高级中学物理电磁感应定律学习知识点加例题

合集下载

电磁感应解题技巧及练习

电磁感应解题技巧及练习

电磁感应专题复习(重要)基础回顾(一)法拉弟电磁感应定律1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比E=nΔΦ/Δt(普适公式)当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα2、E=nΔΦ/Δt与E=BLVsinα的选用①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变② E=BLVsinα可计算平均动势,也可计算瞬时电动势。

③直导线在磁场中转动时,导体上各点速度不一样,可用V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度,ω为角速度。

)(二)电磁感应的综合问题一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E和r。

再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。

然后进行“力”的分析--------要分析力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。

按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。

最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。

【常见题型分析】题型一楞次定律、右手定则的简单应用例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是A、金属线框进入磁场时感应电流的方向为a→b→c→d→B、金属线框离开磁场时感应电流的方向a→d→c→b→C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等D、金属线框最终将在磁场内做简谐运动。

高中物理法拉第电磁感应定律习题知识点及练习题附答案

高中物理法拉第电磁感应定律习题知识点及练习题附答案

高中物理法拉第电磁感应定律习题知识点及练习题附答案一、高中物理解题方法:法拉第电磁感应定律1.如图所示,竖直平面内两竖直放置的金属导轨间距为L1,导轨上端接有一电动势为E、内阻不计的电源,电源旁接有一特殊开关S,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L2的矩形匀强磁场区域,磁感应强度大小均为B,方向如图。

一质量为m的金属棒从ab位置由静止开始下落,到达cd位置前已经开始做匀速运动,棒通过cdfe区域的过程中始终做匀速运动。

已知定值电阻和金属棒的阻值均为R,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g,求:(1)金属棒匀速运动的速度大小;(2)金属棒与金属导轨间的动摩擦因数μ;(3)金属棒经过efgh区域时定值电阻R上产生的焦耳热。

【答案】(1);(2);(3)mgL2。

【解析】【分析】(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解;(2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解;(3)根据功能关系结合焦耳定律求解。

【详解】(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件可得:mg=BIL1,由于解得:;(2)由于金属棒切割磁感线时开关会自动断开,不切割时自动闭合,则在棒通过cdfe区域的过程中开关是闭合的,此时棒受到安培力方向垂直于轨道向里;根据平衡条件可得:mg=μF A,通过导体棒的电流I′=,则F A=BI′L1,解得μ=;(3)金属棒经过efgh 区域时金属棒切割磁感线时开关自动断开,此时导体棒仍匀速运动;根据功能关系可知产生的总的焦耳热等于克服安培力做的功,而W 克=mgL 2,则Q 总=mgL 2,定值电阻R 上产生的焦耳热Q R =Q 总=mgL 2。

【点睛】对于电磁感应问题研究思路常常有两条:一条从力的角度,根据牛顿第二定律或平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解。

高中物理重点——电磁感应知识点及练习

高中物理重点——电磁感应知识点及练习

高中物理重点——电磁感应知识点及练习一、电磁感应基本概念1. 电磁感应的基本原理2. 法拉第电磁感应定律3. 洛伦兹力的概念练习题:1. 一根长度为20 cm 的导线以10 m/s 的速度进入一个磁感应强度为0.5 T 的匀强磁场中,导线的两端产生的感应电动势为多少?答案:1 V2. 一个载流导体绕着垂直于磁场方向的轴旋转,导体两端产生的感应电动势的大小为导体长度乘以什么?答案:磁感应强度3. 当磁通量密度变化率为200 T/s 时,一个线圈内部产生的感应电动势为20 V,此时线圈中的匝数为多少?答案:100二、法拉第电磁感应定律应用1. 电动势的方向和大小2. 电磁感应的应用:感应电流和感应电磁铁3. 磁场中的动生电现象:电磁感应现象和劳埃德力练习题:1. 一个长度为25 cm 的导体被放置在一个磁感应强度为0.2 T 的匀强磁场中,且在导体的两端施加一共 2 A 的电流,求该导体受到的安培力大小为多少?答案:0.25 N2. 在一个长度为10 cm 的导体内部施加一个0.5 T 的磁场,导体稳定地保持在匀强磁场中,当导体的长度与磁场的夹角为30 度时,导体内部的自感系数为多少?答案:0.00125 H3. 一个宽度为10 cm,长度为20 cm,大约0.5 毫米厚的铜片在磁感应强度为0.1 T 的恒定磁场中以 5 m/s 的速度向下运动,求铜片两端感应的电动势大小为多少?答案:1 V三、电磁感应现象与电磁波1. 电磁波的基本特征和传播方式2. 波长和频率的关系及其应用3. 电磁波的反射、折射和衍射现象练习题:1. 某广播电台的发射频率为100 MHz,求其波长的大小为多少?答案:3 m2. 一台微波炉的工作频率为2.45 GHz,求其波长的大小为多少?答案:0.12 m3. 一个频率为500 MHz 的电磁波垂直入射到一种材质中,该材质的折射率为 1.5,求折射后的电磁波的频率为多少?答案:333.3 MHz总结:电磁感应是高中物理中的重要知识点,包括电磁感应的基本概念、法拉第电磁感应定律应用以及电磁感应现象与电磁波等内容。

高考物理电磁感应现象习题知识点及练习题含答案

高考物理电磁感应现象习题知识点及练习题含答案

高考物理电磁感应现象习题知识点及练习题含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。

一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。

ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。

重力加速度为g 。

求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。

【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R== 线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=2.如图所示,光滑导线框abfede 的abfe 部分水平,efcd 部分与水平面成α角,ae 与ed 、bf 与cf 连接处为小圆弧,匀强磁场仅分布于efcd 所在平面,方向垂直于efcd 平面,线框边ab 、cd 长均为L ,电阻均为2R ,线框其余部分电阻不计。

高中物理 法拉第电磁感应定律 (提纲、例题、练习、解析)

高中物理  法拉第电磁感应定律 (提纲、例题、练习、解析)

法拉第电磁感应定律【学习目标】1.通过实验过程理解法拉第电磁感应定律,理解磁通量的变化率tϕ∆∆,并能熟练地计算;能够熟练地计算平均感应电动势(E ntϕ∆=∆)和瞬时感应电动势(sin E BLv α=),切割情形)。

2.了解感生电动势和动生电动势产生机理。

3.熟练地解决一些电磁感应的实际问题。

4.理解并运用科学探究的方法。

【要点梳理】要点一、感应电动势在电磁感应现象中产生的电动势叫做感应电动势,产生感应电动势的那部分导体相当于电源。

要点诠释:(1)感应电动势的存在与电路是否闭合无关。

(2)感应电动势是形成感应电流的必要条件。

有感应电动势(电源),不一定有感应电流(要看电路是否闭合),有感应电流一定存在感应电动势。

要点二、法拉第电磁感应定律1.定律内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

2.公式:ФE nt ∆=∆。

式中n 为线圈匝数,Фt∆∆是磁通量的变化率,注意它和磁通量西以及磁通量的变化量21ФФФ∆=-的区别。

式中电动势的单位是伏(V )、磁通量的单位是韦伯(Wb ),时间的单位是秒(s )。

要点诠释:(1)感应电动势E 的大小决定于穿过电路的磁通量的变化率Фt∆∆,而与Ф的大小、Ф∆的大小没有必然的联系,和电路的电阻R 无关;感应电流的大小和E 及回路总电阻R 有关。

(2)磁通量的变化率Фt∆∆是Фt -图象上某点切线的斜率。

(3)公式ФE k t∆=⋅∆中,k 为比例常数,当E 、Ф∆、t ∆均取国际单位时,1k =,所以有ФE t∆=∆。

若线圈有n 匝,则相当于n 个相同的电动势Фt∆∆串联,所以整个线圈中电动势为ФE nt∆=∆。

(4)磁通量发生变化有三种方式:一是Ф∆仅由B 的变化引起,21||B B B ∆=-,B E nSt ∆=∆;二是Ф∆仅由S 的变化引起,21||S S S ∆=-,SE nB t∆=∆;三是磁感应强度B 和线圈面积S 均不变,而线圈绕过线圈平面内的某一轴转动,此时21||ФФE n t -=∆。

高中物理法拉第电磁感应定律习题知识归纳总结

高中物理法拉第电磁感应定律习题知识归纳总结

高中物理法拉第电磁感应定律习题知识归纳总结一、高中物理解题方法:法拉第电磁感应定律1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。

线圈的半径为r1。

在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。

导线的电阻不计,求0至t1时间内(1)通过电阻R1上的电流大小及方向。

(2)通过电阻R1上的电荷量q。

【答案】(1)2023n B rRtπ电流由b向a 通过R1(2)20213n B r tRtπ【解析】【详解】(1)由法拉第电磁感应定律得感应电动势为22022n B rBE n n rt t tππ∆Φ∆===∆∆由闭合电路的欧姆定律,得通过R1的电流大小为20233n B rEIR Rtπ==由楞次定律知该电流由b向a通过R1。

(2)由qIt=得在0至t1时间内通过R1的电量为:202113n B r tq ItRtπ==2.在如图所示的电路中,螺线管上线圈的匝数n=1500匝,横截面积.螺线管上线圈的电阻r=1.0Ω,定值电阻、,电容器的电容C=30μF.在一段时间内,螺线管中磁场的磁感应强度B按如图所示的规律变化.(1)求螺线管中产生的感应电动势.(2)闭合开关S,电路中的电流稳定后,求电阻的电功率.(3)开关S断开后,求流经电阻的电荷量.【答案】(1)1.2V(2)(3)【解析】【详解】(1)根据法拉第电磁感应定律得(2)根据闭合电路欧姆定律得电阻的电功率.(3)开关S断开后,流经电阻的电荷量即为S闭合时电容器所带的电荷量.电容器两端的电压流经电阻的电荷量.故本题答案是:(1)1.2V(2)(3)【点睛】根据法拉第电磁感应定律求出回路中的电动势,在结合闭合电路欧姆定律求电流,即可求解别的物理量。

3.两平行金属导轨位于同一水平面上,相距l, 左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下。

高三物理知识点:电磁感应和电磁感应现象

高三物理知识点:电磁感应和电磁感应现象

高三物理知识点:电磁感应和电磁感应现象一、电磁感应的基本概念电磁感应是指在导体周围的磁场发生变化时,导体中会产生电动势的现象。

这个现象是由英国科学家迈克尔·法拉第在1831年发现的,因此也被称为法拉第电磁感应定律。

1.1 感应电动势当闭合导体回路所围面积内的磁通量发生变化时,回路中就会产生电动势,这个电动势称为感应电动势。

数学表达式为:[ = - ]其中,( ) 表示感应电动势,( _B ) 表示磁通量,( t ) 表示时间。

负号表示楞次定律,即感应电动势的方向总是阻碍磁通量的变化。

1.2 楞次定律楞次定律是描述感应电动势方向的重要定律。

它指出,感应电动势的方向总是使得其产生的电流所产生的磁通量变化方向与原磁通量变化方向相反。

1.3 法拉第电磁感应定律法拉第电磁感应定律是描述感应电动势大小的重要定律。

它指出,感应电动势的大小与磁通量的变化率成正比,即:[ = N ]其中,( N ) 表示闭合导体回路的匝数。

二、电磁感应现象电磁感应现象是指在电磁感应过程中,导体中会产生电流的现象。

2.1 感应电流的产生当闭合导体回路所围面积内的磁通量发生变化时,回路中就会产生感应电流。

感应电流的产生遵循楞次定律和法拉第电磁感应定律。

2.2 感应电流的方向根据楞次定律,感应电流的方向总是使得其产生的磁通量变化方向与原磁通量变化方向相反。

2.3 感应电流的大小根据法拉第电磁感应定律,感应电流的大小与感应电动势的大小成正比,与闭合导体回路的电阻成反比。

即:[ I = ]其中,( I ) 表示感应电流,( R ) 表示闭合导体回路的电阻。

三、电磁感应的应用电磁感应现象在生产和生活中有广泛的应用。

3.1 发电机发电机是利用电磁感应现象将机械能转化为电能的装置。

它通过旋转磁场和线圈之间的相对运动,产生感应电动势,从而产生电流。

3.2 变压器变压器是利用电磁感应现象改变电压的装置。

它通过两个或多个线圈之间的互感现象,实现电压的升高或降低。

高中物理电磁感应现象习题知识点及练习题附答案

高中物理电磁感应现象习题知识点及练习题附答案

高中物理电磁感应现象习题知识点及练习题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的水平平行金属导轨间距为 L ,导轨电阻忽略不计.空间存在垂直于导 轨平面竖直向上的匀强磁场,磁感应强度大小为 B ,轻质导体棒 ab 垂直导轨放置,导体棒 ab 的电阻为 r ,与导轨之间接触良好.两导轨之间接有定值电阻,其阻值为 R ,轻质导体棒中间系一轻细线,细 线通过定滑轮悬挂质量为 m 的物体,现从静止释放该物体,当物体速度达到最大时,下落的高度为 h , 在本问题情景中,物体下落过程中不着地,导轨足够长,忽略空气阻力和一切摩擦阻力,重力加速度 为 g .求:(1)物体下落过程的最大速度 v m ;(2)物体从静止开始下落至速度达到最大的过程中,电阻 R 上产生的电热 Q ; (3)物体从静止开始下落至速度达到最大时,所需的时间 t .【答案】(1)22()mg R r B L + (2) 3244()2mghR m g R R r R r B L+-+ (3) 2222()()m R r B L h B L mg R r +++ 【解析】【分析】在物体加速下落过程中,加速度逐渐减小,当加速度为0时,下落速度达到最大,由平衡条件、闭合电路欧姆定律和电磁感应定律求出物体下落过程的最大速度;在物体下落过程中,物体重力势能减少,动能增加,系统电热增加,根据能量守恒定律求出电阻R 上产生的电热;在系统加速过程中,分别对导体棒和物体分析,根据动量定理可得所需的时间;解:(1)在物体加速下落过程中,加速度逐渐减小,当加速度为0时,下落速度达到最大 对物体,由平衡条件可得mg=Fr 对导体棒Fr=BIL对导体棒与导轨、电阻R 组成的回路,根据闭合电路欧姆定律EI R r=+ 根据电磁感应定律E=BLv m 联立以上各式解得m 22()v mg R r B L +=(2)在物体下落过程中,物体重力势能减少,动能增加,系统电热增加,根据能量守恒定律可得 mgh=12mv m 2+Q 总 在此过程中任一时刻通过R 和r 两部分电阻的电流相等,则电功率之比正比于电阻之比,故整个过程中回路中的R 与r 两部分电阻产生的电热正比于电阻,所以Q R Q R r=+总 联立解得3244()Q 2mghR m g R R r R r B L+=-+ (3)在系统加速过程中,任一时刻速度设为v ,取一段时间微元Δt ,在此过程中分别对导体棒和物体分析,根据动量定理可得22T F 0B L v t R r ⎛⎫-∆= ⎪+⎝⎭()T m F m g t v -∆=∆整理可得22m m B L vg t t v R r ∆-∆=∆+即22m m B L g t x v R r ∆-∆=∆+全过程叠加求和22m m m B L gt h v R r-=+联方解得2222()t ()m R r B L hB L mg R r +=++2.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成=30θ︒角固定,N 、Q 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5T ,质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻位为r 。

高中物理电磁感应现象习题知识点及练习题及答案

高中物理电磁感应现象习题知识点及练习题及答案

高中物理电磁感应现象习题知识点及练习题及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。

沿导轨方向建立x 轴,虚线EF 与坐标原点O 在一直线上,空间存在垂直导轨平面的磁场,磁感应强度分布为1()00.60.8()0T x B x T x -<⎧=⎨+≥⎩(取磁感应强度B垂直斜面向上为正)。

现有一质量为10.3m =kg ,边长均为l =0.5m 的U 形框cdef 固定在导轨平面上,c 点(f 点)坐标为x =0。

U 形框由金属棒de 和两绝缘棒cd 和ef 组成,棒de 电阻为10.2R =Ω。

另有一质量为20.1=m kg ,长为l =0.5m ,电阻为20.2R =Ω的金属棒ab 在离EF 一定距离处获得一沿斜面向下的冲量I 后向下运动。

已知金属棒和U 形框与导轨间的动摩擦因数均为33μ=。

(1)若金属棒ab 从某处释放,且I =0.4N·s ,求释放瞬间金属棒ab 上感应电流方向和电势差ab U ;(2)若金属棒ab 从某处释放,同时U 形框解除固定,为使金属棒与U 形框碰撞前U 形框能保持静止,求冲量I 大小应满足的条件。

(3)若金属棒ab 在x =-0.32m 处释放,且I =0.4N·s ,同时U 形框解除固定,之后金属棒ab 运动到EF 处与U 形框发生完全非弹性碰撞,求金属棒cd 最终静止的坐标。

【答案】(1)感应电流方向从b 到a ;0.1V;(2)0.48N ⋅s ;(3)2.5m 【解析】 【分析】 【详解】(1)金属棒获得冲量I 后,速度为24m/s Iv m == 根据右手定则,感应电流方向从b 到a ; 切割磁感线产生的电动势为1E B lv =其中11B =T ;金属棒ab 两端的电势差为12120.1V ab B lvU R R R ==+(2)由于ab 棒向下运动时,重力沿斜面的分力与摩擦力等大反向,因此在安培力作用下运动,ab 受到的安培力为2212212B l v F m a R R ==+做加速度减小的减速运动;由左手定则可知,cd 棒受到安培力方向沿轨道向上,大小为21212B B l v F R R =+安其中21T B =;因此获得冲量一瞬间,cd 棒受到的安培力最大,最容易发生滑动 为使线框静止,此时摩擦力沿斜面向下为最大静摩擦力,大小为11cos sin m f m g m g μαα==因此安培力的最大值为12sin m g θ; 可得最大冲量为()12122122sin 0.48m m g R R I B B lα+==N·s (3)当I =0.4N·s 时,金属棒获得的初速度为04/v m s =,其重力沿斜面分力与摩擦力刚好相等,在安培力作用下做加速度减小的减速,而U 形框在碰撞前始终处于静止; 设到达EF 时速度为1v ,取沿斜面向下为正,由动量定理得22212012B l vtm v m v R R -=-+ 其中0.32m vt x == 解得12m/s v =金属棒与U 形线框发生完全非弹性碰撞,由动量守恒得()11122m v m m v =+因此碰撞后U 形框速度为20.5m/s v =同理:其重力沿斜面的分力与滑动摩擦力等大反向,只受到安培力的作用,当U 形框速度为v 时,其感应电流为12de ab B lv B lvI R R -=+其中,de B ,ab B 分别为de 边和ab 边处的磁感应强度,电流方向顺时针,受到总的安培力为()2212deab de abB B l vF B Il B Il R R -=-=+其中,,0.8cd ab B B kl k -== 由动量定理得()24122120k l vtm m v R R -=-++ 因此向下运动的距离为()()12212242m m m v R R s k l ++==此时cd 边的坐标为x =2.5m2.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。

电磁感应现象易错题知识点及练习题及答案

电磁感应现象易错题知识点及练习题及答案

电磁感应现象易错题知识点及练习题及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。

一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。

现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。

不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。

(1)求ab棒沿斜面向上运动的最大速度;(2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q;(3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。

【答案】(1) (2)q=40C (3)【解析】【分析】(1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。

据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。

(2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。

(3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。

【详解】(1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知对物体,有;对ab棒,有又、联立解得:(2) 感应电荷量据闭合电路的欧姆定律 据法拉第电磁感应定律在ab 棒开始运动到匀速运动的这段时间内,回路中的磁通量变化联立解得:(3)对物体和ab 棒组成的系统,根据能量守恒定律有:又解得:电阻R 上产生的焦耳热2.如图所示,足够长的U 型金属框架放置在绝缘斜面上,斜面倾角30θ=︒,框架的宽度0.8m L =,质量0.2kg M =,框架电阻不计。

高中物理 第09章 电磁感应 (单双棒问题)典型例题(含答案)【经典】

高中物理   第09章  电磁感应  (单双棒问题)典型例题(含答案)【经典】

第九章 电磁感应知识点七:单杆问题(与电阻结合)(水平单杆、斜面单杆(先电后力再能量))1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系 (8)动量关系 (9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.2、阻尼式(1)电路特点:导体棒相当于电源。

(2)安培力的特点:安培力为阻力,并随速度减小而减小。

(3)加速度特点:加速度随速度减小而减小 (4)运动特点:加速度减小的减速运动(5)最终状态:静止 (6)能量关系:动能转化为焦耳热 (7)动量关系(8)变形:有摩擦力;磁场不与导轨垂直等1.(多选)如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是( ).答案 ACD FN M m F mga m μ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-22()B F B l v a m m R r ==+22B B l v F BIl R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl s q n R r R r φ∆⋅∆==++2、(单选)如图所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ).答案 BA .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W3.(多选)如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程( ).答案 ACA .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4.(单选)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).答案 BA .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v R sin θ5.(多选)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ).答案 ACA .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功6、(单选)如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( ).答案 BA .t 2=t 1B .t 1>t 2C .a 2=2a 1D .a 2=5a 17. (多选)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( ).A .导体棒的a 端比b 端电势低 答案 BDB .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍8.(单选)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( ).A .两次上升的最大高度相比较为H <hB .有磁场时导体棒所受合力的功等于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 20D .有磁场时,ab 上升过程的最小加速度大于g sin θ 答案 B9.如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab 的阻力大小f ;(2)杆ab 中通过的电流及其方向;(3)导轨左端所接电阻的阻值R .答案 (1)F -mv 22d (2)mv 22Bld a →b (3)2B 2l 2d mv -r(1)杆进入磁场前做匀加速运动,有① ② 解得导轨对杆的阻力③ (2)杆进入磁场后做匀速运动,有④ 杆ab 所受的安培力⑤ 解得杆ab 中通过的电流⑥ 杆中的电流方向自a 流向b⑦ (3)杆产生的感应电动势⑧ 杆中的感应电流⑨解得导轨左端所接电阻阻值⑩ 10.如图甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示.求杆的质量m 和加速度a .答案 0.1 kg 10 m/s 2解:导体杆在轨道上做匀加速直线运动,用表示其速度,t 表示时间,则有:①杆切割磁力线,将产生感应电动势:② 在杆、轨道和电阻的闭合回路中产生电流③杆受到的安培力的④ 根据牛顿第二定律,有⑤ 联立以上各式,得⑥ 由图线上取两点代入⑥式,可计算得出:,答:杆的质量为,其加速度为.11、如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.答案(1)6 m/s(2)1.1 m(1)ab对框架的压力① 框架受水平面的支持力②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力③ab中的感应电动势④ MN中电流⑤MN受到的安培力⑥ 框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得⑪12、如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.答案(1)2 V b→a(2)0.2 kg 2 Ω(3)0.6 J解:(1)由图可以知道,当时,杆最终以匀速运动,产生电动势由右手定则判断得知,杆中电流方向从(2)设最大速度为v,杆切割磁感线产生的感应电动势由闭合电路的欧姆定律:杆达到最大速度时满足计算得出:由图象可以知道:斜率为,纵截距为, 得到:计算得出:,(3)根据题意:,得,则由动能定理得联立得代入计算得出13.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L =1 m .质量为m 的金属杆ab 垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .P 、M 间接有阻值为R 1的定值电阻,Q 、N 间接电阻箱R .现从静止释放ab ,改变电阻箱的阻值R ,测得最大速度为v m ,得到1v m 与1R 的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g 取10 m/s 2.求: (1)金属杆的质量m 和定值电阻的阻值R 1; (2)当电阻箱R 取4 Ω时,且金属杆ab 运动的加速度为12g sin θ时,此时金属杆ab 运动的速度;(3)当电阻箱R 取4 Ω时,且金属杆ab 运动的速度为v m 2时,定值电阻R 1消耗的电功率.解析 (1)总电阻为R 总=R 1R /(R 1+R ),电路的总电流I =BLv /R 总 当达到最大速度时金属棒受力平衡,有mg sin θ=BIL =B 2L 2v m R 1R (R 1+R ),1v m =B 2L 2mgR sin θ+B 2L 2mgR 1sin θ,根据图象代入数据,可以得到金属杆的质量m =0.1 kg ,R 1=1 Ω. (2)金属杆ab 运动的加速度为12g sin θ时,I ′=BLv ′/R 总 根据牛顿第二定律得mg sin θ-BI ′L =ma即mg sin θ-B 2L 2v ′R 1R (R 1+R )=12mg sin θ,代入数据,得到v ′=0.8 m/s. (3)当电阻箱R 取4 Ω时,根据图象得到v m =1.6 m/s ,则v =v m 2=0.8 m/s ,P =E 2R 1=B 2L 2v 2R 1=0.16 W.14.如图所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L =0.5 m ,上方连接一个阻值R =1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B =2 T 的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r =0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h 0=0.8 m 处由静止释放,进入磁场后恰做匀速运动.(g 取10 m/s 2)(1)求金属杆的质量m 为多大?(2)若金属杆2从磁场边界上方h 1=0.2 m 处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J 的电热,则此过程中流过电阻R 的电荷量q 为多少?解析 (1)金属杆2进入磁场前做自由落体运动,则v m =2gh 0=4 m/s金属杆2进入磁场后受两个力而处于平衡状态,即mg =BIL ,且E =BLv m ,I =E 2r +R解得m =B 2L 2v m 2r +R g =22×0.52×42×0.5+1×10kg =0.2 kg. (2)金属杆2从下落到再次匀速运动的过程中,设金属杆2在磁场内下降h 2,由能量守恒定律得 mg (h 1+h 2)=12mv 2m +Q 解得h 2=12mv 2m +Q mg -h 1=0.2×42+2×1.42×0.2×10 m -0.2 m =1.3 m 金属杆2进入磁场到匀速运动的过程中,感应电动势和感应电流的平均值分别为E =BLh 2t 2,I =E 2r +R 故流过电阻R 的电荷量q =It 2 联立解得q =BLh 22r +R =2×0.5×1.32×0.5+1C =0.65 C.15.如图12(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd 在位于区域Ⅰ内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g .求:(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率;(3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒从开始下滑至EF 的过程中回路中产生的热量.解析 (1)由楞次定律知通过cd 棒的电流方向为d →c 区域Ⅰ内磁场方向为垂直于纸面向上.(2)对cd 棒:F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl 当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率 P =I 2R =m 2g 2R sin 2θB 2l 2. (3)ab 棒在到达区域Ⅱ前做匀加速直线运动,加速度a =g sin θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得ΔΦΔt =Blv t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2l g sin θ ab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ 则ab 棒开始下滑的位置离EF 的距离h =12at 2x +2l =3l . (4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t=2lg sin θ ab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Blv t =Bl 2gl sin θ ab 棒从开始下滑至EF 的过程中闭合回路产生的热量Q =EIt =4mgl sin θ.16.如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向;⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量;⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为,根据动能定理则有:导体杆刚进入磁场时产生的感应电动势为:此时通过导体杆上的电流大小为:(或 根据右手定则可以知道,电流方向为由b 向a (2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为,则有: 通过电阻R 的感应电流的平均值为:通过电阻R 的电荷量为:(或 (3)设导体杆离开磁场时的速度大小为,运动到圆轨道最高点的速度为,因导体杆恰好能通过半圆形轨道的最高点,根据牛顿第二定律对导体杆在轨道最高点时有:对于导体杆从运动至的过程,根据机械能守恒定律有:计算得出:导体杆穿过磁场的过程中损失的机械能为:此过程中电路中产生的焦耳热为:知识点八:单杆问题(与电容器结合)电容有外力充电式(1)电路特点:导体为发电边;电容器被充电。

(完整版)高中物理电磁感应经典例题总结

(完整版)高中物理电磁感应经典例题总结

1.如图,金属棒ab 置于水平放置的U 形光滑导轨上,在ef 右侧存在有界匀强磁场B ,磁场方向垂直导轨平面向下,在ef 左侧的无磁场区域cdef 内有一半径很小的金属圆环L ,圆环与导轨在同一平面内。

当金属棒ab 在水平恒力F 作用下从磁场左边界ef 处由静止开始向右运动后,圆环L 有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。

答案:收缩,变小解析:由于金属棒ab 在恒力F 的作用下向右运动,则abcd 回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。

2.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中。

一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u 。

现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。

设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。

则此过程 ( BD )A.杆的速度最大值为B.流过电阻R 的电量为C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量D.恒力F 做的功与安倍力做的功之和大于杆动能的变化量解析:当杆达到最大速度v m 时,022=+--r R v d B mg F m μ得()()22d B r R mg F v m +-=μ,A 错;由公式()()rR BdLr R S B r R q +=+=+=∆∆Φ,B 对;在棒从开始到达到最大速度的过程中由动能定理有:K f F E W W W ∆=++安,其中mg W f μ-=,Q W -=安,恒力F 做的功与摩擦力做的功之和等于杆动能的变化量与回路产生的焦耳热之和,C 错;恒力F 做的功与安倍力做的功之和等于于杆动能的变化量与克服摩擦力做的功之和,D 对。

高考物理电磁感应现象习题知识点及练习题附答案

高考物理电磁感应现象习题知识点及练习题附答案

高考物理电磁感应现象习题知识点及练习题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2mgRsin B L vθ(2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t则电容器板间电压为 U E BLv ='= 此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.2.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。

高中物理法拉第电磁感应定律易错题知识点及练习题附答案解析

高中物理法拉第电磁感应定律易错题知识点及练习题附答案解析

高中物理法拉第电磁感应定律易错题知识点及练习题附答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt=线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。

在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。

t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。

在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。

已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。

求:(1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离;(3)ab 棒开始下滑至EF 的过程中回路中产生的热量。

高中物理 电磁感应定律的应用 (提纲、例题、练习、解析)

高中物理  电磁感应定律的应用 (提纲、例题、练习、解析)

电磁感应定律应用【学习目标】1.了解感生电动势和动生电动势的概念及不同。

2.了解感生电动势和动生电动势产生的原因。

3.能用动生电动势和感生电动势的公式进行分析和计算。

【要点梳理】要点一、感生电动势和动生电动势由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是磁场不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作动生电动势,另外一种是导体不动,由于磁场变化引起磁通量的变化而产生的电动势称作感生电动势。

1.感应电场19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出,变化的磁场会在周围空间激发一种电场,我们把这种电场叫做感应电场。

静止的电荷激发的电场叫静电场,静电场的电场线是由正电荷发出,到负电荷终止,电场线不闭合,而感应电场是一种涡旋电场,电场线是封闭的,如图所示,如果空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流,或者说导体中产生感应电动势。

要点诠释:感应电场是产生感应电流或感应电动势的原因,感应电场的方向也可以由楞次定律来判断。

感应电流的方向与感应电场的方向相同。

2.感生电动势(1)产生:磁场变化时会在空间激发电场,闭合导体中的自由电子在电场力的作用下定向运动,产生感应电流,即产生了感应电动势。

(2)定义:由感生电场产生的感应电动势成为感生电动势。

(3)感生电场方向判断:右手螺旋定则。

3、感生电动势的产生由感应电场使导体产生的电动势叫做感生电动势,感生电动势在电路中的作用就是充当电源,其电路是内电路,当它和外电路连接后就会对外电路供电。

变化的磁场在闭合导体所在的空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说产生感应电动势。

其中感应电场就相当于电源内部所谓的非静电力,对电荷产生作用。

例如磁场变化时产生的感应电动势为cos B E nS t∆θ∆= .要点二、洛伦兹力与动生电动势导体切割磁感线时会产生感应电动势,该电动势产生的机理是什么呢?导体切割磁感线产生的感应电动势与哪些因素有关?他是如何将其他形式的能转化为电能的?1、动生电动势(1)产生:导体切割磁感线运动产生动生电动势(2)大小:E BLv =(B 的方向与v 的方向垂直)(3)动生电动势大小的推导:ab 棒处于匀强磁场中,磁感应强度为B ,垂直纸面向里,棒沿光滑导轨以速度v 匀速向右滑动,已知导轨宽度为L ,经过时间t 由M 运动导N ,如图所示,由法拉第电磁感应定律可得:ФBS B L vt E BLv t t t∆∆⋅⋅====. 故动生电动势大小为E BLv =.2、动生电动势原因分析导体在磁场中切割磁感线时,产生动生电动势,它是由于导体中的自由电子受到洛伦兹力的作用而引起的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

私塾国际学府学科教师辅导教案组长审核:6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差.(1)磁感应强度B 不变,有效面积S 变化时,则ΔΦ=Φ2-Φ1=B ·ΔS.(2)磁感应强度B 变化,磁感线穿过的有效面积S 不变时,则ΔΦ=Φ2-Φ1=ΔB ·S. (3)磁感应强度B 和有效面积S 同时变化时,则ΔΦ=Φ2-Φ1=B 2S 2-B 1S 1.注意几个概念:(1)磁通量Φ:某时刻穿过磁场中某个面的磁感应线条数,若穿过某个面有方向相反的磁场,则不能直接用Φ=B ·S ,应考虑相反方向的磁感应或抵消以后所剩余的磁通量。

(2)磁通量变化量ΔΦ:穿过某个面的磁通量随时间的变化量。

注意开始和转过180º时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,ΔΦ=2B ·S ,而不是零。

(3)磁通量的变化率ΔΦ/Δt :表述磁场中穿过某一面的磁通量变化快慢的物理量。

它既不表示磁通量的大小也不表示磁通量变化的多少,在Φ-t 图像中,可用图形的斜率表示。

剖析:① 磁通量ϕ的实质就是穿过某面积的磁感线的条数。

② 磁感线除了有大小以外,还有方向,但它是个标量。

磁通量的方向仅仅表示磁感线沿什么方向穿过某面积,其运算不满足矢量合成的平行四边形定则,只满足代数运算,在求其变化量时,事先要设正方向,并将“+”、“-”号代入。

③ 由磁通量的定义θϕsin BS =可得:θϕsin S B =,此式表示“磁感应强度B 大小等于穿过垂直于磁场方向的单位面积的磁感线条数”,所以磁感应强度又被叫做“磁感密度”。

[例题1] .如图10-1-4所示,面积大小不等的两个圆形线圈A 和B 共轴套在一条形磁铁上,则穿过A 、B 磁通量的大小关系是A ϕ____B ϕ。

解析:磁铁内部向上的磁感线的总条数是相同的,但由于线圈A 的面积大于B 的,外部穿过线圈向下的磁感线的条数A 的大于B 的,所以A ϕ<B ϕ。

10-1-4答案:<【变式训练1】如图10-1-5所示,边长为cm 100的正方形闭合线圈置于磁场中,线圈的ad 、bc 两边中点连线O O '的左右两侧分别存在着方向相同、磁感应强度大小各为T B 60.01=、T B 40.02=的匀强磁场。

开始时,线圈平面与磁场垂直,若从上往下看,线圈逆时针转037和0180角时,穿过线圈的磁通量分别改变了多少?解析:在开始位置,线圈与磁场垂直,则22211S B S B ⋅+⋅=ϕ 2140.02160.0⨯+⨯=)(5.0Wb = 线圈绕O O '转动037角后0201237cos 237cos 2SB S B ⋅+⋅=ϕ 8.02140.08.02160.0⨯⨯+⨯⨯=)(40.0Wb = 磁通量的变化量为)(1.050.040.012W b -=-=-=∆ϕϕϕ线圈绕O O '转动0180角时,若规定穿过圆线圈平面的磁通量为正,转过0180后,穿过线圈的磁通量则为负值,即22213S B S B ⋅-⋅-=ϕ 2140.02160.0⨯-⨯-=)(5.0Wb -= 磁通量的变化量为)(0.150.050.013Wb -=--=-='∆ϕϕϕ10-1-5二、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应。

2.产生感应电流的条件(1)电路必须闭合(2)穿过回路的磁通量要发生变化3.感应电动势的产生穿过电路的磁通量发生变化.电磁感应现象的实质是产生感应电动势.如果回路闭合,则有感应电流;如果回路不闭合,则只有感应电动势而无感应电流.说明:产生感应电动势的那部分导体相当于电源.三、感应电流方向的判断1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向。

2.楞次定律内容:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量变化。

(增反减同)3.判断感应电流方向问题的思路运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为(1)明确原磁场:弄清原磁场方向及磁通量的变化情况;(2)确定感应磁场:即跟据楞次定律中的“阻碍”原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向;(3)判定感应电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流的方向。

即据原磁场(Φ原方向及ΔΦ情况) 确定感应磁场(B感方向) 判断感应电流(I感方向) 说明:1.楞次定律是普遍规律,适用于一切电磁感应现象,而右手定则只适用于导体切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定更简便.2.右手定则与左手定则的区别:抓住因果关系才能无误.“因动而电”——用右手;“因电而动”——用左手.重点难点例析一、磁通量及其变化的计算由公式Φ=BS计算磁通量及磁通量的变化应把握好以下几点:(1)此公式只适用于匀强磁场(2)式中的S是与磁场垂直的有效面积(3)磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反(4)磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值, 即ΔΦ=|Φ2-Φ1|.【例1】如图所示,一正方形闭合线圈在足够大的匀强磁场中运动,其中能产生感应电流的是( D )A. B. C. D.【例2】面积为S的矩形线框abcd,处在磁感应强度为B的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab为轴顺时针转900过程中,穿过abcd图9-1-1的磁通量变化量ΔΦ= .【解析】设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁通量是由正向BSsinθ减小到零,再由零增大到负向BScosθ,所以,磁通量的变化量为:ΔΦ=Φ2-Φ1=-BScosθ-BSsinθ=-BS(cosθ+sinθ)【答案】-BS(cosθ+sinθ)【点拨】磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负.穿过某一面积的磁通量一般指合磁通量.二、感应电流方向的判定感应电流方向的判定方法:方法一:右手定则(部分导体切割磁感线)方法二:楞次定律【例4】某实验小组用如图9-1-3所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是( )A.a→○G→b图9-1-3B.先a→○G→b,后b→○G→aC.先b→○G→aD.先b→○G→a,后a→○G→b三、楞次定律推论的应用在实际问题的分析中,楞次定律的应用可拓展为以下四个方面①阻碍原磁通量的变化,即“增反减同”;②阻碍相对运动,即“来拒去留”;③使线圈面积有扩大或缩小的趋势,即“大小小大”;图9-1-8④ 阻碍导体中原来的电流发生变化,即“自感现象”.【例5】两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如9-1-7所示的方向,绕中心转动的角速度发生变化时,B 中产生如图所示的感应电流,则( BC ) A.A 可能带正电且转速减小 B.A 可能带正电且转速增大 C.A 可能带负电且转速减小 D.A 可能带负电且转速增大 【解析】若A 带正电, 则穿过B 的磁通量垂直纸面向里,只有磁通量增大时,B 中才会产生逆时针方向的感应有尽电流,故A 的转速应增大,选项B 正确A 错误.若A 带负电,同理可推断选项C 正确D 错误.【例7】电阻R 、电容器C 与一线圈连成闭合回路,条形磁铁静止于线圈的正上方,N 极朝下,如图9-1-8所示.现使磁铁开始自由下落,在N 极接近线圈上端的过程中,流过R 的电流方向和电容器极板的带电情况是( D ) A.从a 到b,上极板带正电 B.从a 到b,下极板带正电 C.从b 到a,上极板带正电 D.从b 到a,下极板带正电【解析】在N 极接近线圈上端的过程中,通过线圈的磁感线方向向下,磁通量增大,由楞次定律可判断流过线圈的电流方向下,即线圈下端相当于电源正极,故可知D 正确.法拉第电磁感应定律:在电磁感应现象中,电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

图9-1-7值,在数值上一般等于旋转导体棒中点的切割速度。

⑴导体平动切割磁感线对于导体平动切割磁感线产生感应电动势的计算式E =Blv ,应从以下几个方面理解和掌握。

①正交性本公式是在一定条件下得出的,除了磁场是匀强磁场,还需B 、l 、v 三者相互垂直。

实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E =Blv sin θ,θ为B 与v 方向间的夹角。

②平均性导体平动切割磁感线时,若v 为平均速度,则E 为平均感应电动势,即E =Bl v 。

③瞬时性若v 为瞬时速度,则E 为相应的瞬时感应电动势。

④有效性公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度。

图中有效长度分别为:甲图:l =cd sin β(容易错算成l =ab sin β)。

乙图:沿v 1方向运动时,l =MN ;沿v 2方向运动时,l =0。

丙图:沿v 1方向运动时,l =2R ;沿v 2方向运动时,l =0;沿v 3方向运动时,l =R 。

⑤相对性E =Blv 中的速度v 是相对于磁场的速度,若磁场也运动时,应注意速度间的相对关系。

三、导体切割磁感线产生的感应电动势大小的特例长为l 的导体在磁感应强度为B 的匀强磁场中以角速度ω匀速转动,导体棒产生的感应电动势: A 、以中点为轴时,E=0(不同两端的代数和);B 、以端点为轴时,221l B E ω=(平均速度取中点位置的线速度)C 、以任意点为轴时,()222121l l B E -=ω(不同两段的代数和)当导体在垂直于磁场的平面内,绕一端以角速度ω匀速转动时,产生的感应电动势为E =Bl v =12Bl 2ω,如图所示。

【例1】如图所示,直角三角形导线框abc 固定在匀强磁场中,ab 是一段长为l 、电阻为R 的均匀导线,ac 和bc 的电阻可不计,ac 长度为2l。

磁场的磁感应强度为B ,方向垂直于纸面向里。

现有一段长度为2l 、电阻为2R的均匀导体杆MN 架在导线框上,开始时紧靠ac ,然后沿ab 方向以恒定速度v 向b 端滑动。

滑动中始终与ac 平行并与导线框保持良好接触。

当MN 滑过的距离为3l时,导线ac 中的电流是多大?方向如何?互感、自感和涡流 1.互感现象两个互相靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的 会在另一个线圈中产生 的现象.互感现象可以把 由一个线圈传递到另一个线圈,变压器就是利用 现象制成的. 2.自感现象由于线圈本身的 发生变化而在它本身激发出感应电动势的现象. 3.自感电动势(1)定义:在 现象中产生的感应电动势.(2)公式:E =L ΔIΔt ,其中L 叫自感系数,它与线圈的 、形状、 以及是否有铁芯有关.自感系数的单位:是亨利(H),1 mH = μH = H. 4.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像状的感应电流.5.电磁阻尼当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是导体的运动的现象.6.电磁驱动如果磁场相对于导体转动,在导体中会产生感应电流,感应电流使导体受到的作用,使导体运动起来,这种作用称为电磁驱动.交流电动机就是利用的原理制成的.注意:自感作用延缓了电路中电流的变化,使得在通电瞬间含电感的电路相当于断路;断电时电感线圈相当于一个电源,通过放电回路将储存的能量释放出来.练一练:1、下列做法中可能产生涡流的是( )A.把金属块放在匀强磁场中B.让金属块在匀强磁场中做匀速运动C.让金属块在匀强磁场中做变速运动D.把金属块放在变化的磁场中2、(2010·全国卷Ⅰ)某地的地磁场磁感应强度的竖直分量方向向下,大小为4.5×10-5T.一灵敏电压表连接在当地入海河段的两岸,河宽100 m,该河段涨潮和落潮时有海水(视为导体)流过.设落潮时,海水自西向东流,流速为2 m/s.下列说法正确的是( )A.电压表记录的电压为5 mVB.电压表记录的电压为9 mVC.河南岸的电势较高D.河北岸的电势较高3、在如图9-2-1所示的电路中,线圈L的自感系数足够大,其直流电阻忽略不计,A,B是两个相同的灯泡,下列说法中正确的是( ) A.S闭合后,A,B同时发光且亮度不变B.S闭合后,A立即发光,然后又逐渐熄灭C.S断开的瞬间,A,B同时熄灭D.S断开的瞬间,A再次发光,然后又逐渐熄灭4、如图9-2-9所示的电路中,三个相同的灯泡a、b、c和电感L1、L2与直流电源连接,电感的电阻忽略不计.开关S从闭合状态突然断开时,下列判断正确的有( )A.a先变亮,然后逐渐变暗B.b先变亮,然后逐渐变暗C.c先变亮,然后逐渐变暗D.b、c都逐渐变暗。

相关文档
最新文档