度v 0=10m/s ,不计一切摩擦,不计其余电阻,两棒不会相撞.请计算:
(1)初始时刻导体棒2的加速度a 大小. (2)系统运动状态稳定时1的速度v 大小.
(3)系统运动状态达到稳定的过程中,流过导体棒1某截面的电荷量q 大小. (4)若初始时刻两棒距离d =10m ,则稳定后两棒的距离为多少? 【答案】(1)10m/s 2(2)8m/s (3)8C (4)2m 【解析】 【详解】
解:(1)初始时:0E BLv =
E
I R r
=
+ 对棒2:F 安BIL ma ==
解得:2220
10m/s B L v a R r
==+
(2)对棒1和2的系统,动量守恒,则最后稳定时:0()Mv m M v =+ 解得:8m/s v =
(3)对棒2,由动量定理:BIL t mv ∆= ,其中q I t =∆ 解得:8C mv
q BL
=
=
(4)由E t φ∆=
∆ 、E I R r
=+、 q I t =∆ 联立解得:BL x
q R r R r
φ∆∆==++ 又mv q BL
=
解得:22
()
mv R r x B L
+∆=
则稳定后两棒的距离:22
()
2m mv R r d d x d B L
+'=-∆=-
=
7.如图所示,在匀强磁场中有一足够长的光滑平行金属导轨,与水平面间的夹角θ=30°,间距L =0.5 m ,上端接有阻值R =0.3 Ω的电阻.匀强磁场的磁感应强度大小B =0.4 T ,磁场方向垂直导轨平面向上.一质量m =0.2 kg ,电阻r =0.1 Ω的导体棒MN ,在平行于导轨的外力F 作用下,由静止开始向上做匀加速运动,运动过程中导体棒始终与导轨垂直,且接触良好.当棒的位移d =9 m 时,电阻R 上消耗的功率为P =2.7 W .其它电阻不计,g 取10 m/s 2.求:
(1)此时通过电阻R 上的电流; (2)这一过程通过电阻R 上的电荷量q ; (3)此时作用于导体棒上的外力F 的大小. 【答案】(1)3A (2)4.5C (3)2N 【解析】 【分析】 【详解】
(1)根据热功率:P =I 2R , 解得:3A P
I R
=
= (2)回路中产生的平均感应电动势:E n t
φ∆=∆ 由欧姆定律得:+E I R r
=
得电流和电量之间关系式:q I t n R r
φ
∆=⋅∆=+ 代入数据得: 4.5C BLd
q R r
=
=+
(3)此时感应电流I=3A,由
E BLv I
R
r R r
==
++
解得此时速度:
()
6m/s
I R r
v
BL
+
==
由匀变速运动公式:v2=2ax,
解得:
2
2
2m/s
2
v
a
d
==
对导体棒由牛顿第二定律得:F-F安-mgsin30°=ma,
即:F-BIL-mgsin30°=ma,
解得:F=ma+BIL+mgsin30°=2 N
【点睛】
本题考查电功率,电量表达式及电磁感应电动势表达式结合牛顿第二定律求解即可,难度不大,本题中加速度的求解是重点.
【考点】
动生电动势、全电路的欧姆定律、牛顿第二定律.
8.如图所示,两根间距为L的平行金属导轨,其cd右侧水平,左侧为竖直的
1
4
画弧,圆弧半径为r,导轨的电阻与摩擦不计,在导轨的顶端接有阻值为R1的电阻,整个装置处在竖直向上的匀强磁场中。

现有一根阻值为R2、质量为m的金属杆,在水平拉力作用下,从图中位置ef由静止开始做加速度为a的匀加速直线运动,金属杆始终保持与导轨垂直且接触良好。

开始运动后,经时间t1,金属杆运动到cd时撤去拉力,此时理想电压表的示数为U,此后全属杆恰好能到达圆弧最高处ab。

重力加速度为g。

求:
(1)金属杆从ef运动到cd的过程中,拉力F随时间t变化的表达式;
(2)金属杆从ef运动到cd的过程中,电阻R1上通过的电荷量;
(3)金属杆从cd运动到ab的过程中,电阻R1上产生的焦耳热。

【答案】(1)
2
12
22
11
()
U R R t
F ma
R at
+
=+;(2)1
1
2
Ut
q
R
=;(3)22
1
1
12
1
()
2
R
Q ma h mgr
R R
=-
+
【解析】
【分析】
利用法拉第电磁感应定律和电流公式联合求解。

根据能量守恒定律求出回路产生的总焦耳热,再求出R1上产生的焦耳热。

【详解】
(1) 金属杆运动到cd 时,由欧姆定律可得 11
U I R = 由闭合电路的欧姆定律可得 E 1=I 1(R 1+R 2) 金属杆的速度 v 1=at 1
由法拉第电磁感应定律可得 E 1=BLv 1 解得:1211()
U R R B R Lat +=

由开始运动经过时间t ,则 v=at 感应电流12
BLv
I R R =
+
金属杆受到的安培力 F 安 =BIL 由牛顿运动定律 F -F 安=ma
可得21222
11()U R R t
F ma R at +=+;
(2) 金属杆从 ef 运动到cd 过程中,位移2112
x at = 电阻R 1上通过的电荷量:
q I t =∆
12
E
I R R =
+
E t ∆Φ
=
∆ B S ∆Φ=∆
S xL ∆=
联立解得:1
1
2Ut q R =
; (3) 金属杆从cd 运动到ab 的过程中,由能量守恒定律可得
2
12
Q mv mgr =
- 因此电阻R 1上产生的焦耳热为
1
112
R Q Q R R =
+ 可得
2211121
()2
R Q ma h mgr R R =
-+。

【点睛】
此题为一道综合题,牵涉知识点较多,明确求电动势、安培力、焦耳热的方法是解题的关
键,灵活利用法拉第电磁感应定律和能量守恒的结论是解题的捷径。

9.如图1所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ ,两导轨间距为l ,电阻均可忽略不计。

在M 和P 之间接有阻值为R 的定值电阻,导体杆ab 质量为m 、电阻为r ,并与导轨接触良好。

整个装置处于方向竖直向上磁感应强度为B 的匀强磁场中。

现给ab 杆一个初速度v 0,使杆向右运动。

(1)当ab 杆刚好具有初速度v 0时,求此时ab 杆两端的电压U ;a 、b 两端哪端电势高; (2)请在图2中定性画出通过电阻R 的电流i 随时间t 变化规律的图象;
(3)若将M 和P 之间的电阻R 改为接一电容为C 的电容器,如图3所示。

同样给ab 杆一个初速度v 0,使杆向右运动。

请分析说明ab 杆的运动情况。

【答案】(1)0Bl R
U R r
=
+v ;a 端电势高(2) (3)当ab 杆以初速度
v 0开始切割磁感线时,产生感应电动势,电路开始给电容器充电,有电流通过ab 杆,杆
在安培力的作用下做减速运动,随着速度减小,安培力减小,加速度也减小,杆做加速度减小的减速运动。

当电容器两端电压与感应电动势相等时,充电结束,杆以恒定的速度做匀速直线运动。

【解析】 【分析】
(1)求解产生感应电动势大小,根据全电路欧姆定律求解电流强度和电压,根据右手定则判断电势高低;
(2)分析杆的受力情况和运动情况,确定感应电流变化情况,由此画出图象;
(3)杆在向右运动过程中速度逐渐减小、由此分析安培力的变化,确定运动情况;根据动量定理求解最后的速度大小。

【详解】
(1)ab 杆切割磁感线产生感应电动势: E = Bl v 0 根据全电路欧姆定律:E
I R r
=
+ ab 杆两端电压即路端电压:U IR = 解得0Bl R
U R r
=
+v ;a 端电势高。

(2)杆在向右运动过程中速度逐渐减小、感应电动势逐渐减小,根据闭合电路的欧姆定律可得感应电流逐渐减小,通过电阻R 的电流i 随时间变化规律的图象如图所示:
(3)当ab 杆以初速度v 0开始切割磁感线时,产生感应电动势,电路开始给电容器充电,有电流通过ab 杆,杆在安培力的作用下做减速运动,随着速度减小,安培力减小,加速度也减小,杆做加速度减小的减速运动。

当电容器两端电压与感应电动势相等时,充电结束,杆以恒定的速度做匀速直线运动。

【点睛】
对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下物体的平衡问题;另一条是能量,分析电磁感应现象中的能量如何转化是关键。

10.如图所示,质量为2m 的 U 形线框ABCD 下边长度为L ,电阻为R ,其它部分电阻不计,其内侧有质量为m ,电阻为R 的导体棒PQ ,PQ 与线框相接触良好,可在线框内上下滑动.整个装置竖直放置,其下方有垂直纸面的匀强磁场,磁感应强度为B .将整个装置从静止释放,在下落过程线框底边始终水平.当线框底边进入磁场时恰好做匀速运动,此时导体棒PQ 与线框间的滑动摩擦力为
.经过一段时间,导体棒PQ 恰好到达磁场上
边界,但未进入磁场,PQ 运动的距离是线框在磁场中运动距离的两倍.不计空气阻力,重力加速度为g .求:
(1)线框刚进入磁场时,BC 两端的电势差; (2)导体棒PQ 到达磁场上边界时速度大小;
(3)导体棒PQ 到达磁场上边界前的过程线框中产生的焦耳热.
【答案】(1)52mgR BL (2)2215mgR B L (3)322
44
125m g R B L
【解析】
试题分析:(1)线框刚进入磁场时是做匀速运动.由平衡知识可列:
1
22
mg mg BIL +=
52BC mgR
U IR BL
==
(2)设导体棒到达磁场上边界速度为,线框底边进入磁场时的速度为
;导体棒相
对于线框的距离为
,线框在磁场中下降的距离为

52mgR
IR BL
ε==
联解上述方程式得:22
15PQ mgR
B L υ=
(3)线框下降的时间与导体棒下滑的时间相等
联解上述方程式得:322
44
125m g R Q B L
= 考点:法拉第电磁感应定律;物体的平衡.
11.如图(1)所示,两足够长平行光滑的金属导轨MN 、PQ 相距为0.8m ,导轨平面与水平面夹角为α,导轨电阻不计.有一个匀强磁场垂直导轨平面斜向上,长为1m 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨电接触良好,金属棒的质量为0.1kg 、与导轨接触端间电阻为1Ω.两金属导轨的上端连接右端电路,电路中R 2为一电阻箱.已知灯泡的电阻R L =4Ω,定值电阻R 1=2Ω,调节电阻箱使R 2=12Ω,重力加速度g=10m/s 2.将电键S 打开,金属棒由静止释放,1s 后闭合电键,如图(2)所示为金属棒的速度随时间变化的图象.求:
(1)斜面倾角α及磁感应强度B 的大小;
(2)若金属棒下滑距离为60m 时速度恰达到最大,求金属棒由静止开始下滑100m 的过程中,整个电路产生的电热;
(3)改变电阻箱R 2的值,当R 2为何值时,金属棒匀速下滑时R 2消耗的功率最大;消耗的
最大功率为多少?
【答案】(1)斜面倾角α是30°,磁感应强度B的大小是0.5T;
(2)若金属棒下滑距离为60m时速度恰达到最大,金属棒由静止开始下滑100m的过程中,整个电路产生的电热是32.42J;
(3)改变电阻箱R2的值,当R2为4Ω时,金属棒匀速下滑时R2消耗的功率最大,消耗的最大功率为1.5625W.
【解析】
【分析】
(1)电键S打开,ab棒做匀加速直线运动,由速度图象求出加速度,由牛顿第二定律求
解斜面的倾角α.开关闭合后,导体棒最终做匀速直线运动,由F安=BIL,I=得到安培
力表达式,由重力的分力mgsinα=F安,求出磁感应强度B.
(2)金属棒由静止开始下滑100m的过程中,重力势能减小mgSsinα,转化为金属棒的动能和整个电路产生的电热,由能量守恒求解电热.
(3)改变电阻箱R2的值后,由金属棒ab匀速运动,得到干路中电流表达式,推导出R2消耗的功率与R2的关系式,根据数学知识求解R2消耗的最大功率.
【详解】
(1)电键S打开,从图上得:a=gsinα==5m/s2
得sinα=,则得α=30°
金属棒匀速下滑时速度最大,此时棒所受的安培力F安=BIL
又 I=,R总=R ab+R1+=(1+2+)Ω=6Ω
从图上得:v m=18.75m/s
由平衡条件得:mgsinα=F安,所以mgsinα=
代入数据解得:B=0.5T;
(2)由动能定理:mg•S•sinα﹣Q=mv m2﹣0
由图知,v m=18.75m/s
得Q=mg•S•sinα﹣mvm2=32.42J;
(3)改变电阻箱R2的值后,金属棒匀速下滑时的速度为v m′,则有
mgsinα=BI总L
R2和灯泡并联电阻 R并′==()Ω,
R2消耗的功率:P2==
由上联立解得 P 2=()2
由数学知识得,当=R 2,即R 2=4Ω时,R 2消耗的功率最大:
最大功率为 P 2m =(
)2(
)=
W=1.5625W .
12.如图甲所示,一水平放置的线圈,匝数n=100匝,横截面积S=0.2m 2,电阻r=1Ω,线圈处于水平向左的均匀变化的磁场中,磁感应强度B 1随时间t 变化关系如图乙所示。

线圈与足够长的竖直光滑导轨MN 、PO 连接,导轨间距l =20cm ,导体棒ab 与导轨始终接触良好,ab 棒的电阻R=4Ω,质量m=5g ,导轨的电阻不计,导轨处在与导轨平面垂直向里的匀强磁场中,磁感应强度B 2=0.5T 。

t=0时,导体棒由静止释放,g 取10m/s 2,求: (1)t=0时,线圈内产生的感应电动势太小;
(2)t=0时,导体棒ab 两端的电压和导体棒的加速度大小; (3)导体棒ab 到稳定状态时,导体棒所受重力的瞬时功率。

【答案】(1)2V ;(2)1.6V ;2m/s 2;(3)0.25W ; 【解析】⑴由图乙可知,线圈内磁感应强度变化率: 0.1T /s B
t
∆=∆ 由法拉第电磁感应定律可知: 12V B
E n n S t t
∆Φ∆===∆∆ ⑵t =0时,回路中电流: 1
0.4A E I R r
=
=+ 导体棒ab 两端的电压 1.6V U IR ==
设此时导体棒的加速度为a ,则由: 2mg B Il ma -= 得: 222m /s B Il
a g m
=-
= ⑶当导体棒ab 达到稳定状态时,满足: 2mg B I l ='
12E B lv
I R r
+'=
+ 得: 5m /s v =
此时,导体棒所受重力的瞬时功率0.25W P mgv ==
【点睛】本题是感生电动势类型,关键要掌握法拉第电磁感应定律的表达式
B S
E n
t
∆⋅=∆,再结合闭合电路欧姆定律进行求解,注意楞次定律来确定感应电动势的方向.
13.如图(a)所示,足够长的光滑平行金属导轨JK 、PQ 倾斜放置,两导轨间距离为L=l.0 m ,导轨平面与水平面间的夹角为θ=30°,磁感应强度为B 的匀强磁场垂直于导轨平面向上,导轨的J 、P 两端连接阻值为R=3.0Ω的电阻,金属棒ab 垂直于导轨放置并用细线通过光滑定滑轮与重物相连,金属棒ab 的质量m=0.20 kg ,电阻r=0.50 Ω,重物的质量M=0.60 kg ,如果将金属棒和重物由静止释放,金属棒沿斜面上滑距离与时间的关系图像如图(b)所示,不计导轨电阻, g=10 m/s 2 。

求:
(1)t=0时刻金属棒的加速度
(2)求磁感应强度B 的大小以及在0.6 s 内通过电阻R 的电荷量; (3)在0.6 s 内电阻R 产生的热量。

【答案】(1)a=6.25m/s 2 2
55
C (3)Q R =1.8J 【解析】 【分析】
根据电量公式q=I•△t ,闭合电路欧姆定律E
I R r
=
+,法拉第电磁感应定律:E t ∆Φ=∆,
联立可得通过电阻R 的电量;由能量守恒定律求电阻R 中产生的热量。

【详解】
(1) 对金属棒和重物整体 Mg-mgsinθ=(M+m)a 解得:a=6.25m/s 2 ;
(2) 由题图(b)可以看出最终金属棒ab 将匀速运动,匀速运动的速度
3.5s
m v s t
∆=
=∆
感应电动势E=BLv 感应电流E
I R r
=
+ 金属棒所受安培力22B L v
F BIL R r
==
+ 速运动时,金属棒受力平衡,则可得
22sin B L v
mg Mg R r
θ+=+ 联立解得:5B T =
在0.6 s 内金属棒ab 上滑的距离s=1.40m 通过电阻R 的电荷量
25
5
BLs q C R s =
=+; (3) 由能量守恒定律得
21
sin ()2
Mgx mgx Q M m v θ=+++
解得Q=2.1 J
又因为
R R
Q Q R r
=
+ 联立解得:Q R =1.8J 。

【点睛】
本题主要考查了电磁感应与力学、电路知识的综合,抓住位移图象的意义:斜率等于速度,根据平衡条件和法拉第定律、欧姆定律等等规律结合进行求解。

14.两根足够长的固定平行金属导轨位于同一水平面内,两导轨间的距离为l ,导轨上面垂直放置两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量均为m ,电阻均为R ,回路中其余部分的电阻不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .两导体棒均可沿导轨无摩擦地滑行,开始时cd 棒静止,棒ab 有指向cd 的速度v 0.两导体棒在运动中始终不接触.求:
(1)在运动中产生的最大焦耳热; (2)当棒ab 的速度变为
3
4
v 0时,棒cd 的加速度. 【答案】(1) 2014mv ;(2) 220
4B L v mR
,方向是水平向右
【解析】 【详解】
(1)从初始到两棒速度相等的过程中,两棒总动量守恒,则有:02mv mv = 解得:02
v v =
由能的转化和守恒得:222001211224
Q mv mv mv =⨯=- (2)设ab 棒的速度变为
03
4
v 时,cd 棒的速度为v ',则由动量守恒可知:003
4
mv m v mv =+'
解得:014
v v '=
此时回路中的电动势为: 000311
442
E BLv BLv BLv =-= 此时回路中的电流为: 024BLv E I R R
=
= 此时cd 棒所受的安培力为 :220
4B L v F BIL R == 由牛顿第二定律可得,cd 棒的加速度:220
4B L v F a m mR
==
cd 棒的加速度大小是220
4B L v mR
,方向是水平向右
15.两根足够长的光滑直金属导轨平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,且接有阻值为R 的电阻。

整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于斜面向上。

导轨和金属杆的电阻可忽略。

让金属杆MN 由静止沿导轨开始下滑.求:
(1)当导体棒的速度为v (未达到最大速度)时,通过MN 棒的电流大小和方向; (2)导体棒运动的最大速度. 【答案】(1) Blv
I R =,方向为从N 到M (2)22
sin m mgR v B L θ= 【解析】 【详解】
(1)当导体棒的速度为v 时,产生的感应电动势为E Blv = 回路中的电流大小为Blv
I R
=
由右手定则可知电流方向为从N 到M
(2)导体棒在磁场中运动时,所受安培力大小为
22B L v
F ILB R
==
由左手定则可知,安培力方向沿斜面向上当导体棒的加速度为零时,速度最大即:
22sin m
B L v mg R
θ=
可解得最大速度为:
22
sin m mgR v B L
θ
=
答:(1)当导体棒的速度为v (未达到最大速度)时,通过MN 棒的电流大小为Blv
I R
=,方向为从N 到M ;
(2)导体棒运动的最大速度22
sin m mgR v B L
θ
=。

相关文档
最新文档